
A Note on the Complexity of Sliding Shortest

Paths

B. Engels1 and G. Pardella2

1 Zentrum für Angewandte Informatik, Universität zu Köln
engels@zpr.uni-koeln.de

2 Institut für Informatik, Universität zu Köln
pardella@informatik.uni-koeln.de

Abstract. We address a shortest path problem in a given uncapacited
and undirected network N = (V, E) with positive edge costs. In addition
we are given a single source-destination pair (s, t), a shortest path πst

connecting s and t and a new edge e = (p, q) 6∈ πst. The task is to find
a minimum number of edges Ec ⊆ E and the minimum weight increase
for each edge ec ∈ Ec such that the shortest path πst between s and
t traverses edge e. We show that the problem is NP-hard and give a
heuristic scheme for the problem.

1 Introduction

Bhandari [2] introduced a shortest path problem occuring in network adminis-
tration and routing: Given a network, a source-sink-pair s, t and an edge (p, q),
we are interested in the minimum number of edges on which costs have to be
increased such that the shortest path from s to t contains (p, q). We demon-
strate the NP-hardness of the problem via reduction of the length-bounded cut
problem, which gained attention in recent years [3]. This note is organized as
follows: In the next section, we give some preliminary definitions and state the
problem formally. In Section 3 we present the reduction, in Section 4 we sketch
a heuristic scheme and Section 5 concludes the note.

2 Preliminaries and Problem Statement

We consider undirected graphs G = (V, E) with node set V and edge set E and
a cost function on the edges, c : E → N>0. If not stated otherwise, we assume
|V | = n and |E| = m.

A simple path, π = v1, v2, . . . , vk, vi ∈ V, i ∈ {1, . . . , k}, k ≤ n, is a se-
quence {v1, v2, ..., vk} of pairwise different nodes vi such that (v1, v2), (v2, v3),
. . ., (vk−1, vk) are edges of G.

A path πvw = v, v1, v2 . . . , vk, w between two nodes v, w ∈ V of minimum
costs

∑
e=(vi,vj)∈πvw

c(vi, vj) is called shortest path between nodes v and w.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/141726354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

2.1 Problemdefinition

Let N = (V, E) be an uncapacited network, a biconnected undirected graph
with edge costs. Moreover, let simple shortest paths πuv between all node pairs
(u, v) ∈ V × V exist. Let Ec ⊆ E be a set of edges such that suitably increasing
costs on all edges e ∈ Ec induces the shortest path πst = πspqt to be the one
traversing through edge (p, q). Being more formal we define

Definition 1 (Sliding Shortest Path Cut Problem). Given N = (V, E), a
source-sink-pair s, t ∈ V and an edge (p, q) ∈ E, find the minimum cardinality
subset Ec ⊆ E of edges such that the shortest path πst in N̄ = (V, E \Ec) equals
πspqt, i.e. traverses (p, q).

Moreover we formulate

Definition 2 (∆ Cost Increase). Given N = (V, E), a source-sink-pair s, t ∈
V , an edge (p, q) ∈ E, and the minimum cardinality subset Ec ⊆ E of edges such
that the shortest path πst in N̄ = (V, E \ Ec) equals πspqt. Minimize the value
∆e∀e ∈ Ec, i.e. the cost increase c(e) = c(e) + ∆e for edge e ∈ Ec, such that
πst = πspqt.

The above definitions imply a problem hierarchy where the minimization of
edges in Ec outweighs the minimization of the sum of weight increases on these
edges. Studying [2] it is not evident if this is intended or if (and how) the solution
of the original problem requires a multiobjective optimization. However, in this
paper we concentrate on the given problem statement.

2.2 Cut and L-Cut

We call a subset of edges Ce of G an s − t − cut (cut), if no path remains from
s to t in Ḡ = (V, E \ Ce). Analoguosly, given a length bound L ∈ N>0, we call
a subset of edges CL of G an s − t − L − cut (L − cut), if no path πst remains
from s to t in Ḡ = (V, E \ CL) with |πst| ≤ L.

The value (resp. capacity) of a (L−)cut Ce(CL) is the number of cut-edges
(resp. the total capacity of cut-edges, if edge-capacities are not unit, i.e. we
are given a capacity function k : E → N>0). In our case, we will assume unit
capacities unless stated otherwise.

We further define

Definition 3 (Minimum Length Bounded Cut). Given N = (V, E), a
source-sink-pair s, t ∈ V and a length bound L ∈ N>0, find the minimum cardi-
nality L − cut.

3 Complexity

We show the NP -hardness of the sliding shortest path cut problem by a reduc-
tion of the minimum length-bounded cut problem: Given an instance N = (V, E),

3

s, t ∈ V , unit capacities, a length function on the edges and a length bound
L ∈ N>0, we add two new nodes a, b to V obtaining V ′ and three edges
(s, a), (a, b), (b, t) to E obtaining E′ (N ′ = (V ′, E′)), see Figure 1. All edges
receive unit capacity and the following weights or lengths: c(s, a) = c(b, t) =
0, (a, b) = L.

Theorem 1 (Reduction). Let Ec be the solution to the sliding shortest path
cut problem on N ′ = (V ′, E′) with source-sink-pair s, t and edge (a, b), then
CL = Ec is the solution to the minimum length bounded cut problem on N =
(V, E) with source-sink-pair s, t and length bound L.

Proof. From the construction it is obvious that there is only one path πsabt =
sabt in N ′ = (V ′, E′), which has to be chosen as desired shortest path and
which has length L. Therefore if πsabt = sabt is the shortest s − t− path in
N ′, the selection of Ec must clearly destroy each s − t−path in the rest graph
(V ′ \ {a, b}, E′ \ {(s, a), (a, b), (b, t)}) = N with length less or equal to L, which
is exactly the definition of the L-cut. The minimum cardinality of the L− cut is
given by the minimum cardinality of Ec.

s

t

a

b

L

Fig. 1. A Minimum Length Bounded Cut is obtained by the solution of a Sliding
Shortest Path Cut Problem.

Further the authors of [1] give the following theorem:

Theorem 2 (Approximability of Minimum L-Cut). For any ε > 0 and
L ∈ {4, . . . , ⌊n1−ε⌋}, it is NP-hard to approximate the minimum length-bounded
edge-cut in (un-)directed simple graphs within a factor of 1.1377.

This transfers to:

Corollary 1 (Approximability of Sliding Shortest Path Cut). The slid-
ing shortest path cut problem is NP-hard to approximate in (un-)directed simple
graphs within a factor of 1.1377, if all paths πspqt have length L ∈ {4, . . . , ⌊n1−ε⌋}
for any ε > 0.

4

Algorithm 1 Heuristic Scheme

Input: Network N = (V, E), s, t ∈ V, (p, q) ∈ E

Ouput: Edges Ec

1. Choose desired shortest s-t-path πspqt

2. Set L = |πspqt|
3. Increase Capacities on edges of πspqt appropriately

4. Remove (p, q) from network

5. Compute approximation to L-Cut CL on network

6. return Ec = CL

4 Heuristics

A general scheme to solve the sliding shortest path cut problem heuristically
would be the following:

To obtain an appropriate path πspqt, the 2-disjoint paths problem can be
solved as proposed in [3] for the pairs s, p and q, t and/or s, q and p, t, depending
on whether the directed or undirected case is considered.

The capacity increase on the edges of πspqt, i.e. of the order of m, ensures
that none of its edges will be cut.

Choosing an appropriate shortest path from s to t via p, q does not mean
the absolute shortest possible path ˜πspqt. Intuitively ˜πspqt would lead to a mini-
mum ∆ Cost Increase. On the other hand, this -or any other- assumptive choice
can increase |Ec| artificially. Thus the approximative factor of a resulting L-cut
solution is not likely to be preserved.

5 Conclusion

In this note we answered the open question concerning the complexity of the
sliding shortest path cut problem which is a variant or a special case (depending
on the original intention) of the sliding shortest path problem as R. Bhandari
posed it in his talk at the Cologne Twente Workshop in Paris, 2009.

We hope the established connection to the length bounded cut problem helps
in designing practical solutions to the original problem or other variants.

References

1. G. Baier, T. Erlebach, A. Hall, E. Khler, H. Schilling, M. Skutella ”Length-
Bounded Cuts and Flows” Proceedings of ICALP 2006, Part I, Lecture Notes
in Computer Science 4051, pp. 679-690, 2006.

2. R. Bhandari ”The Sliding Shortest Path Algorithms.” Talk at 8th Cologne Twente
Workshop on Graphs and Combinatorial Optimization, 2009.

3. T. Tholey ”Solving the 2-Disjoint Paths Problem in Nearly Linear Time” Pro-
ceedings of STACS 2004, Lecture Notes in Computer Science 2996, pp. 350-361,
2004.

