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A Non-Disordered Glassy Model with a Tunable Interaction Range
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We introduce a non-disordered lattice spin model, basetd@principle of minimizing spin-spin correlations
up to a (tunable) distancR. The model can be defined in any spatial dimendigrbut already forD = 1 and
small values ofR (e.g. R = 5) the model shows the properties of a glassy system: deep ahdeparated
energy minima, very slow relaxation dynamics, aging andnivtal fluctuation-dissipation ratio.

PACS numbers: 75.50.Lk,05.50+¢,75.40Mg

In a supercooled liquid the viscosity increases abruptly byglass-former does not contain any quenched disorder: ghis i
several order of magnitude in a narrow temperature rangke, ara crucial difference from the-spin model. The frustration,
eventually undergoes a dynamical arrest, that can be adservwhich is the main ingredient for the slow relaxation, is self
on any accessible time scale: this is the essence of a fasérduced by the relaxation dynamics: a realistic model of a
nating physical phenomenon, the so called “dynamical glasglassy system should contain no quenched disorder.
transition”. A vast scientific literature has been dedidate The “kinematic models” [5] are glassy models with no
its study: see [1, 2] for interesting reviews on the subjéct. guenched disorder, where the evolution is governed by a spe-
theoretical understanding of this effect must be based e a r gjic dynamical rule, but it does not correspond to a relaxati
liable modeling of the underlying material: ideally one Wu  on 4 well-defined energy landscape: they are interesting but
like to have at hand very simple models that reproduce thgney cannot undergo a true thermodynamical phase tramsitio
main features of glass-former liquids. From the point ofwie 4nd we will not consider them in the following.
of a numerical approach, off-lattice simulations are exeby “ o .

Not so many “Hamiltonian glassy models” without quen-

c_ostly in term of computational resources. bepause of dtat | ched disorder are available. Shore, Holzer and Sethna{6] in
tice models where each node of the interacting network con: . o .

. . . . .~ troduced and analyzed a model with a competition in the-inter
tains some degrees of freedom (a binary spin variable in the . -
simplest case) play an important role. a_ctlon, and a tiling D mlodel. l_\lewman gnq Moore_ [7] have

discussed @D model with a triangle3-spin interaction, that

An analytic approach needs some reasonable approximaan be solved exactly: it does not show a sharp glass tramsiti
tion: mode coupling theory [1, 2], for example, helps to shedbut undergoes a severe slowing down. Biroli and Mézard [8]
some light on the problem. At the mean-field level, and moralefined a very simple lattice glassy model, where the legal
precisely on a fully connected lattice, the solution of tledd  positions of the particles are restricted by hard “density-c
deredp-spin model [3] is now very well understood [4], and it straints”: the model is versatile, since it does not depend o
turns out to be equivalent to the mode-coupling theory (thasethe detailed feature of the underlying lattice, but its gger
on systems where the Hamiltonian does not include quenchddndscape is somehow drastic, in the sense that a configura-
disorder). The main prediction of these mean-field theadsies tion is either legal £ = 0) or forbidden £ = ~). Cavagna,
that below the dynamical glass transitidp, which is higher  Giardina and Grigera [9] have discussedia model based
than the thermodynamical critical poifit, the relaxation dy- again on competing interactions (respectively witland 5
namics is not able to bring the system to equilibrium in anyspins). It is clear that enlarging this collection would ke a
sub-exponential time (in the system size). Consequendly thpropriate: some of these interesting models are indeextlgtri
system relaxes to the so-called threshold energy, which isvo dimensional or depend on the detailed lattice structure
higher than the equilibrium energy, and the off-equilibtiu some other cases one can observe a very slow domain growth,
dynamics shows aging on any measurable time scale [16hut once the time is appropriately rescaled the growth @m®ce
During the aging dynamics the fluctuation-dissipationor&i  does not differ qualitatively from the dynamics of the pure
different from the one expected in equilibrium, and its heha Ising model.

ior presents peculiar and distinctive features. In this note we define and analyze a new non-disordered

The mean field scenario is well characterized and well unglassy model, that can be defined on any lattice structure, in
derstood, but it is still unclear how to adapt it to real syste 2Ny dimension, and is based on a simple physical principle:
In finite dimensional systems the lifetime of metastabléesta the minimization of correlations. Our model is also, foliog
is limited: eventually, during the aging dynamics, a bubblethe route of its mean field predecessor, a good candidate for
of the equilibrium state will nucleate and will grow up to the Providing coding for an effective and secure communication
system size. Nonetheless the time for nucleating and grow- We are inspired from the Bernasconi mean field model [10,
ing the equilibrium phase may be extremely large, espgciall 11], where one is interested in finding the assignmenvto
close to a critical point. Moreover the Hamiltonian of a realIsing spins defined on a linear lattice that minimizes the sum
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He = N1 . Zfzv_ll ZN—Od—l 050t 2 of the squared spin- model presents to a very large extent the glassy phenomenol-
- - = .
: ; gy we have described above (as opposed, for example, to the
spin correlations. We have used here open boundary cond% _ 6 model). This makes clear that already fle= 1 case,

tions, but the Bernasconi model, like our model, is alsorinte where a thermodynamical transition is forbidden, is very in
esting when defined with periodic boundary conditions. The y ' y

Bernasconi model has a very rough energy landscape [12, 1éfre.st|r)g for the phys!cs of structural glagses. . . '
with deep minima separated by extensive energy barriers, Finding and analyzing low energy conﬁgurguqns IS ourﬁ_rst
making the search for global minima (low auto-correlation b ta_lsk. F_orR :_N (the Berr_lascon_| mode) _fmdmg a GS. IS
nary sequences) a very difficult task. The theoretical analyd'_ﬁ'cUIt n p”?‘c_“ce and requires a time growing e_xponeliwa
sis of this model predicts a thermodynamical phase tramsiti with NQ-(RF?;“'”“ER the model can be solved in a time of order
with one step of replica symmetry breaking (IRSB), in theO(N2 ) by transfer matrix methods, using the variables

same universality class of thespin model, preceded by a " = 7i-17i+1: _ _
dynamical glass transition. Extensive numerical simafei We have computed GS and first excited states for any

have shown that the energy relaxation stops before reachirﬁf < 52 and Rt from 3 to 6 (for some selectedV values we
the ground state (GS) energy, and the aging regime persist f92V€ als0 analyzeft values going up tav), using exact al-

extremely long times. For these reasons the Bernasconilmodgor'thms' For agiven couply, R we have detgrmined all ex-
is the perfect prototype of a glassy mean field model. act GS using a clever exhaustive enumeration scheme called

We define our model by adopting the principle of minimiz- branch-and-boungb&b). In b&b, the problem is solved us-

ing spin-spin correlation functions, but using an inteiGct Inhg recursion. In a branching step, one of the variables
that is local in space: i dimensions the Hamiltonian reads ¢110Seén. and it is eliminated by creating two subproblems in

one of whicho; = +1, and in the othes; = —1. The latter
maxd in R(Z) { couples inR (&) 2 are solved recursively. A subproblem s solved by detemgjni
Hp = Nn.r Z Z Z 00 (1)  upper and lower bounds on its optimum solution value. The
e s at distancel energy value*? of the best known configurations serves as

upper bound. The latter are updated whenever configurations

where A C ZP is a finite volume of cardinalityV, R(Z) with energyE“® or better could be determined. If a subprob-
is a hypercube of sizek? (or its intersection withA if  lem’s lower bound attains a higher value th&#®, no con-
open boundary conditions are used) centered around:site figuration with lower energy can be contained in it. Thus, it
and Ny r is a normalization constant that guarantees googan be excluded from further consideration (fathoming)step
R — oo and N — oo limits. The sum ovewl is for dis-  For designing a practically effective algorithm, it is cialdo
tances going from one up to the maximum distance containe@mploy a strong lower bound with which subproblems can be
in R(Z). One can also define the model by only consideringfathomed early, keeping their total number reasonably Ismal
correlations on thé axis: from the point of view of compu- For additionally determining all excited states with vahte
tational cost this is a far better choice. mostz% away from optimality, we fathom a node only if its

With eq. (1) we are aiming at minimizing correlations in lower bound is worse thafl.0 + 155 ) E°, beingE” the exact
blocks of linear sizeR. Since correlations at short distances GS energy (determined in an earlier run of b&b). Mertens [14]
are typically the strongest, the overall effect is to hawe-lo has developed a b&b approach for determining exact GS for
energy configurations showing very weak correlations on althe model restricted t& = N. He could solve the problem
length scales. This seems to us a very solid first principle taip to N = 60, which marks the world record. Following [14],
build a glassy model: glass-formers show no long range ordewe first narrow the search space by exploiting the fact that if
in the two-point correlation functions and we are somehowthe configuratior, ..., is a GS also its reversal, . ..o,
enforcing this condition in the Hamiltonian. The tunable in is a GS. The same is true when each odd spin and/or each even
teraction rangeR is a novel and very useful feature of our spin is multiplied by—1. We restrict ourselves to representa-
model. TheR — oo limit gives back the Bernasconi model tives of these symmetry classes.
in D = 1, and forD > 1 provides new and potentially inter- A lower bound on’H; is given by minimizing each
esting mean-field models. As for the Bernasconi model her€’(d, i, R)? independently. We briefly sketch how we es-
we can get a good basis towards effective coding: the introtimate the value of such a minimum. In a subproblem,
duction of new, free parameter® (@nd R) that are unknown several spins might be fixed, all other spins are yet free.

to the observer could be of further help. The already fixed parts give some contribution, say We
Let us look in better detail to th&® = 1 version of the look at all partial sequences of free spins at distadiciee.,
model with open boundary conditions. The Hamiltonian read; x4, 0i+(k+1)d; - - - » 0i1a that are framed by fixed spins.
N_R R Depending on whethef is negative or not, the smallest pos-
Hy = N Z 1 C(d,i,R)?, (2) sible value ofC'(d, 7, R) is either achieved when the free spins
N-R+1 — RR-1) = Y ’ are all set equal or all alternating. The bound that we calcu-

_ late from this is stronger than the one presented in [14]én th
whereC(d, i, R) = Z;if’l’d 0j0j+d, andR is the tunable  sense that we need to enumerate considerably less subprob-

interaction range. We will show, for example, that tRe= 5 lems. For small and mediui® we get better performance



if we start branching by fixing the spins in the middle of the 16 — 2 _—
sequence, expanding towards the boundaries, than if we star al 18l N
branching on the spins along the boundary, moving ‘inwards’ T 16l [
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FIG. 3: Probability distribution of the overlap among the &®l the
O 1 1 1 1 1 1 1 . . _ _ .
o 5 0 15 20 - p” - first excited statesV = 50 (left) and N = 51 (right).

which seems the best compromise between very short range
interactions and glassiness on quite long time scales [17].
In Fig. 2 we show the average energy differena# states
at one spin flip from the GS as a function 8t !. The limit
/ N — oo can be estimated very reliably, and is close1®,
0.4 1 w ] / i.e. more than ten times the gap (that in these units is equal
h to 0.2). In the inset we plot the probability distributions of
(A 5 these energies faN = 50 and N = 51: they make clear
that the large mean value éfcomes from a quasi totality of
configurations that have energies that are much larger tigan t
GS one. The distributions shown in the inset only depend, for
large N, on N being odd (where there is a single GS) or even
(where there is @ /2 + 1-fold degeneracy of the GS). This
is a strong evidence that GS are surrounded by high barrier of
the order of several energy gaps. This property is shared als
by low energy configurations, and it is what makes the energy
landscape somehow golf-course-like.
N In Fig. 3 we show the probability of the overlap =
+3, afcs)al(FIRST) among the GS and the first excited
states, forV.= 50 and N = 51. We consider all first excited
states and computewith the GS that is closest in Hamming
distance. The qualitative difference of the two distribns
In Fig. 1 we show the GS energy as a function/df Dif- for ¢ smaller thanl /2 is connected to the fact that the GS is
ferent full lines correspond to differef¥ values (increasing not degenerate for odd values df. These probabilities are
from bottom to top). The lower dashed line joins data pointspeaked at a value af different from one, and by increasing
with R = N. For N > R (upper lines for lowR values) N the mean value of stays well belowi. The number of first
the data accumulate on a limiting curve: the thermodynamiexcited states very similar to the GS is small; they are typi-
model with R fixed is well defined. FoR < 12 we worked  cally far from the GS. This is a further hint towards a glassy
out an iterative procedure for computing the GS configuranature of the system.
tions for anyN value. TheN >> R limiting curve has, like We discuss now the finit€ properties of the model (mainly
the infinite range Bernasconi model, an errdtidependence, for R = 5). The system size is alway$ = 10°. In the main
but smoother than in that case. panel of Fig. 4 we show the relative differenfiebetween the
We have run extensive simulated annealing experiments faystem energy and the GS energy during very slow annealing
R < 13 (to be better discussed below) and we have identifieéind heating experiments (marked by leftward and rightward
models where the energy relaxes fast to the GS oneRRe-g.  arrows respectively) [18]. Temperature values look snhai,
3,6, and models showing a very slow relaxation, ég=  this depends on the factay(R(R — 1)) used in Eq.(2): the
5,7. In the rest of the Letter we focus on tlie= 5 model, relevant energy scale is the gap, which.isfor R = 5. While

FIG. 1: GS energy as a function &, for differentV values.
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FIG. 2: R=5. Average energy of states at one spin flip from tBe G
The energy gap ift; is4. In the inset the probability distribution of
these energies fa¥ = 50 (dashed) an@&v = 51 (continuous).
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0.25 , , , , pendence of the decay rate on the waiting tirge We show
06 ' ' in the main panel how data collapse when plotted versus
R=5 T=005 again, we have a very good agreement with the behavior ob-
021041 T Txvs.C 1 ] served in gl t
glassy systems.

015 In order to test more quantitatively the out of equilibrium
o regime, we have also measured the integrated response to an
Lug infinitesimal field switched on at timg,. We have used the al-

35 0.1 gorithm described in Ref. [15]. We show in the inset of Fig. 4
! the usual plot of the integrated responge,,, t., + t) versus
0.05 the autocorrelatio€ (¢, t,, + t) parametrically int: in the

region where”' is not too close td the data follow a line of
slope smaller thah (in absolute value) as for thespin model

o 005 o1 o015 oo 0.5 and for glass-formers.

We have defined a class of models that are potentially good
FIG. 4: Cooling and heating experiments: fAr — 6 the model  descriptions of glasses. We have shown that already one of th
fastly relaxes to the GS, while fdk = 5 it has a glassy dynamics. Simplest models of our class, tii¢ = 1 and R = 5 model,

The dashed line is the exact energy for= 5. Inset: integrated has glassy properties. We have analyzed the low energy land-
response versus correlation, (values as in Fig. 5). scape (introducing a new effective bound in the optimizatio
process), and used Monte Carlo dynamics to qualify its finite
T behavior. There is much interesting work left, on the mathe-

1
matical analysis of the model, on the study of different ealu
08 | of R and the Kac limit, and on th® > 1 problem.
14 We acknowledge interesting discussions with A. Billoire
= 06 | and S. Franz. We are aware that T. Sarlat, A. Billoire, G.
f_s 08 Biroli and J.-P. Bouchaud are studying a local version of the
=4 ROM model.
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