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We introduce a non-disordered lattice spin model, based on the principle of minimizing spin-spin correlations
up to a (tunable) distanceR. The model can be defined in any spatial dimensionD, but already forD = 1 and
small values ofR (e.g.R = 5) the model shows the properties of a glassy system: deep and well separated
energy minima, very slow relaxation dynamics, aging and non-trivial fluctuation-dissipation ratio.
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In a supercooled liquid the viscosity increases abruptly by
several order of magnitude in a narrow temperature range, and
eventually undergoes a dynamical arrest, that can be observed
on any accessible time scale: this is the essence of a fasci-
nating physical phenomenon, the so called “dynamical glass
transition”. A vast scientific literature has been dedicated to
its study: see [1, 2] for interesting reviews on the subject.A
theoretical understanding of this effect must be based on a re-
liable modeling of the underlying material: ideally one would
like to have at hand very simple models that reproduce the
main features of glass-former liquids. From the point of view
of a numerical approach, off-lattice simulations are extremely
costly in term of computational resources: because of that lat-
tice models where each node of the interacting network con-
tains some degrees of freedom (a binary spin variable in the
simplest case) play an important role.

An analytic approach needs some reasonable approxima-
tion: mode coupling theory [1, 2], for example, helps to shed
some light on the problem. At the mean-field level, and more
precisely on a fully connected lattice, the solution of the disor-
deredp-spin model [3] is now very well understood [4], and it
turns out to be equivalent to the mode-coupling theory (based
on systems where the Hamiltonian does not include quenched
disorder). The main prediction of these mean-field theoriesis
that below the dynamical glass transitionTg, which is higher
than the thermodynamical critical pointTk, the relaxation dy-
namics is not able to bring the system to equilibrium in any
sub-exponential time (in the system size). Consequently the
system relaxes to the so-called threshold energy, which is
higher than the equilibrium energy, and the off-equilibrium
dynamics shows aging on any measurable time scale [16].
During the aging dynamics the fluctuation-dissipation ratio is
different from the one expected in equilibrium, and its behav-
ior presents peculiar and distinctive features.

The mean field scenario is well characterized and well un-
derstood, but it is still unclear how to adapt it to real systems.
In finite dimensional systems the lifetime of metastable states
is limited: eventually, during the aging dynamics, a bubble
of the equilibrium state will nucleate and will grow up to the
system size. Nonetheless the time for nucleating and grow-
ing the equilibrium phase may be extremely large, especially
close to a critical point. Moreover the Hamiltonian of a real

glass-former does not contain any quenched disorder: this is
a crucial difference from thep-spin model. The frustration,
which is the main ingredient for the slow relaxation, is self-
induced by the relaxation dynamics: a realistic model of a
glassy system should contain no quenched disorder.

The “kinematic models” [5] are glassy models with no
quenched disorder, where the evolution is governed by a spe-
cific dynamical rule, but it does not correspond to a relaxation
on a well-defined energy landscape: they are interesting but
they cannot undergo a true thermodynamical phase transition,
and we will not consider them in the following.

Not so many “Hamiltonian glassy models” without quen-
ched disorder are available. Shore, Holzer and Sethna [6] in-
troduced and analyzed a model with a competition in the inter-
action, and a tiling2D model. Newman and Moore [7] have
discussed a2D model with a triangle3-spin interaction, that
can be solved exactly: it does not show a sharp glass transition
but undergoes a severe slowing down. Biroli and Mézard [8]
defined a very simple lattice glassy model, where the legal
positions of the particles are restricted by hard “density con-
straints”: the model is versatile, since it does not depend on
the detailed feature of the underlying lattice, but its energy
landscape is somehow drastic, in the sense that a configura-
tion is either legal (E = 0) or forbidden (E = ∞). Cavagna,
Giardina and Grigera [9] have discussed a2D model based
again on competing interactions (respectively with4 and 5
spins). It is clear that enlarging this collection would be ap-
propriate: some of these interesting models are indeed strictly
two dimensional or depend on the detailed lattice structure. In
some other cases one can observe a very slow domain growth,
but once the time is appropriately rescaled the growth process
does not differ qualitatively from the dynamics of the pure
Ising model.

In this note we define and analyze a new non-disordered
glassy model, that can be defined on any lattice structure, in
any dimension, and is based on a simple physical principle:
the minimization of correlations. Our model is also, following
the route of its mean field predecessor, a good candidate for
providing coding for an effective and secure communication.

We are inspired from the Bernasconi mean field model [10,
11], where one is interested in finding the assignment toN
Ising spins defined on a linear lattice that minimizes the sum
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of the squared spin-

spin correlations. We have used here open boundary condi-
tions, but the Bernasconi model, like our model, is also inter-
esting when defined with periodic boundary conditions. The
Bernasconi model has a very rough energy landscape [12, 13],
with deep minima separated by extensive energy barriers,
making the search for global minima (low auto-correlation bi-
nary sequences) a very difficult task. The theoretical analy-
sis of this model predicts a thermodynamical phase transition
with one step of replica symmetry breaking (1RSB), in the
same universality class of thep-spin model, preceded by a
dynamical glass transition. Extensive numerical simulations
have shown that the energy relaxation stops before reaching
the ground state (GS) energy, and the aging regime persist for
extremely long times. For these reasons the Bernasconi model
is the perfect prototype of a glassy mean field model.

We define our model by adopting the principle of minimiz-
ing spin-spin correlation functions, but using an interaction
that is local in space: inD dimensions the Hamiltonian reads

HD = NN,R

∑
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2





(1)

whereΛ ⊂ Z
D is a finite volume of cardinalityN , R(~x)

is a hypercube of sizeRD (or its intersection withΛ if
open boundary conditions are used) centered around site~x,
andNN,R is a normalization constant that guarantees good
R → ∞ andN → ∞ limits. The sum overd is for dis-
tances going from one up to the maximum distance contained
in R(~x). One can also define the model by only considering
correlations on theD axis: from the point of view of compu-
tational cost this is a far better choice.

With eq. (1) we are aiming at minimizing correlations in
blocks of linear sizeR. Since correlations at short distances
are typically the strongest, the overall effect is to have low-
energy configurations showing very weak correlations on all
length scales. This seems to us a very solid first principle to
build a glassy model: glass-formers show no long range order
in the two-point correlation functions and we are somehow
enforcing this condition in the Hamiltonian. The tunable in-
teraction rangeR is a novel and very useful feature of our
model. TheR → ∞ limit gives back the Bernasconi model
in D = 1, and forD > 1 provides new and potentially inter-
esting mean-field models. As for the Bernasconi model here
we can get a good basis towards effective coding: the intro-
duction of new, free parameters (D andR) that are unknown
to the observer could be of further help.

Let us look in better detail to theD = 1 version of the
model with open boundary conditions. The Hamiltonian reads

H1 =
N

N − R + 1

N−R
∑

i=0

1

R(R − 1)

R−1
∑

d=1

C(d, i, R)2 , (2)

whereC(d, i, R) ≡
∑i+R−1−d

j=i σjσj+d, andR is the tunable
interaction range. We will show, for example, that theR = 5

model presents to a very large extent the glassy phenomenol-
ogy we have described above (as opposed, for example, to the
R = 6 model). This makes clear that already theD = 1 case,
where a thermodynamical transition is forbidden, is very in-
teresting for the physics of structural glasses.

Finding and analyzing low energy configurations is our first
task. ForR = N (the Bernasconi model) finding a GS is
difficult in practice and requires a time growing exponentially
with N . For finiteR the model can be solved in a time of order
O(N22(R−3)) by transfer matrix methods, using the variables
τi ≡ σi−1σi+1.

We have computed GS and first excited states for any
N ≤ 52 andR from 3 to 6 (for some selectedN values we
have also analyzedR values going up toN ), using exact al-
gorithms. For a given coupleN, R we have determined all ex-
act GS using a clever exhaustive enumeration scheme called
branch-and-bound(b&b). In b&b, the problem is solved us-
ing recursion. In a branching step, one of the variablesσi is
chosen, and it is eliminated by creating two subproblems in
one of whichσi = +1, and in the otherσi = −1. The latter
are solved recursively. A subproblem is solved by determining
upper and lower bounds on its optimum solution value. The
energy valueEub of the best known configurations serves as
upper bound. The latter are updated whenever configurations
with energyEub or better could be determined. If a subprob-
lem’s lower bound attains a higher value thanEub, no con-
figuration with lower energy can be contained in it. Thus, it
can be excluded from further consideration (fathoming step).
For designing a practically effective algorithm, it is crucial to
employ a strong lower bound with which subproblems can be
fathomed early, keeping their total number reasonably small.
For additionally determining all excited states with valueat
mostx% away from optimality, we fathom a node only if its
lower bound is worse than(1.0 + x

100 )E0, beingE0 the exact
GS energy (determined in an earlier run of b&b). Mertens [14]
has developed a b&b approach for determining exact GS for
the model restricted toR = N . He could solve the problem
up toN = 60, which marks the world record. Following [14],
we first narrow the search space by exploiting the fact that if
the configurationσ1 . . . σn is a GS also its reversalσn . . . σ1

is a GS. The same is true when each odd spin and/or each even
spin is multiplied by−1. We restrict ourselves to representa-
tives of these symmetry classes.

A lower bound onH1 is given by minimizing each
C(d, i, R)2 independently. We briefly sketch how we es-
timate the value of such a minimum. In a subproblem,
several spins might be fixed, all other spins are yet free.
The already fixed parts give some contribution, sayZ. We
look at all partial sequences of free spins at distanced, i.e.,
σi+kd, σi+(k+1)d, . . . , σi+ld that are framed by fixed spins.
Depending on whetherZ is negative or not, the smallest pos-
sible value ofC(d, i, R) is either achieved when the free spins
are all set equal or all alternating. The bound that we calcu-
late from this is stronger than the one presented in [14] in the
sense that we need to enumerate considerably less subprob-
lems. For small and mediumR we get better performance
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if we start branching by fixing the spins in the middle of the
sequence, expanding towards the boundaries, than if we start
branching on the spins along the boundary, moving ‘inwards’.
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FIG. 1: GS energy as a function ofR, for differentN values.
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FIG. 2: R=5. Average energy of states at one spin flip from the GS.
The energy gap inH1 is 4. In the inset the probability distribution of
these energies forN = 50 (dashed) andN = 51 (continuous).

In Fig. 1 we show the GS energy as a function ofR. Dif-
ferent full lines correspond to differentN values (increasing
from bottom to top). The lower dashed line joins data points
with R = N . For N ≫ R (upper lines for lowR values)
the data accumulate on a limiting curve: the thermodynamic
model withR fixed is well defined. ForR ≤ 12 we worked
out an iterative procedure for computing the GS configura-
tions for anyN value. TheN ≫ R limiting curve has, like
the infinite range Bernasconi model, an erraticR dependence,
but smoother than in that case.

We have run extensive simulated annealing experiments for
R ≤ 13 (to be better discussed below) and we have identified
models where the energy relaxes fast to the GS one, e.g.R =
3, 6, and models showing a very slow relaxation, e.g.R =
5, 7. In the rest of the Letter we focus on theR = 5 model,
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FIG. 3: Probability distribution of the overlap among the GSand the
first excited states.N = 50 (left) andN = 51 (right).

which seems the best compromise between very short range
interactions and glassiness on quite long time scales [17].

In Fig. 2 we show the average energy differenceδ of states
at one spin flip from the GS as a function ofN−1. The limit
N → ∞ can be estimated very reliably, and is close to2.8,
i.e. more than ten times the gap (that in these units is equal
to 0.2). In the inset we plot the probability distributions of
these energies forN = 50 andN = 51: they make clear
that the large mean value ofδ comes from a quasi totality of
configurations that have energies that are much larger than the
GS one. The distributions shown in the inset only depend, for
largeN , onN being odd (where there is a single GS) or even
(where there is aN/2 + 1-fold degeneracy of the GS). This
is a strong evidence that GS are surrounded by high barrier of
the order of several energy gaps. This property is shared also
by low energy configurations, and it is what makes the energy
landscape somehow golf-course-like.

In Fig. 3 we show the probability of the overlapq ≡
1
N

∑

i σ
(GS)
i σ

(FIRST )
i among the GS and the first excited

states, forN = 50 andN = 51. We consider all first excited
states and computeq with the GS that is closest in Hamming
distance. The qualitative difference of the two distributions
for q smaller than1/2 is connected to the fact that the GS is
not degenerate for odd values ofN . These probabilities are
peaked at a value ofq different from one, and by increasing
N the mean value ofq stays well below1. The number of first
excited states very similar to the GS is small; they are typi-
cally far from the GS. This is a further hint towards a glassy
nature of the system.

We discuss now the finiteT properties of the model (mainly
for R = 5). The system size is alwaysN = 106. In the main
panel of Fig. 4 we show the relative difference∆ between the
system energy and the GS energy during very slow annealing
and heating experiments (marked by leftward and rightward
arrows respectively) [18]. Temperature values look small,but
this depends on the factor1/(R(R − 1)) used in Eq.(2): the
relevant energy scale is the gap, which is0.2 for R = 5. While
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FIG. 4: Cooling and heating experiments: forR = 6 the model
fastly relaxes to the GS, while forR = 5 it has a glassy dynamics.
The dashed line is the exact energy forR = 5. Inset: integrated
response versus correlation (tw values as in Fig. 5).
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FIG. 5: Correlation functionC(tw, tw + t) as a function oft (inset)
and oft/tw (main panel). Values oftw are10, 102, 103, 104, 105.

theR = 6 model fastly relaxes to the GS energy, theR = 5
one shows a very slow relaxation: a tentative extrapolationto
the adiabatic limit using an inverse power of the running time
returns∆ ≃ 0.048, i.e. is roughly 5% above the GS energy.
Results from heating experiments look like a crystal melting,
although the dependence on the heating rate is strong. For
R = 5 the exact energy is plotted with a dashed line: it is
worth noticing the presence atT ≃ 0.038 of a secondary peak
in Cv, that seems to enhance hysteresis in temperature cycles.

We show in Fig. 5 the two-time autocorrelation function
C(tw, tw+t) ≡ N−1

∑

i σi(tw)σi(tw+t) for different values
of the waiting timetw = 10, 102, 103, 104, 105. When plotted
as a function oft (inset), the aging behavior is clear, and very
similar to the one observed, for example, in a Lennard-Jones
mixture [2]. The oscillations are maybe due to the determin-
istic nature of the model as in Ref. [7]. There is a strong de-

pendence of the decay rate on the waiting timetw. We show
in the main panel how data collapse when plotted versust/tw:
again, we have a very good agreement with the behavior ob-
served in glassy systems.

In order to test more quantitatively the out of equilibrium
regime, we have also measured the integrated response to an
infinitesimal field switched on at timetw. We have used the al-
gorithm described in Ref. [15]. We show in the inset of Fig. 4
the usual plot of the integrated responseχ(tw, tw + t) versus
the autocorrelationC(tw, tw + t) parametrically int: in the
region whereC is not too close to1 the data follow a line of
slope smaller than1 (in absolute value) as for thep-spin model
and for glass-formers.

We have defined a class of models that are potentially good
descriptions of glasses. We have shown that already one of the
simplest models of our class, theD = 1 andR = 5 model,
has glassy properties. We have analyzed the low energy land-
scape (introducing a new effective bound in the optimization
process), and used Monte Carlo dynamics to qualify its finite
T behavior. There is much interesting work left, on the mathe-
matical analysis of the model, on the study of different values
of R and the Kac limit, and on theD > 1 problem.
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Biroli and J.-P. Bouchaud are studying a local version of the
ROM model.
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