
Exact Bipartite Crossing Minimization under

Tree Constraints⋆

Frank Baumann1, Christoph Buchheim1, and Frauke Liers2

1 Technische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87,
44227 Dortmund, Germany

2 Universität zu Köln, Institut für Informatik, Pohligstraße 1, 50969 Köln, Germany

Abstract. A tanglegram consists of a pair of (not necessarily binary)
trees T1, T2 with leaf sets L1, L2. Additional edges, called tangles, may
connect nodes in L1 with those in L2. The task is to draw the tanglegram
with a minimum number of tangle edge crossings while making sure that
no crossing occurs between edges within each tree. This problem has
relevant applications in computational biology, e.g., for the comparison
of phylogenetic trees.
In this work, we show that the problem can be formulated as a quadratic
linear ordering problem (QLO) with additional side constraints. In [2] it
was shown that, appropriately reformulated, the QLO polytope is a face
of some cut polytope. It turns out that the additional side constraints
arising in our application do not destroy this property. Therefore, any
polyhedral approach to max-cut can be used in our context. We present
experimental results for drawing random and realistic tanglegrams on
binary and on general trees. Using both linear and semidefinite program-
ming techniques, we show that our approach is very efficient in practice.

Key words:tanglegram, graph drawing, computational biology, cross-
ing minimization, quadratic programming, maximum cut problem

1 Introduction

A tanglegram [11] consists of a pair of trees T1, T2. Furthermore, there
exist correspondences between the leaves L1, L2 of the trees that are rep-
resented by edges. The latter are called tangles or tangle edges. When
visualizing a tanglegram, it is natural to ask for a drawing in which no
edge crossings occur within either of the trees. Furthermore, the number
of tangle edge crossings should be minimized. Here we require that the
leaves in L1 and L2 are drawn on two parallel lines, while the trees are
drawn in the two regions outside of these lines.

⋆ Financial support from the German Science Foundation (DFG) is acknowledged
under contracts Bu 2313/1–1 and Li 1675/1–1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/141726341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The task of drawing tanglegrams arises in several relevant applica-
tions, e.g., in computational biology for the comparison of phylogenetic
trees [11]. A phylogenetic tree represents a hypothesis of the evolution-
ary history of a set of species. These species are drawn as the leaves of
the tree, their ancestors as inner nodes. Different reconstruction methods
may lead to a set of different candidate trees; a tanglegram layout then
allows to compare a pair of such trees visually.

As another application, consider a phylogenetic tree of some set of
species that serve as hosts for a certain set of parasites. The hypothesis
that the evolution of hosts and their parasites is strongly correlated can
be tested by analyzing a tanglegram layout. A tangle edge then specifies
which host is affected by which parasite. Whereas in the first application
the number of tangle edges incident to a leaf is always one, in the latter
their degree can be higher, as shown below in a tanglegram from Hafner
et al. [6] (here the hypothesis seems to be true).

wardii

minor
thomomyus

actuosi
ewingi

chapini

panamensis

setzeri

cherriei

costaricensis

Lice (parasites)

Thomomydoecus

Geomydoecus

talpoides

bottae

bursarius
hispidus

cavator

underwoodi

cherriei

heterodus

Gophers (hosts)

Thomomys

Geomys

Orthogeomys

Tanglegrams also occur in hierarchical clusterings, which can be vi-
sualized by so-called dendrograms. Dendrograms consist of trees where
the elements to be clustered are identified with the leaves. Internal nodes
determine clusters that contain the elements or sub-clusters. A tangle-
gram layout helps comparing the results of different clustering methods.
Moreover, tanglegrams occur when analyzing software projects in which
a tree represents package, class, method hierarchies. Hierarchy changes
are analyzed over time, or automatically generated decompositions are
compared with human-made ones. This application yields tanglegrams
on trees that are not binary in general [10].

In the next section, we review related work. In Section 3, we introduce
an exact model for tanglegrams that can be applied to pairs of general
(not necessarily binary) trees with arbitrary tangle-edge density. To this

end, we show that the task is to optimize a quadratic function over the
linear ordering polytope intersected with further hyperplanes. We will
show that the corresponding polytope is isomorphic to a face of a cut
polytope. We present experimental results exploiting this structure in
Section 4, showing results for both random and realistic instances. The
results prove that our approach is very efficient in practice.

2 Related Work

Most of the literature is concerned with the case of binary trees and leaves
that are in one-to-one correspondence. Whereas several of the presented
methods could easily be generalized to arbitrary tangle layers, an exten-
sion to non-binary trees is usually not possible. When allowing general
trees, one extreme case would be a star, where all leaves are adjacent to
the root node. If both T1 and T2 are stars, there are no constraints on
the orders of leaves on either shore, so that the problem specializes to the
bipartite crossing minimization problem [9, 2].

We are not aware of any implementation of an exact method for draw-
ing tanglegrams with non-binary trees. Fernau et al. [5] showed the NP-
hardness of drawing tanglegrams. They also presented a fixed-parameter
algorithm for binary tanglegrams. Recently, an improved fixed-parameter
algorithm was presented by Böcker et al. [1] which can solve large binary
instances quickly in practice, provided that the number of crossings is not
too large. Finally, while in the recent paper by Venkatachalam et al. [13]
the focus is on binary instances, a fixed-parameter algorithm for general
tanglegram instances is presented. According to our knowledge, this is
the only algorithm that could deal with non-binary trees. However, no
implementation or running times are provided making it impossible to
evaluate its practical performance.

Besides analyzing the performance and quality of several heuristics in
a computational study for binary tanglegrams with 1–1 tangles, Nöllenburg
et al. [10] also implemented a branch-and-bound algorithm and an exact
integer-programming (IP) based approach for this case.

As we will compare our approach with the exact IP-approach of [10],
we describe it in more detail in the following. A feasible but not necessarily
optimal tanglegram layout is given as an input. For each inner node,
a binary variable xi is introduced. In the case of complete binary trees
with n leaves each, this gives rise to 2n−2 variables. If xi = 1, the subtree
rooted in node i is flipped with respect to the input drawing, otherwise
it remains unchanged. As by definition there are no crossings within the

trees, the number of crossings can be determined by counting the number
of tangle crossings. Let (a, c) and (b, d) be tangle edges with a, b ∈ L1

and c, d ∈ L2. Let i be the lowest common ancestor of a, b in T1 and j

that of c, d in T2. If the tangle edges cross each other in the input drawing,
then a crossing occurs in the output drawing if and only if either both
subtrees below i and j are flipped or both remain unchanged. This can
be expressed as xixj = 1 or (1 − xi)(1 − xj) = 1. Similarly, if the edges
do not cross each other in the input drawing, then there is a crossing in
the output drawing if and only if either (1− xi)xj = 1 or xi(1− xj) = 1.

Thus minimizing the number of tangle edge crossings reduces to mini-
mizing the sum of the given products. The latter is an instance of the un-
constrained quadratic binary optimization problem, which is well-known
to be equivalent to a maximum cut problem in some associated graph
with an additional node [3]. In an undirected graph G = (V, E), the
cut δ(W) induced by a set W ⊆ V is defined as the set of edges (u, v)
such that u ∈ W and v 6∈ W . If edge weights are given, the weight of a
cut is the total weight of edges in the cut. Now the maximum cut problem
asks for a cut of maximal weight or cardinality.

While Nöllenburg et al. used this model only for instances with 1–1
tangles, they briefly note that it could be extended to leaves of higher
degree as well. However, their model cannot be generalized to instances
with non-binary trees in a straightforward way. In many applications,
the trees are not necessarily binary. In the next section we will present
an exact model for tanglegrams that neither restricts the degree of inner
nodes in the trees nor the number of tangles incident to a leaf.

3 An Exact Model for General Tanglegrams

The problem of drawing tanglegrams is closely related to bipartite cross-
ing minimization. As argued above, the latter problem can be considered
a special case of the former. Therefore, we first review approaches for
drawing bipartite graphs.

3.1 Bipartite Crossing Minimization

Let G = (V1 ∪ V2, E) be a bipartite graph. The task is to draw G with
straight line edges. The nodes in V1 and V2 have to be placed on parallel
lines H1 and H2 such that the number of edge crossings is minimal. Both
heuristic and exact methods [9] exist for this problem.

Assume for a moment that the nodes on the first layer H1 are fixed,
and only the nodes on layer H2 are permuted. For each pair of nodes

on H2, we introduce a variable xuv such that xuv = 1 if u is drawn to the
left of v and xuv = 0 otherwise. For edges (i, k) and (j, l) with i, j ∈ H1

and k, l ∈ H2, such that i is left of j, a crossing exists if and only if l is
left of k. We thus have to punish xlk in the objective function. The task
of minimizing the number of crossings is now equivalent to determining
a minimum linear ordering on the nodes of H2. Exploiting xuv = 1−xvu,
we can eliminate half of the variables and only keep those with u < v.
Note that bipartite crossing minimization with one fixed layer is already
NP-hard [4].

If the nodes on both layers are allowed to permute, the number of
crossings depends on the order of the nodes on each layer. Therefore, the
problem can be modeled as a quadratic optimization problem over linear
ordering variables. We write the quadratic linear ordering problem (QLO)
in its general form as

min
∑

(i,j,k,l)∈I cijklxijxkl

(QLO) s.t. x ∈ PLO

xij ∈ {0, 1} for all (i, j) ∈ J

where PLO is the linear ordering polytope. The index set I consists of all
quadruples (i, j, k, l) such that xijxkl occurs as a product in the objective
function, while J is the set of all pairs (i, j) for which a linear ordering
variable xij is needed. For the bipartite crossing minimization case, I and
J are given as

I = {(i, j, k, l) | i, j ∈ H1, i < j, and k, l ∈ H2, k < l}

J = {(i, j) | i, j ∈ H1 or i, j ∈ H2, i < j}

In order to linearize the objective function, we introduce a new binary
variable yijkl for each (i, j, k, l) ∈ I, modeling the product xijxkl. Applying
the standard linearization, the corresponding linearized quadratic linear
ordering problem (LQLO) can be written as

min
∑

(i,j,k,l)∈I cijklyijkl

(LQLO) s.t. x ∈ PLO

xij ∈ {0, 1} for all (i, j) ∈ J

yijkl ≤ xij , xkl for all (i, j, k, l) ∈ I

yijkl ≥ xij + xkl − 1 for all (i, j, k, l) ∈ I

yijkl ∈ {0, 1} for all (i, j, k, l) ∈ I.

In [2], the above model was introduced for bipartite crossing mini-
mization. Additionally, a quadratic reformulation of the constraints defin-
ing PLO was given: it was shown that a 0/1 vector (x, y) satisfying yijkl =

xijxkl is contained in (LQLO) if and only if

xik − yijik − yikjk + yijjk = 0 for all (i, j, k, l) ∈ I. (1)

Furthermore, the constraints (1) yield a minimum equation system for
(LQLO). Note that (LQLO) is a quadratic binary optimization prob-
lem where the feasible solutions need to satisfy further side constraints,
namely those restricting the set of feasible solutions to linear orderings.
As unconstrained binary quadratic optimization is equivalent to the max-
imum cut problem [3], the task is to intersect a cut polytope with a set
of hyperplanes.

In general, the convex hull of the corresponding feasible incidence
vectors has a structure that is very different from that of a cut polytope.
In the above context, however, it was shown in [2] that the hyperplanes (1)
cut out faces of the cut polytope. Exploiting this result, both IP- and
SDP-based methods originally designed for maximum cut problems were
used to solve the quadratic linear ordering problem. It turned out that
the SDP-based approach outperformed the IP-based techniques.

3.2 Modeling Tanglegrams

Crossing minimization in tanglegrams can be seen as a generalization of
bipartite crossing minimization. The set of feasible orderings is implicitly
restricted by the given tree structures. Starting from the model discussed
above, we formalize these restrictions as follows: let us consider a triple of
leaves a, b, c in one of the trees, say T1. In case all pairwise lowest common
ancestors coincide, all relative orderings between a, b, and c are feasible.
However, if the lowest common ancestor of, say, a and b is on a lower
level than that of, say, a and c (in this case, the former is a descendant of
the latter), then c must not be placed between a and b, as an intra-tree
crossing would be induced; see Figure 1.

Therefore, we derive a betweenness restriction for every triple of leaves
such that two of the leaf pairs have different lowest common ancestors.
Each such betweenness restriction of the form ‘c cannot be placed be-
tween a and b’ can be written in linear ordering variables as xacxcb = 0
and xcaxbc = 0. In the linearized model (LQLO), the latter amounts to
requiring

yaccb = 0 and ycabc = 0 . (2)

For binary trees with n leaves each, all triples of leaves have two differ-
ent lowest common ancestors, so in this case the number of additional
equations is 2

(

n
3

)

.

a b c

Fig. 1. Leaf c is not allowed to lie
between a and b.

a b c d

r

Fig. 2. Variables xac and xbd can
be identified.

In summary, we now obtain a quadratic linear ordering problem (QLO)
on a smaller number of variables, with additional constraints of the form (2),
where

J = {(i, j) | i, j are leaves of the same tree, i < j}

I = {(i, j, k, l) | (i, j), (k, l) ∈ J belong to different trees} .

For complete binary trees with n leaves each, the total number of linear
ordering variables is 2

(

n
2

)

. The same number of variables is necessary in
the corresponding bipartite crossing minimization model [2].

As mentioned above, the polytope corresponding to the linearized
problem (LQLO) is isomorphic to a face of a cut polytope [2]. Since all y-
variables are binary, constraints of the form (2) are always face-inducing
for (LQLO). In summary, we derive the following result:

Theorem 1. The problem of drawing tanglegrams with a minimum num-
ber of edge crossings can be solved by optimizing over a face of a suitable
cut polytope.

3.3 Binary Case

In the binary case, the model introduced in the last sections is closely
related to the model presented in [10]. To see this, first observe that the
two equations (2) can be written as

xab = xbc . (3)

This replacement does not affect the set of feasible solutions, even the
corresponding LP-relaxations of (LQLO) are equivalent. Note however
that introducing the y-variables allows to strengthen the model, see The-
orem 1.

When using the linear equations (3) instead of the quadratic equa-
tions (2), we end up with a set of equivalence classes of linear order-
ing variables, such that all pairwise orderings corresponding to variables

in the same class can only be flipped simultaneously. Two variables xac

and xbd belong to the same class if and only if there is a node r such
that a, b and c, d are descendants of different children of r; see Figure 2.
In the binary case, a class of linear ordering variables thus corresponds
to the decision of flipping the children of node r or not, which is modeled
explicitly by a single variable in the model of Nöllenburg et al. [10].

However, in the general case where node r has k children, there are k!
different orderings. As these cannot be modeled by a single binary vari-
able, the model of Nöllenburg et al. [10] cannot be applied here.

4 Computational Results

We implemented the model explained in Section 3.2. Instead of adding
equations (3) explicitly, we used one variable for each equivalence class
of linear ordering variables, thereby significantly reducing the number of
variables. For evaluating the IP-based methods, we used CPLEX 11.2
[8]. The naive approach is to solve the linearized model (LQLO) using
a standard integer programming solver. More advanced approaches solve
the quadratic reformulation (1), using separation of cutting planes for
max-cut, both in the context of integer and semidefinite programming.
For the SDP approaches, we used the bundle method by Rendl et al.
[12]. For comparison, we also implemented the IP approach [10] that only
works for binary tanglegrams. For the tested binary instances, the running
times for solving the latter are very comparable to the model proposed
here and are omitted in the following. This behavior can be expected
since our model generalizes [10].

We generated random instances on general binary, ternary and quad
trees. I.e., the degree of each internal node is at most 2, 3 or 4, respectively.
Each tree has n leaves, either having 1–1 tangles or a certain tangle-edge
density d%. Instances are generated following the description in [10], with
obvious extensions to the more general cases considered here. Finally, we
solved realistic binary tanglegram instances from [10] arising in applica-
tions in biology and general realistic instances from visualizing software
hierarchies [7].

Average results are always computed over 5 randomly generated in-
stances. For each instance, we imposed an upper limit of 10h of cpu time.
Instances that could not be solved within this limit count with 10h in the
averages. Runs were performed on Intel Xeon machines with 2.33GHz.

In Table 1, we present the average cpu time in seconds for realistic
binary instances. Table 2 shows results for random ternary and quad trees,

n SDP std ref std+cyc ref+cyc

0–49 <1 <1 <1 <1 14
50–99 3 <1 2 <1 428

100–149 31 <1 7 <1 1100
150–199 125 1 32 1 1282
200–249 437 1 66 2 2704
250–299 4786 2 2529 7 10602
300–349 6483 2 80 9 8862
400–449 20508 12 12067 69 14931

Table 1. Average cpu time in seconds for realistic 1–1 binary trees having n leaves
each [10]. Instances are grouped by their number of leaves. The nine largest instances
with up to 540 leaves could not all be computed within the time and memory constraints
and are omitted.

respectively. Figure 4 visualizes the results from Table 2 for n = 128.
Running times for realistic general tanglegram instances are presented
in Table 3. In case an entry is missing in the tables, we could not solve
the instances by the corresponding methods due to memory allocation
constraints.

n d SDP std ref std+cyc ref+cyc

64 1 3 1 <1 <1 1
5 15 12 4 67 6

10 18 27 19 1301 17
15 78 54 23 3893 37
20 41 54 48 12508 66

128 1 165 16 32 78 63
5 362 448 280 22253 448

10 436 2179 791 36000 2746
15 4049 3247 1551 36000 5583
20 8293 2326 1408 36000 15426

SDP std ref std+cyc ref+cyc

<1 <1 <1 <1 <1
2 3 1 1 <1
3 8 2 5 1
4 16 6 57 3
4 19 7 65 3

32 19 3 2 4
80 59 35 1045 51
73 1406 119 10147 495
77 844 352 31582 1184

1420 1560 1908 36000 10111

Table 2. Average cpu time in seconds for random general ternary (left) and quad trees
(right) having n leaves each, density d%.

The first column SDP shows results obtained by semidefinite opti-
mization, whereas the remaining columns refer to IP-based approaches
for solving the model from Section 3. std refers to solving the standard
linearization using CPLEX default, ref its quadratic reformulation (1).
In the options std+cyc and ref+cyc, cycle inequalities for max-cut are
additionally separated, all CPLEX cuts are switched off.

Clearly, for realistic binary trees with 1–1 tangles, the SDP approach
usually needs considerably more time than the IP-based methods. Fur-

 10

 100

 1000

 10000

 100000

 0 5 10 15 20

C
P

U
(s

)

d

SDP
stdlin

reform+cyc
std+cyc
reform

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20

C
P

U
(s

)

d

SDP
stdlin

reform+cyc
std+cyc
reform

Fig. 3. Plot showing results for n = 128 of Table 2 for ternary (left) and quad trees
(right).

instance SDP std ref std+cyc ref+cyc

philips orig 4a 27618 4725 73 4321 32692
philips orig 4b 26093 4205 74 2756 23443
philips orig 4c 36000 2666 122 4030 36000
philips orig 4d 27891 3208 314 4178 28902
philips orig 4e 36000 2789 90 5665 36000
philips 4a 4b 5238 1395 4 420 5
philips 4a 4c 4769 1858 3 637 4
philips 4a 4d 2924 1467 4 494 3
philips 4a 4e 2575 827 2 338 3
philips 4b 4c 6526 1965 8 510 7
philips 4b 4d 4872 2070 5 577 5
philips 4b 4e 2127 649 4 124 36
philips 4c 4d 4611 804 3 217 5
philips 4c 4e 6403 1074 3 396 5
philips 4d 4e 3738 891 4 811 11

Table 3. Cpu time in seconds for realistic general tanglegram instances [7].

thermore, memory requirements strongly increase with system size and
so the largest instances could not be solved. On average, the fastest ap-
proaches for solving the largest instances are the pure standard lineariza-
tion std and the quadratic reformulation ref.

In fact, we can optimize tanglegrams with more than 500 leaves in each
tree. This is the range of sizes arising in realistic applications. The realistic
instances can be solved particularly fast. Interestingly, cycle separation
for max-cut usually does not pay off for binary 1–1 tanglegrams: the
running time increases, even if the dual bounds are usually considerably

better when cycle separation is included. Often, an optimum solution can
be determined in the root node. However, although the bound is weak
in the standard linearization, after few branching steps the optimum LP
solution is often feasible and the program can stop. We found similar
characteristics for random binary tanglegram instances.

The picture changes when varying the density of the tangle edges: for
big enough tangle-edge density the SDP approach usually outperforms
the IP ones. However, memory requirements usually prohibit the solution
of instances with more than 500 leaf nodes and tangle-edge density of 1%.
On the IP side, reformulation is often preferable. Indeed, the best per-
formance is found when the problems are quadratically reformulated. For
n = 512 and 1% tangle-edge density, the average solution time is 2120.42
seconds. These instances cannot be solved within the given time limits
when using only the standard linearization, with or without separation
of cycle inequalities.

The instances for ternary and quad trees are computationally slightly
more difficult. This is mainly due to the fact that the number of between-
ness restrictions decreases when compared to binary trees. Here again,
the SDP approach performs well for denser instances however memory
requirements strongly increase with system size. For larger instances, best
performance is often found for the quadratic reformulation.

Comparing std with std+cyc and ref with ref+cyc for not necessar-
ily binary trees, it turns out that the performance of separating cycle
inequalities improves for ternary and quad trees. The special case of a
star, where the degree is maximal, is equivalent to the quadratic linear
ordering problem, for which we know that separation of cycle inequalities
improves over std [2].

The realistic general instances we tested had between 371 and 414
nodes and 131 tangles. The maximum degree of an internal node was 15.
We show the results in Table 3. Here, solving the reformulation usually
yields best performance. Note that these non-binary instances could not
be solved before by any other exact method.

5 Acknowledgments

We are grateful to Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele
for the permission to use their bundle program for the SDP-based ap-
proach, as well as to Martin Nöllenburg and Danny Holten for sending
us realistic tanglegram instances. We thank Henning Fernau for drawing
our attention to tanglegrams.

References

[1] S. Böcker, F. Hüffner, A. Truss, and M. Wahlström. A faster fixed-
parameter approach to drawing binary tanglegrams. In Proc. of
International Workshop on Parameterized and Exact Computation
(IWPEC 2009), 2009. To appear.

[2] C. Buchheim, A. Wiegele, and L. Zheng. Exact algorithms for the
quadratic linear ordering problem. INFORMS Journal on Comput-
ing. To appear.

[3] C. De Simone. The cut polytope and the boolean quadric polytope.
Discrete Mathematics, 79:71–75, 1989.

[4] P. Eades and N. C. Wormald. Edge crossings in drawing bipartite
graphs. Algorithmica, 11:379–403, 1994.

[5] H. Fernau, M. Kaufmann, and M. Poths. Comparing trees via cross-
ing minimization. Journal of Computer and System Sciences, In
Press, 2009.

[6] M. S. Hafner, P. D. Sudman, F. X. Villablanca, T. A. Spradling, J. W.
Demastes, and S. A. Nadler. Disparate rates of molecular evolution
in cospeciating hosts and parasites. Science, 265:1087–1090, 1994.

[7] D. Holten. personal communication, 2009.
[8] ILOG, Inc. ILOG CPLEX 11.2, 2007. www.ilog.com/products/cplex.
[9] M. Jünger and P. Mutzel. 2-layer straightline crossing minimization:

performance of exact and heuristic algorithms. J. Graph Algorithms
Appl, 1:1–25, 1997.

[10] M. Nöllenburg, M. Völker, A. Wolff, and D. Holten. Drawing binary
tanglegrams: An experimental evaluation. In Proc. of the Workshop
on Algorithm Engineering and Experiments, ALENEX 2009, pages
106–119. SIAM, 2009.

[11] R. D. M. Page. Tangled Trees: Phylogeny, Cospeciation, and Coevo-
lution. University of Chicago Press, 2002.

[12] F. Rendl, G. Rinaldi, and A. Wiegele. A branch and bound algorithm
for max-cut based on combining semidefinite and polyhedral relax-
ations. In M. Fischetti and D. P. Williamson, editors, IPCO 2007,
volume 4513 of Lecture Notes in Computer Science, pages 295–309.
Springer, 2007.

[13] B. Venkatachalam, J. Apple, K. St. John, and D. Gusfield. Untan-
gling tanglegrams: Comparing trees by their drawings. Bioinformat-
ics Research and Applications, pages 88–99, 2009.

