
Improved Scalability by Using
Hardware-Aware Thread Affinities

Sven Mallach1 and Carsten Gutwenger2

1 Universität zu Köln, Germany
2 Technische Universität Dortmund, Germany

Abstract. The complexity of an efficient thread management steadily
rises with the number of processor cores and heterogeneities in the de-
sign of system architectures, e.g., the topologies of execution units and
the memory architecture. In this paper, we show that using informa-
tion about the system topology combined with a hardware-aware thread
management is worthwhile. We present such a hardware-aware approach
that utilizes thread affinity to automatically steer the mapping of threads
to cores and experimentally analyze its performance. Our experiments
show that we can achieve significantly better scalability and runtime sta-
bility compared to the ordinary dispatching of threads provided by the
operating system.

1 Introduction

Today, multicore processors have become an ultimate commodity in private
and scientific computing allowing multiple levels of parallelism. Namely one can
achieve parallelism by superscalarity, SIMD instructions, multiple cores, and si-
multaneous multithreading using only a single processor. Under these conditions
cache/memory considerations become more complex and, when combining two
or more processors within one system, complexity rises extremely if an imple-
mentation shall scale on different architectures.

However, even within the omnipresent products of the x86 processor market,
systems have significant differences concerning cache and memory subsystem
design, which has a high impact on the overall performance of an implementation.
This heterogeneity will considerably increase when multicore processors will offer
64, 128 or even more cores on a single chip. In such a scenario not all cores can
have uniform access to all caches (or cache levels) and memory in terms of
latencies. Therefore the choice of the “right” cores to share data will be of great
importance. At the same time, other heterogeneous designs arise. E.g., the Cell
processor [3] shipped with every Playstation 3 has lead to a community using the
offered parallel floating point computation power for scientific purposes. Again,
exploiting this potential requires new and non-standard programming techniques
as well as knowledge about hardware issues.

Taking a look at current designs in the x86 processor market, we consider
NUMA to become the dominant type of multiprocessor systems. Despite the

never ending discussion whether explicit (hand-tuned) or implicit (compiler-
driven) parallelism is the better strategy, hardware details have to be taken
into account in order to achieve good scalability. This fact makes it hard for
parallelized implementations to perform reasonably in general.

In this paper, we present a hardware-aware thread management using thread
affinity as a key concept and analyze its performance. Our goal is to show that
the effort to investigate the underlying system topology and properties in com-
bination with a steered mapping of threads to execution units is worthwhile.
When discussing parallel implementations, it is often argued that they lead to
less “determinism” in terms of running times. In contrast to that we will show
in our experimental analysis that the controlled dispatch of threads results in
much more stable and reliable scalability as well as improved speedups.

Thread affinity is not an entirely new idea. Studies which propose its use
within OpenMP-driven programs can be found, e.g., in [10]. The authors in [9]
use affinities to prevent interrupt handling routines to be executed by different
cores. Further, autopin [5] is an application that already binds threads to exe-
cution units in order to optimize performance. However, autopin asks the user
to specify possible bindings which are then successively applied to find out the
superior one. This requires detailed knowledge about the underlying hardware.
Moreover, the implementation of the hardware performance counters used for
evaluation is not yet standardized. Reading them out needs modified kernels
and their values can be influenced by other processes. Additionally, the time
needed for the optimization process is high compared to the runtime of typical
small algorithmic tasks on relevant input sizes as we will show here. In contrast
to that, the presented approach tries to exploit operating system (OS) calls as
well as processor instructions to retrieve topology information automatically.

The remainder of this paper is organized as follows. In Sect. 2, we describe
the differences in common memory subsystem and processor designs in detail.
Sect. 3 presents our hardware-aware thread management. We explain how the
respective strategies are implemented using thread affinity. In Sect. 4, we evaluate
the sustained performance when applying the proposed strategies and compare
them to the performance achieved when leaving the full responsibility to schedule
threads to the OS. We will conclude on our approach in the last section.

2 Hardware Preliminaries

The central difference between todays multiprocessing designs is their way of
accessing the memory. Besides uniform systems, like SMP (symmetric multipro-
cessing), the number of non-uniform memory architectures (NUMA) steadily
increases. In SMP systems (see Fig. 1(a)), we have a single amount of physi-
cal memory shared equally by all execution units, and one memory controller
that (sequentially) arbitrates all incoming requests. Not necessarily, but in gen-
eral, this implies that all processors are connected to the controller via a single
bus system called front side bus (FSB). The main advantage of this design is
that data can be easily shared between processors at equal cost. The disadvan-

tage is that it does not scale for arbitrary numbers of processors, since memory
bandwidth quickly becomes a bottleneck if multiple processors require access si-
multaneously. In contrast to that, scalability is the most important design target
of NUMA systems; see Fig. 1(b). Each processor has its own memory banks, its
own memory controller, and its own connection. The drawback shows up if one
processor needs access to data stored in a memory bank controlled by a different
processor. In this case considerably slower connections between the processors
have to be used to transfer the data. This can lead to a significant performance
loss if an algorithm or thread management is not able or not designed to keep
data local to processors.

(a) SMP (b) NUMA

Fig. 1. Typical memory system topologies.

3 Hardware-Aware Thread Management

3.1 Hardware Awareness

We consider now SMP and NUMA systems with multicore processors, i.e., we
have not only parallelism between processors but also within each processor.
For simplicity of presentation, we use the terms core and execution unit as syn-
onyms, even though in case of simultaneous multithreading hardware-threads
would represent multiple execution units on one core. Due to the different ex-
tent of locality we have to treat SMP and NUMA in different ways if we are to
share data and to synchronize threads. Therefore we are interested in control-
ling which thread runs on which core, and—at any time—to be able to pick the
best processor core for the current job that is to be processed. For this purpose,
our hardware-aware thread management tries to gain as much topology infor-
mation as possible, e.g., how many cores exist and which of them are placed on

the same processor chip—possibly sharing caches. For x86 processors the corre-
sponding mapping is obtained by determining the APIC IDs of their cores [2].
Similar functionality is extracted from the numactl -API [4] to investigate the
node structure of the underlying multiprocessing system.

In this paper, we focus on the typical use case where a sequence of memory
(e.g., a container data structure) has been initialized sequentially (e.g., by read-
ing some input) and will now be worked on in parallel. Due to the first touch
strategy applied by many operating systems, the data or part of it is only stored
within the cache(s) belonging to the core which executed the main thread, while
all other caches in the system remain cold. Since the end of the data structure
was initialized last, we can also assume that the probability of remaining cache
data increases towards the end of it.

A thread running on the same core (or cores with access to the same cache-
level) will perform well and threads running on cores located on the same chip
with access to a coherent higher-level cache or at least local memory will incur
only small delays. But threads on cores of other processors that cannot exploit
any locality will experience high latencies. Therefore, especially for small tasks
or only once traversed data, page migration on NUMA systems is often not
worthwhile compared to the reuse of a subset of the local cores while keeping
remote ones idle.

Even though there exist routines in multithreading libraries that look like
they start a bunch of threads at once, behind the scenes, the respective num-
ber of threads has to be started one by one. This means every thread ti has a
start time T start

i and an end time T end
i that varies with the choice of the execut-

ing core. Due to synchronization needs, the overall performance of the parallel
computation depends on the “slowest” thread, i.e., for t threads in the parallel
section the running time ∆T is maxt

i=1T
end
i −mint

j=1 T
start
j . Therefore our goal

is to minimize ∆T by starting potentially slow threads as early as possible and
finding an optimal mapping of threads (e.g., processing certain array intervals)
to cores.

Under the assumptions made, it is reasonable to start threads on “distant”
cores processing the front-end of the memory sequence first, since they will be
the “slowest” ones. There is only a small chance that the data resided in a
cache, and on a NUMA system there is a memory transfer needed to get the
data to the executing processor. Coming closer to the end of the sequence, the
probability that it can be obtained from a cache of the processor executing the
main thread rises. It is therefore promising to use cores as local as possible to the
core executing the main thread for processing these intervals. The last interval
might then even be processed by the main thread itself.

3.2 Thread Affinity

While the concept of thread pooling, i.e., keeping once used threads alive for fast
re-use without creation overhead, is a well known and widely applied concept
(even in compiler libraries like OpenMP), thread affinity has not yet gained the

focus it deserves. This is especially surprising since thread affinity can easily be
combined with pooling leading to much more reliable parallel execution.

If we consider a multiprocessing system with k cores, our usual assumption
is that, if we create k threads, these will be scheduled one-by-one on the k
available units. In many cases this assumption is wrong and operating systems
tend to schedule more than one thread on one core, or need some time slices to
move threads to a less loaded one. The concept of thread affinity allows us to
take control over the spreading of threads by explicitly configuring which thread
shall run on which execution unit. Together with knowledge about the topology
and memory design of the system, we use it as a powerful instrument to exploit
algorithmic properties and significantly improve runtime latencies. Nearly all
strategies that derive from the observations in Sect. 3 depend on the possibility
to control the mapping of threads to execution units for exploiting data localities
and available memory bandwidth.

The usual way thread affinity is implemented is by using OS functions. The
Unix scheduler offers the function sched setaffinity() and when using POSIX
threads [1], the function pthread setaffinity() can also be applied. Windows
offers the API function SetThreadAffinityMask() for this purpose. Solaris also
knows ways to implement thread affinity, but with the drawback that they all
need privileged execution rights.

Fig. 2. Worst case scenario: using thread affinity (left); with flexible scheduling (right).

Despite all advantages, there exists a pathological example where the appli-
cation of thread affinity may have negative impacts if other compute-intensive
processes load one or more of the cores where threads are bound to. As a simple
example for a dual-core processor, imagine some program P that can be trivially
partitioned into two parts P0 and P1. Suppose its parallel execution shall start
at some point of time Tstart and time trun is needed to execute P0 or P1. Now
assume that at Tstart, there is already another process Pf scheduled on core 1,
as shown in the left part of Fig. 2. Since the thread that shall execute part P1 is
bound to core 1, the scheduler is forced to wait until the end of the current time
slice. If we abstract from the costs of context switches and assume that P0 can
be shortly re-scheduled for synchronization, the running time of the program
will be tslice + trun − Tstart. If the binding could be released, as is indicated in

the right part of Fig. 2, a running time of 2 · trun would suffice. In contrast to
the left scenario, this would mean no loss compared to sequential execution of P
and with more cores speedup could still be achieved. To enable the release of a
binding we could relax the restriction of a thread’s affinity mask to only one core,
but this would lead to non-optimal scheduling in other cases. One solution could
be to augment the mask only if necessary—at the cost of additional overhead
for testing the respective conditions. Experiments how to realize such a strategy
efficiently are just in their infancy.

3.3 General Pitfalls

When leaving the responsibility completely to the OS, it often happens that
threads are dispatched on the same core that also executes the main thread. In
the worst case, if the assigned tasks have running times in the order of a few
time slices, every thread performs its tasks one-by-one instead of being moved
to another core. Hence, a more or less sequential execution takes place. Even if
this is not the case, a considerable performance penalty due to synchronization
overhead results. Consider a thread that is to be awakened. No matter which
implementation of threads is used, some time before it will have acquired a mutex
lock and called the wait() function of a condition variable, which releases the
lock again. If now the main thread wants to wake up the thread, it locks the
mutex and calls signal() for the corresponding condition variable. Afterwards
it would unlock the mutex. Experiments [6] have shown that the signaled thread
may receive a time slice before the main thread has reached the atomic part of
the unlock, like shown in Fig. 3. As returning from wait() results in a try to
re-lock the mutex, the time slice will be spent with waiting, until, in the next
time slice assigned to the main thread, the unlock completes.

main thread thread

lock(mutex)
wait(mutex)

lock(mutex)
signal() lock(mutex)
unlock(mutex)

Fig. 3. Synchronization process between the main thread and a computation thread.

In Sect. 4 we will see that it can even be profitable to use less than the max-
imum available execution units for a given task. As shown in [6], the execution
time needed to perform a task on a given input size by a single thread taking
part in the parallel execution can increase when the overall number of partici-
pating threads rises. This is the case if the memory controller is saturated or if
inter-processor communication has to be used in a NUMA system. Even the as-
sumption that the sustainable memory bandwidth for one processor is sufficient
to serve all its cores is wrong as our and other [5] results demonstrate. Especially
if we decide to use only a subset of the available threads, it is important not to

start with the most “distant” ones, but to use those that are most local to the
core which initialized the data. Employing this strategy we can be considerably
faster than if we would have spread the work randomly.

3.4 Implementation of Dispatch Strategies

In order to facilitate flexible strategies for different subsystem designs and sce-
narios by means of thread affinity, we implemented a thread-pool that keeps
threads sorted according to their topology in the system. To avoid the issues de-
scribed above, we also control which core executes the main thread and bind no
other thread to it. Hence, now every sequential initialization will be performed
on that known core that we now refer to as cmain. We implement dispatch strate-
gies optimized for different memory subsystem designs, tasks, and numbers of
participating threads by deciding to group threads on, e.g., the processor com-
prising cmain, or to alternate between the available processors in order to balance
load and optimize bandwidth. For this purpose, the functions that realize the
selection of particular threads mainly operate on the sorted array mentioned
above.

In case of a compute-bound operation with dynamic load balancing, two ma-
jor properties have to be taken into account, namely the memory architecture
and the number of threads to use. Due to our assumption to work on sequentially
initialized data, we emphasize on exploiting locality on NUMA systems. That
is, the dispatching function will not alternate between the nodes, but try to use
as many cores from the processor comprising cmain as possible. In other scenar-
ios with threads allocating a lot of memory themselves, a bandwidth-optimizing
distribution strategy would be more appropriate. On an SMP architecture, incor-
porating cores of another processor does not incur higher delays. Additionally,
if the processors have their own bus connections to the memory controller (like
in our Penryn test system; see Sect. 4) it is worthwhile to use cores on distinct
ones even if only two threads have to be dispatched, since using only one of them
would not fully exploit the sustainable bandwidth of the controller.

In case of a memory-bound operation things become more complicated be-
cause, for small inputs, cache considerations decide whether a dispatch strategy
is a good one or not. If the input entirely fits into the cache, it is generally diffi-
cult to be faster than sequential execution, since other cores have cold caches. To
react on this, our dispatching function takes into account the amount of mem-
ory that will be worked on by a single thread as a third parameter. If we have
small inputs and a coherent cache level for some or all cores on one processor,
we try to dispatch all threads on the processor with core cmain. This leads to
a trade off: Using less cores than available means a weaker parallelization, but
these fewer threads now work on hot caches and receive much faster memory
access. On SMP systems we can expect only little effects resulting from that,
but on NUMA this strategy avoids the high latencies that would be incurred by
a page migration to other processors. If the input size is bigger than the cache,
local and remote cores will equally have to read from main memory. The cost

for inter-processor communication can therefore be amortized by a stronger par-
allelization, so it is worthwhile to use cores on other processors, too. Similarly,
if available, we can get more bandwidth by using multiple bus connections of
SMP systems. The dispatching function starts the threads on cores of the other
processors first as they will have the highest delays and then moves on to the
processor with the main thread. If only a subset of the available cores is used,
only as many “distant” cores as necessary are involved. Fig. 4 shows the result-
ing thread dispatch strategies for some example scenarios that can be mapped
one-to-one to the test systems used in the evaluation.

(a) A 2-processor system with 4 cores
and two cores sharing an L2-cache

(b) A 2-processor system with 4
cores and a shared L3-cache each

scenario / core 0 1 2 3 4 5 6 7

NUMA (a) and (b), 4 threads, out-of-cache 0 1 2 3
SMP (a) and (b), 4 threads, out-of-cache 0 1 2 3

NUMA and SMP (a), 4 threads, in-cache 0/2 1/3
NUMA and SMP (b), 4 threads, in-cache 0 1 2 3

(c) Example dispatchs for the above system architectures

Fig. 4. Treatment of different architectures by our thread management.

4 Experimental Evaluation

A good indicator for the performance of a thread management is its memory
throughput. Due to the constantly growing gap between computational and
memory throughput, most algorithms will not be able to scale linearly as long
as they do not comprise intensive computations on a relatively small amount
of data. Otherwise speedup can only increase to a certain factor well known as
memory wall [8]. This factor cannot be superseded even by use of arbitrary num-
bers of cores, since every execution unit spends its time on waiting for memory
transfers and additional units may even worsen the pollution of the memory bus.
Another important measure is the speedup for small inputs. The advantages of
efficient dispatching strategies, synchronization and small latencies achieved by
a thin management layer can be visualized here. For our purposes, this focus is
straight-forward, as we want to demonstrate the benefits of a hardware-aware
thread management rather than present a competition between algorithms im-

plemented on top of different backends which have their own impact on the
measured performance.

We consider two scenarios to demonstrate the advantages when using thread
affinity. We begin with a shallow copy (the C function memcpy()) as an ex-
amination of a memory bound directive which can be trivially parallelized and
therefore theoretically achieve a linear speedup only bounded by the sustainable
memory throughput. With this example we gain insight about the current state
of the memory gap mentioned above, sensitize for the dependencies between
speedup and memory throughput, and demonstrate the effects of our cache-
aware thread management. We intentionally do not use established benchmarks
like, e.g., STREAM [7] for comparison because they initialize data in parallel.
As a second experiment, we consider a more computationally intensive oper-
ation which is not memory bound. For this purpose, we choose the function
partition() from the Standard Template Library, which is part of the C++
standard. It has been parallelized using dynamic load balancing [6, 11] and is now
executed on top of our thread-pool. Being a basis for many sorting and selec-
tion problem algorithms, it is an adequate example to demonstrate the improved
scalability and stability achieved.

4.1 System Setup

The test systems used in our experimental evaluation are summarized in Ta-
ble 1. For our benchmarks we use the C function clock gettime(), measuring
wall clock time with a resolution of 1 ns on all test systems, and the g++-4.4.1
compiler with optimization flag -O2. We compare the arithmetic average of the
running times (or throughputs) of 1000 calls to the sequential and parallel func-
tion on different input data, thus wiping out cache effects between successive
function calls. This simulates real world applications, which usually have cold
caches before the start of a parallel computation. The pseudo-random inputs are
equal for every number of used threads (by using seeds) and stored in containers
of type std::vector. For the throughput benchmarks these are 64-bit floating
point numbers, and for partition() we use 32-bit floating point numbers in
the range [0,MAX RAND] with MAX RAND/2 as pivot element. For our test
systems MAX RAND is 232 − 1.

4.2 Results

Fig. 5 shows the results for the memcpy() function. We first notice the typical
progression of the line representing the sequential memory throughput. On all
platforms we have a very high throughput at the beginning stemming from full
in-cache data, which steadily decreases with the proportion of data that fits into
the cache. When no data from the initialization is reusable, it becomes stagnant.
For the parallel execution, we firstly observe a very poor performance due to the
sequential initialization of the data, which is therefore only available in coherent
or shared on-chip caches. Therefore and due to less overhead, execution with
2 (Penryn) or 4 threads (Nehalem and Shanghai) performs slightly better than

Nehalem Shanghai Penryn

CPU Intel Core i7 940 AMD Opteron 2378 Intel Xeon E5430

CPUs / Frequency 1 / 2.93 GHz 2 / 2.4 GHz 2 / 2.66 GHz

Cores per CPU 4 (8 Threads) 4 4

Memory Architecture Single NUMA UMA / SMP

L1 Data / Instr. (Core) 32 KB / 32 KB 64 KB / 64 KB 32 KB / 32 KB

L2 256 KB per Core 512 KB per Core 2× 6 MB per CPU

L3 (CPU) 8 MB 6 MB -

Main memory 12 GB 16 GB 8 GB

Linux (x86-64) Kernel 2.6.28-14-generic 2.6.24-25-generic
Table 1. Systems used for benchmarks.

with more threads. This effect dominates and leads to peak throughputs on
all test systems until the input size runs ahead the cache size, e.g., at 106 (8
MB) for the Nehalem system. Using the presented hardware-aware approach
we generally achieve a higher throughput than without thread affinity in this
interval. Afterwards, the throughput becomes solely dependent on the bandwidth
to the memory where the input was stored after initialization. As claimed before,
all platforms cannot even serve their execution units with twice the sequential
throughput. When the input size reaches a certain threshold, the gap between
our multithreading strategy and the performance of the OS becomes smaller,
since tasks now run long enough to be successively spread over all cores and
smaller latencies gained by a smart dispatch order do not further dominate the
overall execution time.

Fig. 6 gives the results for the partition() function. We observe very similar
results on the Nehalem and Shanghai systems with excellent scaling for the high-
est input sizes measured. The performance of the Penryn system is reasonable,
despite that the additional speedup using 6 and 8 threads is not comparable to
the other systems. While the proposed hardware-aware implementation begins
to scale already for small inputs, the lines representing execution without affinity
have a less steady and sometimes even chaotic progression. Again and due to
the same reasons, for the highest input sizes applied the respective lines tend to
close up to each other.

5 Conclusion

We have presented a hardware-aware approach for efficient thread management.
We pointed out how thread affinity can be used to improve speedup as well as
stability of parallel executions and showed the effect of these improvements using
two practical examples, namely a memory bound copy scenario and a function
for partitioning a range of numbers. We can conclude for both scenarios that
the use of thread affinity in connection with knowledge about the underlying
processor topology and memory subsystem has lead to better and more reliable
memory throughput and scalability. As claimed in the introduction, we confirmed

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 10000 100000 1e+06 1e+07

T
h

ro
u

g
h

p
u

t
[M

B
/s

]

Input size

memcpy()

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 10000 100000 1e+06 1e+07

T
h

ro
u

g
h

p
u

t
[M

B
/s

]

Input size

memcpy()

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10000 100000 1e+06 1e+07

T
h

ro
u

g
h

p
u

t
[M

B
/s

]

Input size

memcpy()

Fig. 5. Throughput for memcpy(): Nehalem (top), Shanghai (middle), Penryn (bottom)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 10000 100000 1e+06 1e+07

S
p

e
e

d
u

p

Input size

partition()

 0

 1

 2

 3

 4

 5

 6

 7

 10000 100000 1e+06 1e+07

S
p
e
e
d
u
p

Input size

partition()

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10000 100000 1e+06 1e+07

S
p
e
e
d
u
p

Input size

partition()

Fig. 6. Speedup for partition(): Nehalem (top), Shanghai (middle), Penryn (bottom)

that affinity-based execution is especially worthwhile for small inputs and showed
that the interval where improvements make up a considerable difference is small.
As a consequence, there is no scope to try out different strategies at runtime
and the presented thread management is designed to automatically obtain the
information needed to find a good setup.

We also sensitized that already today, and even in NUMA systems, generally
not all cores can be simultaneously served with transferred data. As the num-
ber of cores steadily increases, this ratio will even worsen in the near future.
Consequently, the effort of thread management paying respect to this fact will
increase at the same time. Whereas in the past even small and simple data struc-
tures were stored in memory for reuse, it may soon make sense to recompute
them instead of waiting for satisfied load requests. Though memory has become
cheaper, a change in algorithm design could lead to applications being faster and
considered superior as previous implementations by consuming less memory.

References

1. U. Drepper and I. Molnar. The native POSIX thread library for linux. Technical
report, Red Hat, Inc., February 2005.

2. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual,
April 2008.

3. M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor communication net-
work: Built for speed. IEEE Micro, 26(3):10–23, 2006.

4. A. Kleen. A NUMA API for linux. Technical report, Novell Inc., Suse Linux
Products GmbH, April 2005.

5. T. Klug, M. Ott, J. Weidendorfer, and C. Trinitis. autopin — Automated op-
timization of thread-to-core pinning on multicore systems. In Transactions on
High-Performance Embedded Architectures and Compilers. Springer, 2008.

6. S. Mallach. Beschleunigung paralleler Standard Template Library Algorithmen.
Master’s thesis, Technische Universität Dortmund, 2008. http://www.informatik.
uni-koeln.de/ls_juenger/people/mallach/pubs/diplomarbeit.pdf.

7. John D. McCalpin. Memory bandwidth and machine balance in current high per-
formance computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, Dezember 1995.

8. S. A. McKee. Reflections on the memory wall. In Proceedings of the 1st Conference
on Computing Frontiers (CF), page 162. ACM Press, 2004.

9. T. Scogland, P. Balaji, W. Feng, and G. Narayanaswamy. Asymmetric interactions
in symmetric multi-core systems: analysis, enhancements and evaluation. In Pro-
ceedings of the 2008 ACM/IEEE conference on Supercomputing (SC ’08), pages
1–12, Piscataway, NJ, USA, 2008. IEEE Press.

10. C. Terboven, D. Mey, D. Schmidl, H. Jin, and T. Reichstein. Data and thread
affinity in OpenMP programs. In Proceedings of the workshop on Memory access
on future processors (MAW), pages 377–384. ACM Press, 2008.

11. P. Tsigas and Y. Zhang. A simple, fast parallel implementation of quicksort and
its performance evaluation on sun enterprise 10000. In Proceedings of the 11th Eu-
romicro Conference on Parallel Distributed and Network based Processing (PDP),
pages 372–381. IEEE Press, 2003.

