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Abstract. The max-cut problem asks for partitioning the nodes V of
a graph G = (V, E) into two sets (one of which might be empty), such
that the sum of weights of edges joining nodes in different partitions is
maximum. Whereas for general instances the max-cut problem is NP-
hard, it is polynomially solvable for certain classes of graphs. For planar
graphs, there exist several polynomial-time methods determining max-
imum cuts for arbitrary choice of edge weights. Typically, the problem
is solved by computing a minimum-weight perfect matching in some as-
sociated graph. In this work, we present a new and simple algorithm
for determining maximum cuts for arbitrary weighted planar graphs. Its

running time can be bounded by O(|V |
3

2 log |V |), similar to the fastest
known methods. However, our transformation yields a much smaller as-
sociated graph than that of the known methods. Furthermore, it can
be computed fast. As the practical running time strongly depends on
the size of the associated graph, it can be expected that our algorithm
is considerably faster than the methods known in the literature. More
specifically, our program can determine maximum cuts in huge realistic
and random planar graphs with up to 106 nodes.

1 Introduction

Partitioning problems in graphs have many relevant real-world applications. In
its most basic version, the problem is to partition the nodes of a graph into two
disjoint sets such that the weight of the edges connecting the two sets is either
minimum or maximum. The former is denoted by min-cut and the latter by
max-cut. Cut problems have many applications, e.g. in via minimization in
the layout of electronic circuits, [1], in physics of disordered systems [2–4], or in
network reliability [5]. Furthermore, the problem is equivalent to unconstrained
quadratic 0-1 optimization [6, 7]. Several important combinatorial optimization
tasks can naturally be formulated as constrained quadratic optimization prob-
lems. Investing knowledge from the unconstrained case often drastically speeds
up the solution algorithms [8].

For nonnegative edge weights, the min-cut problem can be solved using net-
work flow techniques due to the famous duality of maximum flows and minimum
cuts in networks [9], or by the algorithm proposed in [10].

For general edge weights, the max-cut problem (and by inversion of the
signum of the edge weights also the min-cut problem) is NP-hard. We refer to
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[11] and the references therein for a detailed study of different classes of instances
marking the boundary between easy and hard ones. When restricting to certain
graph classes, polynomial-time solution algorithms are known. This is true espe-
cially for planar graphs which are the subject of this article. Hadlock’s algorithm
[12] was the first polynomial-time algorithm for solving the max-cut problem
on planar graphs with nonnegative edge weights. In [13, 14] Barahona proposes
a max-cut algorithm for (arbitrary weighted) planar grid graphs, focussing on
solving the two-dimensional planar Ising spin glass problem from theoretical
physics. Furthermore, [15, 16] present a method that reduces the task to the
Chinese-Postman problem. In 1990, Mutzel [17] proposed an algorithm using
T-joins. In the same year, Shih, Wu, and Kuo [18] presented a mixed max-cut

algorithm for arbitrary weighted planar graphs, which generalizes the algorithm
for optimal layer assignment of Kuo, Chern, and Shih [19]. It solves the problem

in time bounded by O(|V | 32 log |V |) which is presently the algorithm with the
best worst-case running time. The method first constructs the dual graph. It
is then expanded such that matchings in the latter correspond to cuts in the
former. Moreover, a minimum-weight perfect matching in the latter yields an
optimum cut in the original graph. In this work, we follow this general algorith-
mic scheme which leads to an algorithm with the same asymptotic running time
as the one of Shih, Wu, and Kuo. However, in our transformation the expanded
dual graph has a simpler structure and contains a considerably smaller number
of both nodes and edges. As the bulk of the running time is spent in the matching
computation and the latter scales with the size of the graph, our algorithm will
be much faster in practice. Our new max-cut algorithm for arbitrary weighted
planar graphs is a generalization of the methods proposed in [20, 21] which are
based on the work of Kasteleyn [22] from the 1960s.

In the following, we introduce some basic definitions and notations. In Section
3 we introduce and illustrate the algorithm and prove its correctness in Section
4. An analysis of the running time and space demand is presented afterwards in
Section 5. In Section 6 possible algorithmic varieties are proposed. Finally, we
present running times on realistic and random instances. It turns out that the
algorithm can routinely solve the problem for random maximum planar graphs
with up to 500,000 nodes and for realistic instances on planar graphs with up to
1,200,000 nodes.

2 Preliminaries

We consider simple, undirected, planar graphs G = (V, E) with node set V
and edge set E. We assume G is connected and real-weighted, i.e. each edge
e ∈ E is assigned a weight w ∈ R. Multiple edges between two nodes can be
contracted to a single edge with weight equal to the sum of the weights of these
multiple edges. Self-loops can be omitted, as those edges will never be cut-edges.
If not stated otherwise, we assume |V | = n and |E| = m. Let deg(v) denote the
degree of a node v ∈ V , i.e. the number of edges incident to node v. A path,
π = v1, v2, ..., vk, vi ∈ V, i ∈ {1, . . . , k}, k ≤ n, is a sequence {v1, v2, ..., vk} of
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pairwise different vi such that (v1, v2), (v2, v3), . . . , (vk−1, vk) are edges of G. A
closed path π = v1, v2, ..., vk, v1 is called a cycle. A subgraph H of G is a graph
such that every node of H is a node of G, and every edge of H is an edge in G
also. We denote with Kn the complete graph with n nodes. Let G = (V, E) be
a weighted graph. For each (possibly empty) subset Q ⊆ V , the cut δ(Q) is the
set of all edges e = (u, v) with u ∈ Q and w ∈ V \ Q. The weight of a cut is

given by w(δ(Q)) =
∑

e∈δ(Q)
w(e). A minimum cut (min-cut) asks for a cut

δ(Q) with minimum weight w(δ(Q)). As max-cut is equivalent to min-cut by
negating weights, we concentrate on the minimization version of the problem. A
connected graph G = (V, E) is called Eulerian if and only if E can be partitioned
into edge-disjoint cycles which is equivalent to saying that each node of G has
even degree. A graph G is planar if it can be embedded in the plane in such a
way that no two edges meet each other except at a node to which they are both
incident. If a graph G is planar, then any embedding of G divides the plane into
regions, called faces. One of these faces is unbounded, and called the outer face.
A geometric dual graph GD of a connected planar graph G is a planar graph
with the following properties: GD has a node for each face of G, and an edge
for each edge joining two neighboring faces (including self-loops and multiple
edges). A matching in a graph G = (V, E) is a set of edges M ⊆ E such that
no node of G is incident with more than one edge in M . If some edge m ∈ M is
incident with a node v ∈ V , then v is M -covered, otherwise v is M -exposed. A
matching M is perfect if every node is M -covered. The weight of M is the sum
of weights of the edges in M .

3 The Algorithm

In the following we assume we are given a planar embedding of G. At first,
we calculate its dual graph GD = (VD, ED), where the weight of a dual edge is
chosen as w(ẽ) = w(e) if ẽ ∈ ED is the dual edge crossed by e ∈ E. Subsequently,
we split all dual nodes ṽ ∈ VD with degree deg(ṽ) > 4 into ⌊(deg(ṽ) − 1)/2⌋
nodes and connect the copies by a path of new edges receiving zero weight. Let
split nodes denote nodes created by a splitting operation. Edges incident to the
original node are equally distributed among the split nodes such that the degree
of each node is at most four, cf. Figure 1. We denote the resulting graph by
Gt = (Vt, Et).

It is easy to see that after the splitting operations, no node in Gt has a
degree smaller than three. Indeed, each face in a planar graph G is bounded by
at least two edges. Bounding a face by exactly two edges is only possible if G
has multiple edges which contradicts its simplicity. As GD is the dual of G, we
conclude that each node in GD has degree at least three. Furthermore, a node
in the transformed graph Gt has degree three or four.

The connectedness of G and GD means that Gt is also connected. Moreover,
certain structures in Gt can be excluded. For example, degree-four nodes with
all edges being self-loops contradict the connectedness of the original graph G.
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Fig. 1. (a) A node with even degree > 4 is split up in ⌊(deg(ṽ) − 1)/2⌋ nodes. Edges
are equally distributed among the split nodes. (b) A node with odd degree > 4 is split
into ⌊(deg(ṽ)− 1)/2⌋ nodes, each with degree four, except one receiving degree three.

From now on, we assume that Gt does not contain degree-four nodes with only
self-loop edges.

We note that in the special case that G is a path graph of length two or three,
P2 (P3), a node with degree two having a self-loop (with degree four having two
self-loops, respectively) occurs. The algorithm we are going to present works
here as well, and so we do not have to take special care of this case.

Next, we expand each node in Gt to a K4 subgraph (a so-called Kasteleyn
city [22]), while keeping the weights of the edges. Newly generated edges again
receive zero weight. A node in Gt of degree three is expanded as displayed on the
left of Figure 2, a degree-four node as shown on its right. A node with one self-
loop is expanded as shown in Figure 3. We denote the resulting graph by GE .

(b)(a)

w(ẽ)

w(ẽ)

w(ẽ)

w(ẽ)

w(ẽ)

w(ẽ)w(ẽ)

Fig. 2. Expansion of the nodes in Gt to K4 subgraphs. (a) shows the subgraph for a
node with degree three. (b) is generated in case the node has degree four. All edges in
K4 receive zero weight.

Next, we calculate a minimum-weight perfect matching M in GE . Subsequently,
we undo the transformation, i.e., shrink back all K4 subgraphs and all (possibly
created) split nodes, while keeping track of the matched edges. Consider the
subgraph induced by the matching edges that are still present in the dual graph
after shrinking. We will show in the next section that each node in this subgraph
has even degree. This means that it is a minimum weight Eulerian graph which
yields a min-cut in the original graph. In the following section we will show the
algorithmic flow outlined above on some small example.
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(b)(a)
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w(ẽ)
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Fig. 3. Expansion for nodes having self-loops. (a) is the subgraph for a node with
degree four and one self-loop. (b) is generated in case the node has degree three and
one self-loop. All edges in K4 receive zero weight.

3.1 Example

Consider as an example the planar drawing of the graph in Figure 4.
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Fig. 4. Planar drawing of some planar
graph G. Nodes are labeled by natu-
ral numbers. Edge weights are given
as subscripts. Capital letters represent
faces.
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Fig. 5. The transformed dual graph Gt

in which node A is split.

G consists of seven nodes and eight faces. Nodes are labeled with numbers
and faces with capital letters. Edge weights are given as edge subscripts. The
node representing face A is the only one having degree greater than four and is
split into two nodes, cf. Figure 5. Figure 6 shows the graph after having expanded
each node in Gt to a Kasteleyn subgraph.

On the transformed and expanded graph from Figure 6 we calculate a minimum-
weight perfect matching (dotted edges). Shrinking back all artificial nodes yields
a minimum-weight Eulerian subgraph of the dual and thus a min-cut of the
original graph (Figure 7).
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Fig. 6. The transformed dual graph
GE after expansion, together with
a minimum-weight matching (dotted
(red) edges).
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Fig. 7. After shrinking back the node
copies, a min-cut δ(Q) with weight
w(δ(Q)) = −12 emerges. Dotted (red)
edges are cut-edges. Node partitions
are indicated by different node shapes.

4 Correctness of the Algorithm

It is well known that there is a one-to-one correspondence between Eulerian
subgraphs in the dual and cuts in its original graph. In this section, we show that
the edge set induced by the minimum-weight perfect matching in GE corresponds
to a minimum-weight Eulerian subgraph in the dual and therefore to a minimum
cut in the original graph.

To this end, we first need to show that there always exists a perfect matching
M in the expanded graph GE . Then, we need to prove that the constructed
perfect matching in GE induces a subgraph in the dual in which all node degrees
are even.

We postpone for a moment the proof that a perfect matching exists. We call
edges not contained in a K4 outgoing and count the number of matched outgoing
edges on some K4 for an arbitrary perfect matching in GE . Modulo analogous
cases, we show in Figs. 8 and 9 all different possibilities for a matching covering
all nodes of a K4-subgraph together with its different number of outgoing edges.
Analogous cases are those yielding the same number of outgoing matching edges.

Clearly, any possible matching in a K4 subgraph leads to either zero, two or
four outgoing matching edges with all nodes are M -covered. An odd number of
outgoing matching edges always leaves an odd number of K4 nodes unmatched,
i.e. M -exposed, which contradicts the matching’s perfectness.
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Fig. 8. Different cases for matched edges in a K4 subgraph together with its outgoing
edges, modulo cases in which the same number of outgoing edges is matched. (a) and
(b) show possible matchings for subgraphs representing nodes with degree three in Gt.
Figures (c), (d) and (e) show the possible matchings for subgraphs representing a node
with degree four. Dotted (red) edges are matching edges.
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w(ẽ)

w(ẽ)
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w(ẽ) (e)

w(ẽ)
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Fig. 9. Different cases for matched edges in a K4 subgraph representing a node with
self-loops (modulo analogous cases), together with its outgoing edges. Dotted (red)
edges are matching edges. In Figures (b) and (e) the number of outgoing matching
edges is two or four, resp., as the edge representing a former self-loop is matched.
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Now we prove that the transformed graph GE indeed has a perfect matching
M . We first note that the graph is connected and has an even number of nodes
(due to the inflation of each node to a K4 subgraph). A trivial perfect matching
exists as in each K4 all nodes can be covered by matching edges contained in the
K4 (cf. Figures 8 (a) and (c) and 9 (a) and (c)). Therefore, a perfect matching in
GE always exists. One might ask whether there also always exists another perfect
matching in which not only artificial edges contained in the K4 subgraphs are
matched. Indeed, as we deal with a geometric dual graph GD, any two adjacent
nodes in GD (i.e., adjacent faces in G) are connected by at least one simple
cycle. This cycle is expanded but preserved during the transformation of GD

to GE . Thus, a possible nontrivial matching in Gt may match the edges in the
cycle and additionally in each K4 subgraph (representing a node on the cycle
in GD) an edge connecting two unmatched K4 nodes, as shown in Figures 8
(b), (d) and (e). For all other Kasteleyn cities, edges contained in the K4 can
be matched. Each K4 subgraph then has an even number of possible outgoing
matching edges, cf. Figures 8-9.

Shrinking back the artificial nodes to the corresponding split nodes does
not affect the number of outgoing matching edges. Consequently, after having
collapsed all split nodes back to its dual nodes, each dual node has an even
number of adjacent matching edges, too. Hence the matching induced subgraph
is Eulerian and therefore defines a cut δ(Q) in the original graph G.

Yet the minimality of the cut is to be proven. It is

w(M) =
∑

ẽ∈ED∩M

w(ẽ)

=
︸︷︷︸

w(ẽ)=w(e)

∑

e∈δ(Q)

w(e)

= w(δ(Q))

As w(M) is the weight of a minimum-weight perfect matching, the weight
of the induced Eulerian subgraph is minimum, and thus the weight of the cut
δ(Q), too. We summarize this in the next theorem.

Theorem 1. The algorithm described above computes a min-cut (or max-

cut) in an arbitrarily weighted planar graph.

5 Running-Time Analysis

After having shown the correctness of the method, we now concentrate on es-
tablishing bounds on its running time. We consider a maximum planar graph
with n nodes, i.e. a triangulated planar graph in which each face is enclosed by a
simple cycle of three edges. We will argue in the following that among all planar
graphs with a specific number of nodes, the transformed graph GE contains the
maximum number of nodes and edges if G is triangulated.

Indeed, among all planar graphs with n nodes triangulated graphs have the
maximum number of faces. For this class of graphs, our algorithm does not need
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to split any dual node. A triangulation of a face with k nodes leads to k− 2 new
faces (new dual nodes, respectively), whereas a splitting operation yields only
⌊(k − 1)/2⌋ nodes for the same face. As splitting operations result in a smaller
number of nodes, we also need fewer edges (connecting split nodes) as in the
triangulated case.

Obviously, given an embedding of a (maximum) planar graph, one can cal-
culate the geometric dual in time bounded by O(n). Furthermore, the described
expansion of the dual graph can be done in time linear in n, (there are at most
3n−6 edges). Next, the most time consuming step is performed - the calculation
of a minimum-weight perfect matching.

Edmonds [23, 24] introduced one of the fundamental results in combinato-
rial optimization, i.e. the polynomial time blossom algorithm for computing
minimum-weight perfect matchings. In its original version the algorithm runs
in time bounded by O(mn2). Improved to O(n3) by Lawler [25] and Gabow [26]
and later on by Gabow to O(n(m+n log n) [27]. Focusing on planar graphs, Lip-

ton and Tarjan [28] have presented an O(n
3

2 log n) divide-and-conquer algorithm
for finding maximum-weight matchings using the planar separator theorem.

As our transformed graph GE is not planar, this algorithm cannot be applied
directly. However, a good separator of size O(

√
n) can be found for the planar

dual graph GD which directly implies a good separator of size O(
√

n) for Gt. Ad-
ditionally, we observe that a matching M is a minimum-weight perfect matching
in a weighted graph G = (V, E) with w : E → R if and only if M is a maximum-
weight perfect matching in G with weight function w̃ : E → R, w̃(e) := W−w(e)
with W being a suitable large constant. With this considerations we can use the
algorithm for maximum-weight matchings [29, 26, 23, 24], and are able to calcu-

late a minimum-weight perfect matching in the graph GE in O(n
3

2 log n).

Finally, all nodes blown up in the transformation are shrunk back. Unshrink-
ing can be done again in time O(n). With these considerations, we state the
following theorem.

Theorem 2. Using the method described above, a min-cut (or max-cut) in

a planar graph can be determined in time bounded by O(n
3

2 log n).

We show now that our method is less space demanding than the construction
of [18] and leads to an algorithm that is faster in practice. Let F denote the set
of faces of a maximum planar graph. Our method constructs a graph GE with
at most |VE | = 4|F | = 4(2n − 4) nodes, as for each dual node we create four
nodes, and the number of dual nodes in a maximum planar graph is at most
2n−4. Its number of edges is 6|F |+ |ED| = 15n−30, as we need to consider the
original dual edges and those edges that are generated by the transformation of
each dual node to a K4 subgraph with six edges.

The transformation by Shih, Wu, and Kuo generates for each dual node
a “star” subgraph of seven nodes and nine edges. On this graph a minimum-
weight perfect matching is calculated which yields a maximum even-degree edge
set of the dual graph, and therefore a max-cut of the original graph. Thus, the
method of Shih, Wu, and Kuo [18], yields an expanded dual graph with at least
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7(2n− 4) nodes and 21n− 42 edges. These bounds are sharp as the first step of
Shih, Wu, and Kuo is always a triangulation of the graph. Our transformation,
in comparison, computes a matching on a much smaller and sparser graph, even
in the case the graph is a triangulation. This makes our method in practice faster
than the latter method. Moreover, the practical running time of the method of
Shih, Wu, and Kuo might increase, as the matching induced even-degree edge set
may be empty in which case an additional O(n) time step is needed to compute
a nontrivial even-degree edge set. A modification of the “star” subgraphs is
performed, and the matching is recalculated using the planar-separator-theorem
[28].

6 Algorithmic variants

Two straightforward algorithmic variants are presented. Let G denote a planar
graph meeting the requirements introduced in Section 2. The first variant, which
we call fce algorithm, deals with the possibility to force edges to be in the cut.
For example, this makes it possible to calculate a nonempty min-cut in a graph.
On the other hand it allows us also to find an s−t cut in the graph, if nodes s and
t are connected by an edge or can be connected by an edge without destroying
the planarity of the graph.

The second variant, called pce algorithm, can be seen as the reverse operation
to the first variant. Precisely, we can force adjacent nodes to be in the same cut
set by excluding the edge connecting these nodes from the set of potential cut-
edges. If we want to group nonadjacent nodes, this can be done if again those
nodes lie on the same face of G and can be connected by an edge without
destroying planarity.

All operations explained in the following can be performed in time linear in n.
We start with a detailed look at the first variant followed by a brief explanation
of the second one.

Fixed cut edges - fce algorithm In order to force an edge to be in the set of
cut-edges δ(Q) we propose the following fce algorithm. Let edge e = (v, w) ∈ E
with e ∈ δ(Q), and let eE = (vE , wE) ∈ EGE

be the corresponding edge in the
expanded graph GE . We denote with GE \ {vE , wE} the graph that arises from
GE by deleting nodes vE and wE and all incident edges to vE and wE . Clearly,
a minimum-weight perfect matching on GE \{vE, wE} yields a constrained min-

cut δ(Q) in the primal graph G with nodes v and w belonging to different node
sets.

Theorem 3. A min-cut δ(Q) with the constraint e = (v, w) ∈ δ(Q) can be
calculated with the fce algorithm.

Proof. Let eD ∈ ED be the edge corresponding to edge e in GD = (VD, ED).
As e ∈ δ(Q) holds, eD and thus eE = (vE , wE) are matched. Therefore, we can
remove vE and wE from GE as these nodes are M -covered. Their removal yields
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still a perfect matching in which each dual node has an even degree of matching
edges after the shrink operation. Being more concrete, the following situations
can occur in GE \ {vE , wE}: a K4 subgraph is reduced to a K3 which has either
one or three outgoing matching edges. A K4 subgraph can be reduced to a K2,
here again there are two possibilities for outgoing matching edges. Either zero
or two outgoing edges are matched. Finally, a K4 subgraph can completely be
removed. In all cases the sum of removed edges eD (forced matched) and matched
edges is even at each dual node. The minimality follows directly from Theorem 1.
Thus, we arrive at constrained minimum-weight Eulerian subgraphs in the dual
and thus at our desired constrained min-cut e ∈ δ(Q) in the primal graph. ⊓⊔

As a direct consequence we conclude the following corollary.

Corollary 1. Running the fce algorithm m times, each time with a different
fixed cut-edge, a nonempty min-cut in G can be computed in time O(mn

3

2 log n).

Proof. For each edge e ∈ E fix this edge as cut edge and run the fce algorithm.
In each run of the fce algorithm a constrained min-cut δ(Q)e is calculated.
Thus after m runs a set of minimum constrained cuts Qfce = ∪e∈E{δ(Q)e} is
calculated. The minimum nonempty cut δ(Q) is now given as:

∅ 6= δ(Q) = δ(Q)e

with w(δ(Q)e) = min{w(δ(Q)e) | δ(Q)e ∈ Qfce}. ⊓⊔

Moreover we can state

Corollary 2. Let G = (V, E) be a planar graph and s, t ∈ V two distinguished
nodes. Using the fce algorithm an s-t cut can be calculated iff s and t lie on the
same face of G.

Proof. Let s and t lie on face f of G. If there exists no edge connecting s and t,
i.e. e = (s, t) 6∈ E, then insert such an edge e with weight zero to G and denote
the resulting graph with G ∪ {e}. Use the fce algorithm with edge e as fixed
cut-edge on G ∪ {e}. The resulting cut δ(Q) separates s and t and is minimum
among all those nonempty cuts. ⊓⊔

Prohibited cut edges - pce algorithm This variant works almost in the
same manner. We want to prohibit edges to be in the cut, i.e. we want to specify
adjacent nodes which are in the same partition.

We do not remove nodes and edges from the expanded graph GE , like in
the fce algorithm, but only the edge connecting those nodes we want to be
in the same partition. Let e = (u, r) ∈ E with δ(Q) ∩ e = ∅. Now, let eE =
(uE , rE) ∈ EGE

be the corresponding edge in the expanded graph GE . We
consider the graph GE\eE that arises from GE by removing edge eE . Apparently,
a minimum-weight perfect matching will never match this edge, thus it will never
be a cut-edge. This can be seen as follows. The removal of edge e does not modify
the internal structure of the K4 subgraphs. This means - recall that we seek for
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a perfect matching - there exists one node in each two K4 subgraphs with no
outgoing edge, i.e. this node only has incident edges to other nodes in this K4

subgraph. This are exactly the nodes that are endnodes of edge e which has been
removed. Each of these nodes must be matched to one other node in this K4

subgraph. Again there are only two possibilities for outgoing matching edges,
either zero or two, but the edge e = (u, r) cannot be an outgoing matching edge.
Therefore we achieved a grouping of node u and r.

7 Experiments

We implemented the algorithm from Section 3 using the ogdf library [30], and
tested our implementation on a variety of problem instances, both realistic and
randomly generated. All computational tests were carried out on Intel R© Xeon c©
CPU E5410 2.33GHz (running under Debian Linux 4.1.1-21).

As the publicly available blossom program by Cook and Rohe [31] is one of
the fastest state-of-the-art implementations for matching problems, we used their
implementation as a black box for the matching part in our implementation.

The randomly generated instances are triangulated graphs with either uni-
formly distributed or Gaussian distributed edge weights, created using the Stand-
ford Graph Base [32] as part of the graph generator rudy [33]. It has the nice
property that it produces identical random graphs for given seeds on most ma-
chine types.

X
X

X
X

X
X

X
X

X
% (w(e) < 0)

|V |
1000 2000 5000 15, 000 50, 000 80, 000 100, 000 500, 000

10 0.07 0.14 0.36 2.92 16.18 27.47 34.36 127.37
30 0.14 0.28 0.73 8.91 49.46 88.58 110.82 425.42
50 0.15 0.29 0.78 9.83 54.03 95.96 120.64 483.78
70 0.15 0.29 0.78 9.80 53.86 95.02 120.66 484.79
100 0.13 0.25 0.67 8.52 47.13 82.28 103.15 438.97

Gaussian 0.19 0.39 1.28 13.86 77.25 137.89 178.79 715.08

Table 1. Random instances. Running times (in sec.) for various large maximum planar
graphs. For the uniform edge weights (top), ”% (w(e) < 0)“ indicates the percentage
of edges with negative weights. The number of edges is given by 3|V | − 6.

In Table 1 average running times (in sec.) for minimum cut computations
are given for various large random maximum planar graphs. We studied 100
instances for each choice of parameters (size and percentage of negative weights).
We show results for triangulated graphs with up to 500, 000 nodes. Even for the
largest sizes studied, one min-cut computation only takes up to several minutes.

We also applied the algorithm to a special class of planar graphs that are
often studied in the physics application, i.e. two-dimensional grid graphs. Deter-
mining maximum cuts in grid graphs is relevant for the study of so-called Ising
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spin glasses. The results for grid graphs with edge weights following a bimodal
distribution are given in Table 2, again always averaged over 100 instances.

|V | average time (sec)

1002 0.26
5002 83.10

10002 1487.90
20002 16586.95
30002 59051.47

Table 2. Grid graph instances. Average running times (in sec.) over 100 instances.

Each instance with |E|
2

edges having weight < 0.

The results of our experiments for random graphs show that the presented
algorithm works very well. Even for large random maximum planar graphs the
performance is good. Results for grid graphs obtained by using heuristic but
high-quality variants of some min-cut procedures are presented in the physics
literature with sizes up to 4802 [34] or 18012 grids [35]. With our algorithm, the
study of considerably larger sizes is possible and allow a deeper insight in the
physics of those systems.

We are not aware of any benchmarks or testsuites for cut algorithms on
planar graphs. In order to study realistic instances, we took the tsplib library,
maintained by Gerhard Reinelt [36]. As the realistic instances all have non-
negative edge weights, we compute max-cuts. For all geometric tsplib instances
with at least 1, 000 nodes we computed Delaunay triangulations (using the leda

library [37]) and set the Euclidean distance as edge weights. Results can be found
in Table 3. Even for the largest instances the computation does not take longer
than about 3 hours, often optimum cuts can be determined within seconds.

We also studied road network maps of the USA, taken from the 9th dimacs

Implementation Challenge (Shortest Paths) [38]. From the library, we took all
instances with up to 1, 200, 000 nodes. The largest instance took around 4.5 days
to compute. The road network instances seem to be a bit harder computationally
as they take longer to solve than random instances of comparable size, cf. Table
3. This is not surprising as for several applications one finds the same behavior
that random instances are easier to solve than real-world problems. We are not
aware of any available max-cut or min-cut implementation or experimental
study of algorithms for planar graphs. However, as argued above, it is reasonable
to expect that the new implementation is faster than other methods presented
earlier in the literature.

The Delaunay triangulated tsplib instances, as well as the random instances
(cf. Table 1), are computed fast. The construction of the transformed dual graph
is done within a few seconds, and the bulk of the computation time is spent in
the matching computation.
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instance name (|E|) average time (sec)

pla85900 (257604) 10248.70
pla33810 (101367) 390.50
usa13509 ( 40503) 169.73
brd14051 ( 42128) 140.49
d18512 ( 55510) 86.50
pla7397 ( 21865) 15.11
rl11849 ( 35532) 9.87
rl5934 ( 17770) 4.56
fnl4461 ( 13359) 3.21
rl5915 ( 17728) 2.84

pr2392 (7125), dsj1000 (2981), vm1748 (4784),
rl1889 (5631)

< 2.00

rl1323 (3950), fl3795 (11326), u1060 (3153), rl1304
(3879), pcb3038 (9101), vm1084 (2869)

< 1.00

pr1002 (2972), u1432 (4204), d2103 (6290), u2319
(6869), u2152 (6312), d1291 (3845), u1817 (5386),
d1655 (4890)

< 0.40

fl1577 (4643), nrw1379 (4115), fl1400 (4138),
pcb1173 (3501)

< 0.20

instance name (|V |, |E|) average time (sec)

USA-road-d.FLA (1,070,376 nodes, 2,712,798 edges) 394937.00
USA-road-d.NW (1,207,945 nodes, 2,840,208 edges) 168239.00
USA-road-d.NY (264,346 nodes, 793,002 edges) 117997.27
USA-road-d.BAY (321,270 nodes, 800,172 edges) 90486.00
USA-road-d.COL (435,666 nodes, 1,057,066 edges) 32227.10

Table 3. Realistic instances. Running times (in sec.) for max-cut computation on
different realistic instances. For the tsplib instances the number of nodes is encoded
in the instance name, and the number of edges is given explicitly.

8 Conclusion

We presented a new max-cut algorithm for arbitrary weighted planar graphs.
Our approach is nifty and simpler than the methods presented earlier. Moreover,
it is easy to implement. Its worst-case asymptotic running time is similar to
the fastest algorithm used today. Furthermore, we showed in the computational
experiments that it is very fast in practice and can compute optimum cuts in
graphs with up to a million nodes. An interesting question is to explore whether
the usage of planar separator strategies for the matching part could further
reduce the computation time in practice.
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37. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric

Computing. Cambridge University Press (1999)
38. 9th DIMACS: Implementation challenge - shortest paths.

http://www.dis.uniroma1.it/ challenge9/download.shtml (2005)


