
Integer Flow with Multipliers

— The Special Case of Multipliers 1 and 2 —

Katharina Beygang, Birgit Engels, Sven Krumke,

Rainer Schrader, Christiane Zeck

May 6, 2009

Abstract

The problem to find a valid integer flow with flow multipliers on nodes
or arcs is long known to be NP-complete [10]. We show that the problem
is still hard when restricted to instances with a limited number of inte-
gral multipliers. To find an integer minimum cost maximal pseudoflow,
respecting only the node balance constraints of the inner nodes, is also
still a difficult task. Further, we demonstrate that for the multipliers 1
and 2 optimal solutions with fractions 1

2n , n ∈ N can occur. For spe-
cial instances which are motivated by some applications we prove that
the optimal solution is halfintegral. Finally, we extend the Successive

Shortest Path Algorithm [2, 7, 9], to the minimum cost flow problem with
multipliers. For the application based instances with halfintegral optimal
solutions, we try to find acceptable integral solutions.

1 Introduction

A flow f : A → R is a function, which assigns a flow value f(aij) to each arc of
a digraph N = (V, A) (called network), such that the following properties hold:

• Capacity constraint:

∀aij ∈ A : lij ≤ f(aij) ≤ uij

• Node balance constraint:

∀vi ∈ V :
∑

ali=(vl,vi)∈A

f(ali) −
∑

aik=(vi,vk)∈A

f(aik) = b(vi)

Generalized flows or flows with gains and losses differ from such flows in
networks only in one respect: flow (balance) contraints hold for all the vertices
vi with node balances b(vi) but no longer for all arcs aij or equivalently for all
arcs, but no longer for the vertices: A unit of flow entering an arc aij (vertex vi)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/141726349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

can result in more or less than one unit leaving the arc (the vertex), depending
on the arc (node) multiplier µij (µi). With fin(aij) (fin(vi)) and fout(aij)
(fin(vi)) denoting the incoming and outgoing units of flow on aij (in and out of
vi) instead it holds:

fout(aij) = µij · fin(aij) resp. fout(vi) = µi · fin(vi)

v w

b(v) = +1 b(w) = −2

µu = 2

v w

b(v) = +1 b(w) = −2

µvw = 2

u
f (v, w) = 1

f (v, u) = 1 f (u, w) = 2

Figure 1: Multipliers on arcs and on nodes.

Both variants of flow multipliers are equivalent in the following sense: A node
multiplier µi on vi can be interpreted as an arc multplier µij on all outgoing
arcs (vi, vj)) of vi. On the other hand, if all outgoing arcs of one node have the
same multiplier µij , the node multiplier also equals this value. For a number
#µij of different arc multipliers on outgoing arcs of vi, we introduce #µij new
nodes vik, 1 ≤ k ≤ #µij add the arcs (vi, vik) and set µi = 1. The originally
outgoing arcs of (vi, x) are now changed to arcs (vk, x) and the values µk are
set according to the desired arc multipliers (see Figure 2). In the worst case,
m = |A| nodes and edges are added, but the necessary modifications are thus
polynomial.

n

...

...

u

v

w

µnu

µnv

µnw

n

...

...

u

v

w

µu = µnu

µv = µnv

µw = µnw

⇒

µn = 1

Figure 2: Multipliers on arcs and on nodes are equivalent.

Introducing the flow multipliers generally destroys total unimodularity of
the network matrix and thus integral optimal solutions are no longer granted
or even impossible (see example in Figure 3). It is known that obtaining an
optimal integer solution is NPO-complete for generalized flows [6, 10]. There
seem to be no results for the special case where the multipliers are restricted to
a few fixed numbers or even to the single additional multiplier 2. However, this
spacial case occured when we modelled a railway disposition problem.

We encountered some ’merely generalized’ flow instances with the property
that the underlying network is essentially a bipartite digraph, all excesses, de-

2

v wb(v) = +1

b(w) = −1

u

µvw = 2

µvu = 2

b(u) = −1

1
2
1
2

1
2

Figure 3: Example: The only valid flow is fractional.

mands, arc capacities and costs can be assumed to be integral and we need only
multipliers 1 and 2. In fact, we observed that our network model obeys the
following definition:

Definition 1 A disposition network N = (V = X ∪ Y, A) is bipartite digraph
with µa ∈ {1, 2} for all arcs a and all arcs with µ(a) = 2 are directed from X to
Y . Moreover, for all paths from a source s to a sink t the product of multipliers
of all arcs along the path (path multiplier) is either 1 or 2.

The restriction to additional multiplier 2 reopens the question of the prob-
lem’s complexity, as we will see in section 2. In Section 3 we construct an
example which shows that the additional multiplier 2 can cause optimal solu-
tions with arbitrary small fractions 1

2n , n ∈ N (depending on the number of
vertices of the graph). Maximum flow or minimum cost (pseudo-)flow problems
in disposition networks on the other hand always yield halfintegral optimal so-
lutions. To solve the latter instances, we modify the successive shortest path
algorithm in Section 5. Finally, Section 6 is dedicated to heuristic approaches
to obtain integral solutions on the basis of the halfintegral solutions in the case
of disposition networks.

2 Complexity

The original NP-completeness proof for generalized flows (for the node multiplier
variant) by Sahni [10] employs the subset sum problem, which is defined as
follows:

[SubsetSum] Given a multiset S = {s1, . . . , sr} of positive integers
and a positive integer M , (M ≤

∑r
i=1 si) does there exist a submul-

tiset of S that sums up to M?

For general positive integer values, the subset sum problem is NP-complete.
For the convenience of the reader, we recapitulate the reduction: For a given
subset sum instance S, construct a network NS with a source node s, nodes
ni, 1 ≤ i ≤ r with node multiplier si for every integer si ∈ S and a sink node t
with a demand of b(t) = −M . The source is connected to the ni by arcs (s, ni)

3

with capacity and multiplier 1. The nodes ni are connected to t by arcs (ni, t)
with capacity si (see Figure 4). There is an integral s−t-flow if and only if there
is a submultiset of S that sums up to M . (Concerning the appropriate node
balance b(s) = r and the node balance contraints, we have to add another sink
t′ with b(t′) = −(

∑
si∈S si − M) and the arcs (ni, t

′) to Sahni’s construction to
guarantee a feasible flow solution.)

s t

n1

nr

cap(s, n1) = 1

...

1

...

ni

s1

si

sr

cap(s, ni) = 1

cap(s, nr) = 1

Figure 4: Original reduction to subset sum: Node multiplier values si in the
nodes ni, all missing capacities are unlimited and the node balance at t is
b(t) = −M .

With all multipliers restricted to 1 or 2 and the above network construction,
we can only represent subset sum instances where si ∈ {1, 2}, which does not
suffice for the reduction. Therefore, in the network NS we replace each arc (ni, t)
(grey shaded box in Figure 4) by a subgraph NS |ni like the one shown in Figure
5. The purpose of the subgraph is to amplify the one unit of flow which is the
upper capacity bound on arc (s, ni) to the appriopriate si flow units which have
to arrive at t for the original unit. Further we want to use only node multipliers
1 and 2 in the subgraph. We will see that producing the appropriate number of
flow units resembles the flow equivalent of a bit representation of each si.

The subgraph NS |ni again consists of two parts: Given si, we first see how
many bits we need to represent the value. The number of bits zi we need here
is not the length of the binary representation |(si)2|, but the number of set bits
in it, e.g.:

si = 31 = (11111)2 : zi = 5 or sj = 27 = (11011)2 : zj = 4

For each set bit in si’s binary representation, we need a node bj, 1 ≤ j ≤ zi

in NS |ni such that one unit of flow enters bj if and only if one unit of flow enters
ni. Let p(bj) be the valency, i.e. the position of bit bj in the bit representation.
Then we add a path πbj t of length p(bj)− 1 to NS |ni where all node multipliers

4

2

b1

b2

b3

b4

b5

t

1

2

2

2

ni ni1

2

ni2 ni3

2

1

1

cap(ni1, bj) = 1

cap(ni1, ni2) = 1

cap(ni3, bj) = 1} }
Amplification of one flow unit to zi

units at nodes bj, 1 ≤ j ≤ zi.
Amplification of each flow unit at bj

to the number of units resembling the
valency of bit j.

Binary representation of si

Figure 5: Subgraph N |ni for si = 31: Node multipliers are written in the nodes
and all black dots are nodes with multiplier 2. Missing capacities are unlimited.

are set to 2. If p(bj) − 1 = 0, we add the arc (bj , t) and set the node multiplier
of bj to 1. Now the sum of flow units entering t from all bj equals si.

Now we have to connect the bj to s: Recall that there is the arc (s, ni) with
capacity 1 and that s has the node multiplier 1. Let l with 2l < zi be maximal.
Then we add an amplification path πsni1

of length l and with node multipliers
2 on every node, except for ni1, which has node multiplier 1. For one unit of
flow, starting on s there are now 2l units arriving at ni1. We connect ni1 to
the nodes bj, 1 ≤ j ≤ 2l − 1 by arcs (ni1, bj) with capacity 1, such that the first
2l − 1 nodes bj receive exactly one unit of flow if and only if one unit of flow
starts from s to ni.

Then we add two extra nodes ni2, ni3 with node multipliers 2 and 1 and the
arcs (ni1, ni2) and (ni2, ni3) with capacity 1. For the one unit left at ni1, we
have now two units at ni3. We add the arc (ni3, b2l) to cover b2l with one of
the two remaining units. Further we add ni4 and arc (ni3, ni4) with capacity 1.
Now at node ni4 we have the same situation as before at node ni1, only that
we have to generate zi − 2l units of flow and distribute them appropriately to
the remaining nodes bj , 2

l + 1 ≤ j ≤ zi. This can be done exactly as before,

determining the maximum l′ with 2l′ < zi − 2l and adding the amplification
path, some new nodes and the arcs with capacity 1 to the bit nodes bj .

The procedure terminates because each number zi has a binary representa-
tion. Further, this representation is bounded in length by ⌈log2(zi)⌉, thus we
have to repeat the above procedure at most ⌈log2(zi)⌉ times and each ampli-
fication path itself is at most ⌈log2(zi)⌉ nodes long. The same is true for the
number zi of bit nodes bj and the paths from bj to t. Thus the construction of
each NS|ni is polynomial.

5

ni

n
′

i

s

1

1

1

1

cap=1

Figure 6: Forking Subgraph : Node multipliers are written in the nodes and
missing capacities are unlimited.

To determine b(s) and still obtain a feasible flow if and only if there is a
subset S′ ⊆ S with

∑
si∈S′ si = M , we duplicate each subgraph NS|ni as NS|n

′
i

and add another sink t′ which substitutes t for the duplicate subgraphs. Then
we delete each arc (s, ni) and add the subgraph depicted in Figure 6, where
s, ni, n

′
i are corresponding nodes which already belong to N .

Now we can set b(s) = r. Thus for a valid integral flow solution r units leave
s and result in si units entering t or t′. And it holds:

Theorem 1 The decision problem for a valid integral flow with node multipliers
1 and 2 and where all values are integral is NP-complete.

Proof
Given an instance S = {si, 1 ≤ i ≤ r}, M of subset sum, we construct a network
as described above. Then for each unit of flow leaving s to a node ni or n′

i,
exactly si units of flow enter t or t′. Thus, the sinks t, t′ with b(t) = −M, b(t′) =
−(

∑r
i=1 si −M) can be balanced by an integral flow from s if and only if there

is a subset S′ ⊆ S with
∑

si∈S′ si = M (and simultaniously
∑

si∈S\S′ si =∑
si∈S si −M). Moreover the problem is in NP: An NTM guesses the flows and

verifies the balance and capacity constraints.

�

As we observed above, our application deals with instances of disposition
networks, which do not include the network NS we used in the construction
for the proof of Theorem 1. Now we will proceed with a reduction from the
following satisfiability problem (which is also simpler) using the arc multiplier
variant for the construction and see that we obtain a disposition network:

[3V2L3SAT] Given a boolean formula

α = C1 ∧ . . . ∧ Cn, Ci = li1 ∨ li2 ∨ li3,

lij ∈ {vk,¬vk|1 ≤ k ≤ m} ∪ {0}

and each variable vk can only occur 3 times in total and maximal 2
times as one of the corresponding literals. Decide whether there is
a truth assignment satisfying α.

6

b(n1) = +1

n1

...

nm

n0

1

n1

1

n1

m

n0

m

b(nm) = +1

...

nc1

ncn

ssat

srest

µn1,n
0
1

= 2

µn1,n
1
1

= 2

µnm,n0
m

= 2

µnm,n1
m

= 2

capnc1,ssat
= 1

capncn,ssat
= 1

b(ssat) = −n

b(srest) = −2m + n

Figure 7: Construction of network Nα.

The problem 3V2L3SAT is NP-complete (as shown by C.A.Tovey [11]) where
only the limited number of variable occurences is guaranteed by simply introduc-
ing k new variables x1, . . . , xk for k occurences of a variable x and exchange the
ith occurence of x by xi. Then the clauses (xi∨¬xi+1), 1 ≤ i < k, and (xk∨¬x1)
are added to the original formula, which ensure an equal truth assignment on all
xi. This reduction from 3SAT shows that the satisfiability problem is still hard
for instances where each clause contains two or three literals and each variable
occurs only three times. Moreover the reduction results in a boolean formula
where each literal is present at most two times: surely once in the additional
clauses and possibly once in exchange for the original variable in the original
formula. Thus even 3V2L3SAT is still NP-complete.

For a given instance α of 3V2L3SAT, we construct the following network
Nα: We have vertices nk for every variable vk and additional two vertices n0

k,
n1

k for the corresponding literals ¬lk, lk, which occur in α. For every nk the
node balance bk is +1 and the node balance of the literal nodes is 0. Nodes
nk are connected to ’their’ literal nodes by arcs (nk, n0

k), (nk, n1
k) with an arc

multiplier of 2.
For each clause Ci in α we need another vertex ni, which has incoming arcs

(n∗
k, ni) from those literal nodes which correspond to literals occuring in Ci.

Finally we add two sink nodes ssat, srest with node balances bsat = −n and
brest = −2m + n to the graph. We connect the clause nodes to both sinks by
arcs (ni, ssat) with capacity 1 and arcs (ni, srest) with unlimited capacity (see
Figure 7).

Unless otherwise noted, any node nj has balance bj = 0 and any arc eij has
multiplier µij = 1, unlimited capacity and zero costs. Note that the constructed
network meets all restrictions, we found in our model.

Theorem 2 The decision problem for a valid integral flow in a disposition net-
work is NP-complete.

7

Proof
Consider Nα as constructed above. Nα is a disposition network, as the set
of vertices can be partitioned into the sets X and Y , such that for all arcs
a = (u, v) u and v are in different sets, all arc multipliers are 1 or 2 and all arcs
with multiplier µ(a) = 2 are directed from X to Y . All paths from any source
to all sinks have path multiplier 2.

Further, for a valid solution, one unit of flow has to leave each variable node
nk either to n0

k or to n1
k as the flow has to be integral. Now we have 2 units of

flow at one half of all literal nodes which sum up to 2m units of excess exactly
as the sum of deficits at the sinks. Thus there is a valid flow, if there are paths
to the sinks with appropriate capacity.

As the literal nodes only occur in the network, if the corresponding literal
occurs in α, each such node is connected to at least one clause node ni, which
is again connected to both sinks. As the arcs (ni, srest) have no capacity limits,
the required flow units can always pass from arbitrary literal nodes to srest. On
the other hand, ssat can be reached by only one unit of flow via each clause
node. To balance the full deficit bsat = −n and at the same time satisfy all
node and capacity constraints, at least one unit of flow must pass each clause
node.

We can thus reinterpret the flow through a literal node n0
k resp. n1

k as a truth
assignment ν with ν(vk) = 0 resp. ν(vk) = 1. Each unit of flow through a clause
node ni must then correspond to a true literal in the corresponding clause. A
valid flow, especially carrying n flow units to ssat, therefore corresponds to a
truth assignment satisfying at least one literal in every clause and thus satisfying
the whole formula α.

If there is no valid integral flow, we can also not find a satisfying truth
assignment. Moreover the problem is in NP (Theorem 1).

�

In our real world instances the node balances of source(s) and sink(s) are not
guaranteed to be equal (in sum) and there need not be paths of enough total
capacity. Thus, we are also interested in maximal integral (s − t)-pseudoflows
with minimum costs, where (s − t)-pseudoflow means a pseudoflow respecting
all non-negativity and capacity constraints, as usual pseudoflows, but also all
node balance constraints except from the balance(s) of the sink node(s).

As a (s − t)-pseudoflow solution is not a valid flow solution itself, we will
slightly modify the above construction to clarify that our problem remains hard.
For practical instances we can assume the deficit at sinks to be greater or equal
to the excess at sources.

Theorem 3 The problem of finding a maximal integral (s− t)-pseudoflow with
minimum costs in a disposition network is NP-complete.

Proof
We apply the same construction as above, but add a supersink node s with

8

b(s) = 3m and connect the former sink nodes sSAT and srest to s. The balances
b(sSAT) and b(srest) are set to zero and arc (sSAT , s) has capacity n and cost
zero while (srest, s) has infinite capacity (or at least 3m) and high costs M . The
maximum 2m units of excess on the literal nodes emanating from the source
nodes can now arrive at s at cost 2m · M − n if and only if α is satisfiable by
the construction and argumentation of 2. If α is not satisfiable the maximal
integral (s− t)-pseudoflow solution with minimum costs has cost strictly higher
than 2m · M − n.

�

3 Fractional optimal solutions

An optimal solution to the min cost flow problem with arbitrary multipliers is
generally not integral. Even if we limit the possible multipliers to the values 1
and 2, we can construct an extendable example, where the fractions of flow can
get arbitrarily small (1

2n in a Graph G(V, A), |V | = 3n) in the optimal solution.

c = 1, µ = 2

c = 1, µ = 1

+1 −1

c = 1, µ = 2

+1 −1

c = 1, µ = 1

c = 1, µ = 2

+1

−1

+1 −1

+1 −1

+1 −1

f =
1

2

f =
1

2

f =
1

4

f =
3

4

f =
1

8

c = 1, µ = 2

−2
n

+ 1

−1

c = 1, µ = 2
+1

c = 1, µ = 2

−2
n
− 1

−1

f = 1 −
1

2n

f =
1

2n

f = 2
n−1

−

1

2

l = 1

l = 2

l =
n
3

l = 3 +1

Figure 8: An example of arbitrary small flow fractions.

Consider Figure 8: At each level l the maximum possible flow is carried
from source sl to sink tl, starting from level 1, where there is no other way of
balancing t1. The rest excess of sl must then be transfered to tl+1 where it
causes a fractional rest deficit of 1

2l which is balanced by 1
2l+1 flow out of sl+1

due to the flow multiplier of 2. The remaining excess of source sl+1 is then
1− 1

2l+1 and so on. For this part of the graph we need 2n + 1 vertices to create

a flow of 1
2n units. To ensure a valid flow solution and still remain integral in

all demands, excesses, and only use the multipliers 1 and 2, we have to create a
path of n−1 vertices connecting sn and tn on the last level with an arc multiplier
of 2 on each arc, such that the last rest excess is completely comsumed by the
last integral deficit.

9

The same construction can be applied to the min cost maximum pseudoflow
case with appropriate cost on the arcs.

4 Halfintegral optimal solutions

1 1

1

2

2

s t

} }

1

1

1

A \ {t} B \ {s}

Figure 9: Simple disposition network: All arcs (s, ai) and (bj , t) have zero cost
and capacities cap(ai) resp. cap(bj). Arcs (ai, bj) have infinite capacity and
costs cost(ai, bj).

Figure 9 shows a simple disposition network. We will transform a disposition
network instance into a generalized minimum cost flow circulation instance G′ as
follows: We split node s into the nodes s1 and s2 and connect all nodes ai with
multplier 1 to s1, the remaining nodes of A to s2 while the arcs (sl, ai), l ∈ {1, 2}
have the same cost and capacity values as before. Further, we add two nodes t1
and t2 and arcs (t, tl) with cost zero and unlimited capacity and (tl, sl), l ∈ {1, 2}
with cost −∞ and unlimited capacity. Nodes t, t1 have multiplier 1, node t2
multiplier 1

2 . Now the IFNM1,2 solution on G is equivalent to the minimum
cost flow circulation solution on G′ with the following property:

Lemma 1 Given a feasible circulation f every cycle in the residual network G′
f

is a unit gain cycle, i.e. the product of the multipliers of the nodes in the cycle
is 1.

Proof
Denote by S1 resp. S2 the set of nodes containing the source s1 resp. s2 and all
(supply) nodes ai connected to s1 resp. s2. Let the set T contain all (demand)
nodes bj and the nodes t, t1, t2. By construction flow is generated (multiplied
by 2) only on arcs from S2 to T and destroyed (devided by 2) only on arcs from
T to S2. As there are no arcs between nodes of S1 and S2 or vice versa, each
cycle has to contain as many arcs from S2 to T as from T to S2 and thus the
product of all node multipliers along any such cycle is 1. (Moreover, it follows,
that every path in the residual network has a path multiplier, i.e. product over
all node multipliers of the nodes along the path, of either 1

2 , 1 or 2.)

�

10

It is well known that a feasible generalized circulation f is optimal if and
only if G′

f contains no negative cost circuits, i.e. circulations that send positive
flow only along the arcs of a single residual unit gain cycle (or bicycle). Based on
this observation, we can solve the generalized minimum cost flow or circulation
problem with the Cycle Cancelling (CC) Algorithm, which successively detect
circuits with negative costs in the residual network and cancels them by aug-
menting the maximum possible amount of flow along them. (Thus at least one
of the cycle’s arcs is saturated. Due to the multipliers this is not neccessarily
the one with least residual capacity.)

By Lemma 1, we can limit our further argumentation to the cancelling of
unit cycles.

Theorem 4 Cycle Cancelling always yields a half-integral solution to the min-
imum cost circulation problem on G′.

Proof
Let all arcs with tail in S2 comprise the set A2, all other arcs are contained in
A1. We show that during the algorithm the residual capacity on all arcs from
A1 resp. A2 remains integral resp. half-integral. Clearly, this property holds
for the zero circulation. If a cycle cancelling step increases the flow along an arc
a ∈ A1 by θ, it is increased along any arc a′ ∈ A2 along the same cycle by 1

2θ.
Obviously, if the residual capacity ua of a determines the maximal flow which
can be augmented along the current negative cost cycle and ua = 2k + 1, θ, i.e.
the flow on arcs in A1 is still integral and the flow on arcs in A2 can become
strictly halfintegral. Halfintegral flows on arcs in A2 lead to halfintegral residual
capacities, but those again lead to halfintegral flows θ on arcs in the same set
and to integral flows and residual capacities 2θ on arcs of A1.

�

The solution on G′ can be transfered to the flow instance G and the same ar-
gumentation can be applied whenever the nodes of the network can be seperated
into appropriate sets A1 and A2.

5 Modified SSP Algorithm

The CC algorithm is the first (and to our knowledge only) classical combinatorial
minimum cost flow or circulation algorithm so far, which was extended to the
generalized case by Wayne [12]. (Other approaches for solving generalized flow
problems are of course provided by LP techniques and the modified network
simplex method of Dantzig [3, 1].) We give a generalization of the Successive
Shortest Path (SSP) algorithm [9, 7, 2], which is based on the principle of
pseudoflows, i.e. flows respecting the non-negativity and capacity constraints,
but not the node balance constraints.

The node balance constraints mean that the difference of incoming flow and
outgoing flow of a vertex v is equal to a given balance value b(v). If b(v) > 0,

11

v is a source, i.e. generates flow, b(v) < 0, v is a sink, i.e. consumes flow.
Otherwise b(v) is zero and the sum of incoming and outgoing flow at v has to be
equal. The algorithm starts from a flow of zero units, which obviously is greater
or equal to zero and less than the capacity of each arc, but violates the mass
balance at sources and sinks and is thus no valid flow (primary solution), but a
pseudoflow.

For convenience, we recapitulate functionality of the SSP algorithm: In gen-
eral we assume a number of sources and sinks in a network, but require the sum
of excesses (positive balance values at sources) and deficits (negative balances
at sinks) to equal each other and to be connected by paths with sufficient total
capacity. In due course of the algorithm the maximum number of flow units is
augmented along a shortest path πst from a (still) source node to a (still) sink
node, i.e. min{b(s),−b(t), mine∈πst

{cap(e)}}. After each augmentation a resid-
ual network is built in the following way: For each arc e(u, v) with a positive
flow f(e), an arc ē = (v, u) with capacity cap(ē) = f(e), cost c(ē) = −c(e) and
flow 0 is added. If f(e) equals cap(e), then it is removed from the network.

While the shortest path πst is determined, each vertex v is labeled with a
distance ds(v) from s and we define a potential p′(v) = p(v) − ds(v) (initially
p(v) = 0). (There are well-known variants which are generally applied to save
running time, see [1], Chapter 9.) Then we define the reduced cost of an arc
e = (u, v) as cr(e) = c(e) − p(u) + p(v). The reduced cost of an arc measures
its cost relatively to the shortest path distance of u and v. Thus repeating the
shortest path calculation for s and t with reduced costs and the augmentation
of flow leads to a minimum cost flow solution, as soon as all excesses and deficits
are balanced.

Generally speaking, the backwards arcs in the residual network enable the
algorithm to redirect flow on earlier shortest paths, if they do not contribute
to an overall minimum cost solution. In particular, if we assume positive arc
weights, a flow f of zero units and node potentials p(v) = 0, we start from an
optimal dual solution, which is primarily infeasible, as f is only a pseudoflow.
Augmenting flow along shortest reduced cost paths from sources to sinks stays
dual optimal, because of the reduced cost optimality (see [1], Chapter 9):

The reduced costs stay nonnegative as the original costs satisfy c(e) ≥ 0 and
residual arcs only appear along shortest paths were the reduced costs are always
zero. Thus we arrive at a solution which is both primal and dual feasible while
staying optimal. If we further assume integral capacities and balances we also
gain an integral optimal solution. So far, the running time of the algorithm is
determined by the number of augmentations and the time consumed by distance
calculations. The number of augmentations is limited by the sum of the supplies
(or demands) as in each iteration there is at least one unit of flow balanced
between a source and a sink (inductive argumentation) and no new imbalances
are created.

So far, the algorithm is pseudopolynomial and needs additional scaling tech-
niques to attain a polynomial time bound, although the use and benefit of scaling
schemes depends on the character of the instances. The reduced cost optimality
further ensures nonnegative arc weights throughout the application algorithm

12

s t

a

b

µsa = 2

µat =
1

2

Figure 10: Two s-t-ways with identical arc cost, but different de facto per unit
cost.

if we assume the original arc costs to be non-negative, c(a) ≥ 0∀a ∈ A, such
that we can use Dijkstra’s algorithm [4] to determine shortest paths πst and
distances ds(v).

Now we describe how to adopt the SSP algorithm for the case of networks
with arc costs, capacities and multipliers. First of all, we have to define a
shortest path on a network with multipliers? (In the following, we will use the
arc multiplier variant.) Consider Figure 10, where all arc costs and multipliers
are 1 if not depicted otherwise. The two possible paths from s to t result in
costs of 2 accounting only on arc costs. Yet actually sending one unit of flow
along s− a− t creates two units of flow at a. There are two possibilities for the
second unit of flow: Firstly it could stay at a, secondly it can be passed on to t.

Both options cause difficulties. The first option could create an imbalance at
a and the invariance of the SSP algorithm, that augmenting flow only decreases
node imbalances, which results in a primarily valid flow solution and thus is
essential for both correctness and termination of the algorithms can no longer
be guaranteed. The second option of sending the spare flow unit at a further
to t could also result in an imbalance (consider µat = 1), if the deficit at t is
not large enough. But this can be taken into account when the maximum flow
along an s − t−path is determined.

Still, sending the multiplied flow units along to t increases the cost of the
s − t−path s − a − t. The de facto cost of moving 1 unit of flow out of s along
s− a− t are 3 whereas due to arc multipliers of 1 along s− b− t the cost of the
second way are only 2. Thus we have to consider the multipliers as well as the
arc costs in the calculation of a shortest path and we agree to adopt the second
option and conserve the node balance constraints at inner nodes of a shortest
path. We define:

Definition 2 The cost of a flow multiplier path πuv = u1− . . .−un with u = u1

and un = v from u to v is defined as:

c′(πuv) =

n∑

i=2

i−1∏

j=1

µj(j+1) · c((i − 1)i).

A shortest flow multiplier path π∗
uv in a network is such a path of minimal cost

c′(πuv).

13

We show that for this definition of path cost, similar to the canonical sum
definition, the following Lemma holds:

Lemma 2 Every subpath πuiuj
, 1 ≤ i < j ≤ n of a shortest flow multiplier path

π∗
uv = u1 − . . . − un with u = u1 and un = v is a shortest flow multiplier path

π∗
uiuj

.

Proof
Let πuiuj

⊆ π∗
uv = u1 − . . . − un, 1 ≤ i < j ≤ n be (shortest) flow multiplier

paths, but π∗
uiuj

with c′(π∗
uiuj

) < c′(πuiuj
). Then:

c′(π∗
uv) = c′(u − . . . − ui−1) +

i−1∏

l=1

µl(l+1) · c
′(πuiuj

)

+

j∏

l=1

µl(l+1) · c
′(uj − . . . − v)

> c′(u − . . . − ui−1) +
i−1∏

l=1

µl(l+1) · c
′(π∗

uiuj
)

+

j∏

l=1

µl(l+1) · c
′(uj − . . . − v)

This contradicts the assumption that π∗
uv was a shortest u − v−path.

�

Next we adjust Dijktstra’s algorithm to the above defined path cost to find
shortest flow multiplier paths from a source s to a sink t. Further we label
all nodes v of the given network with distances ds(v), assuming again that
c(u, v) ≥ 0, ∀(u, v) ∈ A and c(u, v) = ∞, ∀(u, v) /∈ A (see Algorithm 1). This
can be done by introducing a second (third) tentative per node parameter mv

besides the tentative distance ds(v) (and predecessor), which accounts for the
product of arc multipliers on the (tentative) shortest path from s to every node
v.

We show the correctness of the modified algorithm by validating the following
invariants of the while loop:

Lemma 3 1. ∀v ∈ F ∗ : ds(v) = c′(πsv), mv =
∏

(uw)∈πsv
µuw

2. ∀v ∈ V \ F ∗ : ds(v) = minx∈F∗{c′(πsx) + mx · c(x, v)}

Proof
We prove by induction. After the initialization both invariants hold, as ds(s) = 0
is surely c′(πss) and the empty product equals ms = 1. The first pass through

14

Algorithmus 1 Flow Multiplier Dijkstra

1: F = {s}
2: F ∗ = ∅
3: ds(s) = 0,
4: ms = 1
5: ds(v) = ∞, mv = 1, v ∈ V \ {s}
6: while F 6= ∅ do

7: ds(u) = minv∈F {ds(v)}
8: for all v ∈ V \ F ∗ : (u, v) ∈ A do

9: F = F ∪ {v}
10: if ds(v) > ds(u) + mu · c(u, v) then

11: ds(v) = ds(u) + mu · c(u, v)
12: mv = mu · µuv

13: end if

14: end for

15: F = F \ {u}
16: F ∗ = F ∗ ∪ {u}
17: end while

the while loop updates all of s’s neighbours’ distances to ds(v) = ms · c(s, v)
which validates the second invariance. For each additional pass through the
while loop, one vertex u enters F ∗. Let π∗

su = s− . . .− vx − x− y − vy − . . .− u
be a shortest flow multiplier path from s to u and x the last vertex on the path in
F ∗ before the current pass through the while loop, such that x ∈ F ∗, y ∈ V \F ∗.
It holds:

c′(π∗
su) = c′(π∗

sx) + mxc(x, y) + myc′(uj − . . . − v)
(Inv.2) ≥ ds(y) + myc′(uj − . . . − v)

(ds(u)min.) ≥ ds(u).

Assuming that c′(π∗
su) is a shortest path gives equality and thus the first in-

variant is guaranteed after each while loop. The second invariant is also valid,
because for every vertex v, (u, v) /∈ A the arc cost c(u, v) is set to infinity, thus
minx∈F∗c′(πsx) + mx · c(x, v) cannot be decreased by c′(πsu) + mu · c(u, v) and
for all v, (u, v) ∈ A a possible decrease is checked explicitly in the algorithm.

�

With Lemma 3 the correctness of the modified Dijkstra algorithm is shown
as it terminates after at most n while loops (one vertex leaves F in every pass
and none is added for more than one time) and all nodes v with πsv ⊆ A are
in F ∗ (after termination), such that the invariant indicates that we know the
shortest flow multiplier path distance and thus also the path π∗

sv.
Further, we want to adjust the SSP algorithm with the help of the new notion

and computation of shortest paths, i.e. apply the Flow Multiplier Dijkstra

15

instead of the original Dijkstra and take the flow multipliers into account when
we compute the maximum flow δ to be augmented. After each augmentation
another residual network is built in the following way: For each arc e(u, v)
with a positive flow f(e), an arc ē = (v, u) with capacity cap(ē) = f(e), cost
c(ē) = −c(e), arc multiplier µē = 1

µe
and flow 0 is added. If f(e) equals cap(e),

then arc e is removed from the network.

Algorithmus 2 Flow Multiplier SSP

1: ∀v ∈ V : p(v) = 0
2: ∀a = (u, v) ∈ A : f(a) = 0, cr(a) = c(a), capr(a) = cap(a)
3: E = {v, b(v) > 0}, D = {v, b(v) < 0}
4: while E 6= ∅ do

5: e ∈ E, d ∈ D
6: Determine shortest flow multiplier paths π∗

ev and de(v) with respect to
reduced costs cr in the residual network G(f)

7: Update p(v) = p(v) − de(v) for each v ∈ V .

8: delta := min{b(e),−b(d), mina=(uv)∈πed

capr(a)
mu

}
9: Augment δ units of flow along πed

10: ∀a = (u, v) ∈ A : f(a), cr(a) = c(a)−p(u)+p(v), capr(a) = cap(a)−f(a).
11: Update G(f).
12: E = {v, b(v) > 0}, D = {v, b(v) < 0}
13: end while

To show the correctness of Algorithm 2, i.e. the optimality of the flow solu-
tion, we adopt two lemmata from [1] (Lemma 9.11, 9.12) for the flow multiplier
version of the SSP Algorithm:

Lemma 4 Suppose that a pseudoflow (or flow) f(a)∀a ∈ A satisfies the reduced
cost optimality conditions with respect to some node potentials p(v)∀v ∈ V ,
cr(a) = cr(uv) = mu ·c(uv)−p(u)+p(v) and let ds(v) be the cost of π∗sv∀v ∈ V
in the residual network G(f). Then it holds:

1. The pseudoflow f also satisfies the reduced cost optimality conditions with
respect to the node potentials p(v)′ = p(v) − ds(v).

2. The reduced costs c′r(a) = c′r(uv) = mu · c(uv) − p′(u) + p′(v) are zero for
all arcs a ∈ π∗sv.

Proof

1. According to the assumption: c′r(a) ≥ 0∀a ∈ A, G(f) = (V, A). Fur-
ther shortest path optimality holds for shortest flow multiplier paths (see
Lemma 2,3):

16

ds(v) ≤ ds(u) + cr(uv) (1)

Substituting cr(uv) in 1 with the definition, we obtain:

ds(v) ≤ ds(u) + mu · c(uv) − p(u) + p(v) (2)

⇔ 0 ≤ mu · c(uv) − (p(u) − ds(u)) + (p(v) − ds(v)) (3)

⇔ 0 ≤ mu · c(uv) − p(u)′ + p(v)′ (4)

⇔ 0 ≤ c′r(uv) = c′r(a) (5)

2. For any arc a = (uv) on a shortest flow multiplier path it holds:

ds(v) = ds(u) + cr(uv) (6)

⇔ ds(v) = ds(u) + mu · c(uv) − p(u) + p(v) (7)

⇔ 0 = mu · c(uv) − (p(u) − ds(u)) + (p(v) − ds(v)) (8)

⇔ 0 = mu · c(uv) − p(u)′ + p(v)′ (9)

⇔ 0 = c′r(uv) = c′r(a) (10)

�

Lemma 5 Suppose that a pseudoflow (or flow) f(a)∀a ∈ A satisfies the reduced
cost optimality conditions and we obtain f ′(a) from f(a) by sending flow along
a shortest flow multiplier path from node s to some node t; then f ′(a)∀a ∈ A
also satisfies the reduced cost optimality conditions.

Proof
With potentials p and p′ as well as reduced costs as defined in Lemma 4, the
lemma implies, that f also satisfies the reduced cost optimality conditions for
c′r(a). Further, for any arc a ∈ π∗sv, a reverse arc ā is added to G(f ′), but as
c′r(a) = 0 for such a, c′r(ā) = −c′r(a) = 0 ≥ 0.

�

Lemmata 4 and 5 show that Algorithm 2 terminates with a minimum cost
maximum flow solution through the network N : If we determine a maximum
flow through N at first, we terminate with a valid flow (primal solution) while
preserving the reduced cost optimality conditions, i.e. dual optimality and fea-
sibility. By the strong duality theorem [5], the flow solution must be optimal.

Alternatively (as we do here), we just increase the flow through N as long as
there is an excess e node and a deficit node d and a path π∗

ed between them left
in the residual network. Otherwise, the algorithm terminates and we obtain the
maximum possible flow with minimal cost nevertheless. Concerning the SSP for
integral fows without multipliers, the running time of the (unscaled) version of
the algorithm is pseudopolynomial in the sum of excesses and demands, as in
each augmentation at least one unit of flow is sent. Unfortunately, δ does not

17

need to be integral in general any longer and we are not able to give a lower
bound ǫ(n) < δ(n), i.e. an implicit upper bound to the number of augmentations
yet.

Still we can use the MSSP on the instances with guaranteed halfintegral
optimal solutions (section 4). Here δ ≥ 1

2 , which results in a pseudopolynomial
running time as for the case without flow multipliers.

6 Rounding to acceptable integer solutions

Recall the disposition network N = (A⊎B, E) in Figure 9, where the capacities
on all arcs (s, ai), ai ∈ A ((bj , t), bj ∈ B) encode excesses (demands) and the
capacity on arcs ti = (ai, bj) is unlimited, but only the latter have costs greater
than zero. All arcs ti leaving an (implicit) excess node ai have flow multipliers
either 1 or 2.

But arriving arcs at an (implicit) demand node bi can have different mul-
tipliers. In our application we can assume that for all bi with incoming arc
multipliers only 2, the demand is even. Otherwise a valid integral flow could
not exist. Further, for bi with mixed incoming arc multipliers, we also assume
even demand, as for an odd demand any valid integer solution must contain an
incoming flow on an arc with multiplier 1. Thus we can add a node b′i with
equivalent properties and demand 1 which has only incoming arcs with multi-
plier 1. With the above assumptions obviously only the set Bmix of nodes bi

with mixed incoming arc multipliers can cause halfintegral flows in the optimal
solution. Let dmix =

∑
bi∈Bmix

b(bi) be the total demand of all demand nodes
in Bmix and let e2 =

∑
ai∈A2

b(ai) with A2 ⊆ A the set of all excess nodes ai

with outgoing multipliers 2. Still we can not guarantee the existence of a valid
integer solution (see Figure 11).

s

b(s) = 3

1

1

1

2

2

t

b(t) = −4

µ = 2

µ = 2

Figure 11: Disposition Network with no feasible integer solution (numbers in
squares = arc capacities).

For simplification of some of the following statements, we assume:

Property 1 There is always an uncapacitated way from s to t.

18

To obtain an acceptable integral solution from a halfintegral optimal solution
in a disposition network, we first apply the following naive heuristic, which
temporarily allows cap(bj , t) to be violated by 1:

Rounding Heuristic (RH)

1: while (∃ halfintegral flow f)
3: Find cheapest f from s to t

4: if (f = f + 1

2
violates bal(t) by at most 1)

5: Round f up, most expensive s-t-flow f’ down.

6: else Round f down, cheapest s-t-flow f’ up.

8: end

The heuristic can always be applied to a halfintegral solution until there are
only integral flows, because in each iteration, at least two halfintegral flows are
rounded (up or down) to integral flows. The node balances can be violated:
Demands can stay over-saturated by at most 1 in the end. But without further
halfintegral flows, there must be an incoming flow on an arc with multiplier 1.
We can augment 1 unit of flow back to the according excess node ai in each
such case.

Thus there can be additional unsaturated deficits (from rounding down at
the ’excess side’) and rest excesses (from rounding down at the ’demand side’
or augmenting flow back in the last step). If we accept the solution neverthe-
less, we gain a 2-approximate ’solution’. A better option is to reallocate deficits
and excesses by another MSSP run on the network reduced to the remaining
imbalances and apply the rounding heuristic again. Iterating those steps termi-
nates with an integral solution as we reduce the absolute demand in each step.
Further:

Lemma 6 After O(log(min{e2, dmix})) iterations of MSSP and RH we obtain
a valid integral solution.

Proof
The number of necessary iterations is determined by the number fhalf of halfin-
tegral flows created in each MSSP application. The value of fhalf is limited by
min{e2, dmix, |A2 ×Bmix|} in each iteration, because there can be one halfinte-
gral flow from each ai ∈ A2 to each bi ∈ Bmix and the flow values out of A2 can
sum up at most to e2 and into Bmix at most to dmix. As for every flow which is
rounded down and can thus cause an unsaturated demand of −1, another flow
has to be rounded up, which saturates a demand with 1, we have saturated at
least dmix

2 demand after each iteration.

�

This also limits the possible rest demand after just one RH application:

Corollary 1 The unsaturated rest demand d′mix after one iteration of MSSP
and RH is limited by:

d′mix ≤
min{e2, dmix, |A2 × Bmix|}

2
.

19

Unfortunately, although each application of HR produces an integral solu-
tion with cost no more than twice the cost of the proceeding halfintegral MSSP
solution, the following simple example shows that the whole iterative proce-
dure may increase the cost of the solution arbitrarily with regard to an initial
halfintegral solution like in Figure 12:

s

b(s) = 3

1

1

1

2

2

t

b(t) = −4

µ = 2

µ = 2

a

b

c

d

e

Figure 12: RH can find bad solutions.

Imagine the dotted arc has less costs c− δ and the bold arc has much bigger
costs c + ∆ than all normally drawn arcs. The optimal (halfintegral solution)
sends one unit along s−a−d−t, one along s−c−e−t and 1

2 along s−b−d−t and
s−b−e− t each. The costs are OPT = 10c− 1

2δ. Then RH rounds the cheapest
halfintegral flow (on s − b − d − t) up and the more expensieve one through b
via e down which gives us an integral ’solution’ with cost 7c − δ ≤ 2OPT .

Now the capacity of d− t is violated by 1 and we augment the one incoming
unit at d on an arc with multiplier 1 back via a to s where it constitutes a rest
excess. Further, we have an unsaturated demand at t (implicitly at e). If we
now apply another iteration of MSSP on the reduced network (see Figure 13) it
can only augment one unit of flow along s− a− e− t with arbitrary large cost δ
and resultng in a solution with cost 10c − δ + ∆ instead of the optimal integer
solution with cost 10c.

s

b(s) = 1

1

1

t

b(t) = −1

a

e

Figure 13: Small reduced network after one application of RH.

20

References

[1] R.K. Ahuja, T.L. Magnati, J.B. Orlin, ”Network Flows - Theory, Algo-
rithms and Applications.” Prentice Hall, 1993.

[2] R.G. Busaker, P.J. Gowen ”A procedure for determining minimal-cost
network flow patterns.” ORO Technical Report 15, Operational Research
Office, John Hopkins University, Baltimore, MD, 1961.

[3] G.B. Dantzig ”Linear Programming and Extensions” Princeton University
Press, Princeton NJ, 1963.

[4] E. Dijkstra ”A note on two problems in connexion with graphs” Numeriche
Mathemacis 1 pp. 269-271, 1959.

[5] D. Gale, H.W. Kuhn, A.W. Tucker ”Linear programming and the theory of
games” Activity Analysis in Production and Allocation, T.C. Koopmans,
ed. New York: John Wiley ans Sons pp. 317-329, 1951.

[6] M. Garey and D. Johnson ”Computers and Intractability: A guide to the
theory of NP-Completeness” W.H. Freeman, New York, 1979.

[7] M. Iri ”A new method of solving transportation-network problems” Journal
of the Operations Research Society of Japan 3, 27-87, 1960.

[8] W.S. Jewell ”Optimal Flow though networks” Interim Technical Report 8,
Operations Research Center, MIT, Cambridge, MA, 1958.

[9] W.S. Jewell ”Optimal Flow though networks with gains” Operations Re-
search 10, 476-499, 1962.

[10] S. Sahni ”Computationally Related Problems” SIAM Jr. on Computing,
3, 4, 262-279, 1974.

[11] Craig A. Tovey ”A Simplified NP-Complete Satisfiability Problem” Dis-
crete Applied Mathematics 8, 85-89, 1984.

[12] Kevin D. Wayne ”A polynomial combinatorial algorithm for generalized
minimum cost flow” Mathematics of Operations Research, Vol.27, No.3,
445-459, 2002.

21

