The Transitive Minimum Manhattan Subnetwork Problem in 3 Dimensions

Birgit Engels
Zentrum für angewandte Informatik, University of Cologne, Germany

Abstract

We consider the Minimum Manhattan Subnetwork (MMSN) Problem which generalizes the already known Minimum Manhattan Network (MMN) Problem: Given a set P of n points in the plane, find shortest rectilinear paths between all pairs of points. These paths form a network, the total length of which has to be minimized. From a graph theoretical point of view, a MMN is a 1 -spanner with respect to the L_{1} metric. In contrast to the MMN problem, a solution to the MMSN problem does not demand L_{1}-shortest paths for all point pairs, but only for a given set $R \subseteq P \times P$ of pairs. The complexity status of the MMN problem is still unsolved in ≥ 2 dimensions, whereas the MMSN was shown to be $N P$-complete considering general relations R in the plane. We restrict the MMSN problem to transitive relations R_{T} (Transitive Minimum Manhattan Subnetwork (TMMSN) Problem) and show that the TMMSN problem in 3 dimensions is $N P$-complete.

Key words: Manhattan network, 1-spanner, grid graph, 3 dimensions

1 Introduction

The Minimum Manhattan Network Problem was first introduced in 2001 by Gudmundson et al. [5] and can be briefly described as follows: Given a set P of points in the plane and two orthogonal directions (X - and Y-axis), connect all pairs (p, q) of points of P. For every pair (p, q) a path from p to q must be a shortest path with respect to the Manhattan or L_{1} metric and only consist of axis parallel line segments. The set of line segments, containing all shortest paths is called Manhattan Network (MN). We measure the length of such a network by summing up the lengths of all line segments and call a solution to

Email address: engels@zpr.uni-koeln.de (Birgit Engels).

Fig. 1. a) A Manhattan Network; b) A Minimum Manhattan Network.
the MMN problem, i.e. a MN with minimum length, a Minimum Manhattan Network (MMN) of P (Fig. 1).

The MMN problem, as well as the closely related rectilinear Steiner Tree and Steiner Arborescence problem, has application in VLSI design, where connecting the chip components with minimum total wire length is desirable. Especially a MMN solution is useful, as it minimizes the total wire length while the connections between pairs of components are as short (and thus as fast) as possible. Further, Lam et. al. [8] use an MMN approach as a preprocessing step to accelerate the Viterbi algorithm for an alignment problem.

Thus, efficient algorithms for these problems would be highly appreciable, but both of the above Steiner problems already turned out to be NPO-complete (see [4], [12]). Up to now, the complexity status of the MMN problem is still unknown, but mostly suspected to be $N P$-hard as well. Hence, the previous work on the MMN problem solely features approximation algorithms: Gudmundson et al. [5] presented an 8 -approximation in time $O(n \log n)$ and a 4 -approximation in time $O\left(n^{3}\right)$ (which is used in [8]). Benkert et al. [1] introduced a 3 -approximation in time $O(n \log n)$. Kato et al. [6] proposed a 2-approximation in time $O\left(n^{3}\right)$. However, the proof of the correctness seems to be incomplete [1]. Chepoi et al. [2] gave a 2-approximation based on an LP with $O\left(n^{3}\right)$ variables and constraints dominating the running time. The LPformulation was given by K.Nouioua [9], who also developed a 3 -approximation which runs in $O(n \log n)$ time [10]. The best approximation factor so far was achieved by Seibert and Unger [13] who proposed a 1.5-approximation in time $O\left(n^{3}\right)$, although the correctness of their algorithm and the completeness of its analysis is discussed critically in [3].

The problem considered in this paper differs from the original MMN problem in that the point pairs to be connected by shortest L_{1}-paths are explicitly given due to a relation $R \subseteq P \times P$. This problem is mentioned in [7] as the F-restricted Minimum Manhattan Network problem. A special case of the FMMN problem arises for $R_{\text {onetoall }}=\left\{\left\{p, q_{i}\right\}\right\}$ and the point set $P=$ $\left\{p, q_{1}, \ldots, q_{n-1}\right\}$, e.g. every point q_{i} has to be connected to the point p by a shortest L_{1}-path. The resulting problem is known as the Rectilinear Steiner Minimum Arborescence (RSMA) problem mentioned above. It was shown to
be $N P$-complete in \mathbb{R}^{2} by W. Shi and C. Su [12].
But this result features a rather special relation, whereas we consider all transitive relations R_{T}, i.e. R such that $\forall\{p, q\},\{p, r\} \in R:\{q, r\} \in R$. The transitivity of the considered relations result in a kind of double layer MMN problem: We solve the MMN problem for subsets of points of P under the restriction that not only the sum of the shortest path lengths has to be minimized as in the original MMN problem, but also the sum of the lengths of the subset-MMNs is to be minimized (see Section 2 and Figure 2). The set of all transitive relations R_{T} includes $R_{\text {alltoall }}=\{\{p, q\} \mid p \neq q \in P\}$. This means that the original MMN problem is a special case of TMMSN. On the other hand the set R_{T} obviously does not contain $R_{\text {onetoall }}$ and RSMA is no special case of TMMSN. Thus the question of the complexity of the TMMSN problem is open.

The remaining part of the article is organized as follows. In Section 2, we give some formal definitions regarding the different problem formulations. Then we proceed to an $N P$-completeness proof for the decision version of TMMSN in Section 3. We conclude with a short summary in Section 4.

2 Definitions

In this section, we briefly introduce some definitions and notations used throughout the paper. Let P be a set of points $p=\left(x_{p}, y_{p}, z_{p}\right)$ in \mathbb{R}^{3} and consider three pairwise orthogonal directions (x-, y - and z-axis).

Definition 1 Let s be a line segment and S a set of such segments. Then $|s|$ denotes the length of s, and we define the total length of S as $|S|=\sum_{s \in S}|s|$.

Definition $2 \pi_{p q}$ denotes a set of axisparallel line segments which form an arbitrary shortest path between two points $p, q \in P$ with respect to the L_{1} metric.

Definition 3 Let $B(P)$ be the bounding box of P, i.e. the smallest axis aligned cuboid that contains all points of P, and let $\partial B(P)$ be its boundary.

In the following section we refer to $\pi_{p q}$ as L_{1}-shortest path or simply (shortest) path. The length of a L_{1}-shortest path is always given by $\left|\pi_{p q}\right|=\left|p_{x}-q_{x}\right|+$ $\left|p_{y}-q_{y}\right|+\left|p_{z}-q_{z}\right|$. Points lying on $\partial B(P)$ are considered as "contained in $B(P)$ ". $B(P)$ can degenerate to a rectangle or even a line segment. Further, all $\pi_{p q}, p, q \in P$, are contained in $B(P)$. Recall the Minimum Manhattan Network (MMN) Problem in \mathbb{R}^{2} which transfers most easily into three dimensions as follows:

Given a set P of points in \mathbb{R}^{3} and three pairwise orthogonal directions (x-, y - and z-axis), a Minimum Manhattan Network of $P, \operatorname{MMN}(P)$, is a set of axis parallel line segments with the following properties:

- $\forall p, q \in P: \exists \pi_{p q} \subseteq M M N(P)$.
- $|M M N(P)|$ is minimal amongst the lengths of all sets of axis parallel line segments containing at least one shortest L_{1} path between each pair of points $p, q \in P$.
We call a given set P an instance of the MMN problem.
Analogously define the Minimum Manhattan Subnetwork (MMSN) Problem:
Given a set P of points in $\mathbb{R}^{3}, 3$ pairwise orthogonal directions $(x-, y$ - and z-axis) and a relation $R \subseteq P \times P$, a Minimum Manhattan Subnetwork of P with regard to $R, \operatorname{MMSN}([P, R])$, is a set of axis parallel line segments with the following properties:
- $\forall\{p, q\} \in R: \exists \pi_{p q} \subseteq M M S N([P, R])$.
- $|\operatorname{MMSN}([P, R])|$ is minimal amongst the lengths of all of all sets of axis parallel line segments containing at least one shortest L_{1} path between each pair of points $\{p, q\} \in R$.
We call a given pair $[P, R]$ an instance of the MMSN problem.
The Transitive MMSN is then defined as the Minimum Manhattan Subnetwork Problem for instances $\left[P, R_{T}\right]$. Due to the transitivity of R, the set P can be partitioned uniquely into subsets P_{1}, \ldots, P_{k} of points such that:
- $\forall p, q \in P_{i}:\{p, q\} \in R$
- $\forall p \in P_{i}, q \in P_{j}, i \neq j:\{p, q\} \notin R$

We call $\mathcal{P}=P_{1}, \ldots, P_{k}$ the R-induced partition of P. Points forming a set $P_{i}, 1 \leq i \leq k$ have to be fully interconnected.

To solve the TMMSN problem it may seem to be sufficient to solve independent MMN problems for all P_{i}, but this impression is misleading: Consider the points $P=\{p, q, r, s\}$ and the (transitive) relation $R=\{\{p, q\},\{r, s\}\}$ which induces the partition $\mathcal{P}=P_{1} \cup P_{2}, P_{1}=\{p, q\}, P_{2}=\{r, s\}$. Solving the two MMN problems on P_{1} and P_{2} may yield a "solution" for the TMMSN([P,R]) like the one in Figure 2 a), whereas the solution in Figure 2 b) is minimal.

This problem only arises for instances $[P, R]$, where shortest paths between point pairs from different sets P_{i} can share line segments (like the paths $\pi_{p q}$ and $\pi_{r s}$ in Figure 2). Thus combining solutions for the MMN problem on the point sets P_{i} yields a valid solution TMMSN([P,R]) if paths $\pi_{p q}, p, q \in P_{i}$ and $\pi_{r s}, r, s \in P_{j \neq i}$ cannot share any line segments. This holds if:

$$
\forall P_{i}, P_{j \neq i}: B\left(P_{i}\right) \cap B\left(P_{j}\right)=\emptyset
$$

Fig. 2. a) Combining MMN-solutions for P_{i}; b) TMMSN solution for $[P, R]$.
We call point sets P_{i} and P_{j} with the above property geometrically independent.

Finally, we formulate the decision version of the TMMSN problem:
Given an instance $[P, R]$ and a constant c, is $|T M M S N([P, R])| \leq c$?
We call a triple $[P, R, c]$ an instance of the TMMSN $([\mathrm{P}, \mathrm{R}])$ decision problem.

3 TMMSN is NP-complete

We show that the TMMSN decision problem in three dimensions is NP-hard. For this a polynomial time reduction from E3SAT is presented. Since the decision version of the TMMSN is obviously in $N P,{ }^{1}$ we obtain the $N P$ completeness result. The reduction works as follows. At first we construct an instance $\left[P_{\alpha}, R_{\alpha}\right]$ of the TMMSN problem from a given E3SAT instance α in polynomial time. We then determine a lower bound c_{α} to the length of the minimal transitive Manhattan subnetwork of this instance. Finally we prove that α is satisfiable if and only if the length of the solution attends the lower bound, i.e. $\left|\operatorname{TMMSN}\left(\left[P_{\alpha}, R_{\alpha}\right]\right)\right|=c_{\alpha}$.

Construction of $\left[P_{\alpha}, R_{\alpha}\right]$. Consider the structure of an instance of the E3SAT problem: Given a Boolean formula α with n clauses, c_{1}, \ldots, c_{n}, over m variables, x_{1}, \ldots, x_{m}, where each clause consists of three literals; that is:

$$
\alpha=c_{1} \wedge \ldots \wedge c_{n}
$$

$$
\text { with } c_{i}=\left(l_{i}^{1} \vee l_{i}^{2} \vee l_{i}^{3}\right) \text { and } l_{i}^{1}, l_{i}^{2}, l_{i}^{3} \in\left\{x_{j}, \neg x_{j} ; 1 \leq j \leq m\right\} .
$$

1 Ask an oracle for the TMMSN $([\mathrm{P}, \mathrm{R}])$, which is a set of $O\left(n^{2}\right)$ line segments, sum up their length to l and check whether $l<c$, which only needs polynomial time due to the size of $\operatorname{TMMSN}([P, R])$.

Let $\operatorname{occ}\left(x_{j}\right)$ denote the number of occurrences of variable x_{j} (literal x_{j} or $\neg x_{j}$) in α. Then P_{α} consists of the following point sets:

- For each variable $x_{j}, 1 \leq j \leq m$, we add a set $P_{j}=E_{j} \cup A_{j}$ of points with $\left|E_{j}\right|=4$ and $\left|A_{j}\right|=2(m+1) o c c\left(x_{j}\right)$ to P_{α}.
- For each clause $c_{i}, 1 \leq i \leq n$, we add $m+1$ point sets $P_{i}^{k}=\left\{p_{i}^{k}, q_{i}^{k}, r_{i}^{k}, s_{i}^{k}\right\}$, $1 \leq k \leq m+1$ to P_{α}.

Further, we define R_{α} such that:

- For each variable $x_{j}, 1 \leq j \leq m: P_{j} \times P_{j} \in R_{\alpha}$.
- For each clause $c_{i}, 1 \leq i \leq n$ and $1 \leq k \leq m+1:\left\{\left\{p_{i}^{k}, q_{i}^{k}\right\},\left\{r_{i}^{k}, s_{i}^{k}\right\}\right\} \in R_{\alpha}$.

Next we define the placement of the points P_{j} and P_{i}^{k} in \mathbb{R}^{3}. We start with $E_{j}=\left\{e_{j}^{1}, e_{j}^{2}, e_{j}^{3}, e_{j}^{4}\right\}$, where:

$$
\begin{aligned}
& e_{j}^{1}=(0,0, j), e_{j}^{2}=(5(m+1) n, 0, j), \\
& e_{j}^{3}=(5(m+1) n, 2, j), e_{j}^{4}=(0,2, j) .
\end{aligned}
$$

Fig. 3. a) Single basic variable gadget G_{j}. b) Arrangement of basic gadgets in \mathbb{R}^{3}.

Thus E_{j} determines the corner points of a rectangle of height 2 and length depending on the number of variables and clauses of α and which lies in the plane $z=j$ of \mathbb{R}^{3} (Fig. 3). The shortest L_{1}-paths between pairs of neighboring corner points (in counter-clockwise order) are reduced to the straight line segments between the points, e.g. $\pi_{e_{j}^{1} e_{j}^{2}}=\left\{\overline{e_{j}^{1} e_{j}^{2}}\right\}$. Thus the rectangle $e_{j}^{1}, e_{j}^{2}, e_{j}^{3}, e_{j}^{4}$ identifies with $\partial B\left(E_{j}\right)$ when we consider the two-dimensional boundary. We call the points E_{j} together with $\partial B\left(E_{j}\right)$ the basic variable gadget. The basic variable gadget together with the points A_{j} forms the variable gadget G_{j}. We abbreviate: $L_{j}:=\pi_{e_{j}^{1} e_{j}^{2}}$ and $U_{j}:=\pi_{e_{j}^{3} e_{j}^{4}}$.

Before we proceed with the coordinates of the points from A_{j} (which will all lie on L_{j} or U_{j}), we place the four points of each $P_{i}^{k}, 1 \leq i \leq n, 1 \leq k \leq m+1$ as follows:

$$
\begin{aligned}
p_{i}^{k} & =(5(k-1) n+5(i-1)+2,-1,0), \\
q_{i}^{k} & =(5(k-1) n+5(i-1)+4,3, m+1), \\
r_{i}^{k} & =(5(k-1) n+5(i-1)+4,0.5, m+1), \\
s_{i}^{k} & =(5(k-1) n+5(i-1)+4,1.5, m+1) .
\end{aligned}
$$

$B\left(P_{i}^{k}\right)$ is a cube of width 2 height 4 and depth $m+1$ with p_{i}^{k} as front lower left and q_{i}^{k} as back upper right point. Together with the points $P_{i}^{k}, B\left(P_{i}^{k}\right)$ forms the clause gadget G_{i}^{k}. All L_{j} and U_{j} pass through each G_{i}^{k} in x-direction (see Fig. 4), i.e. $B\left(P_{i}^{k}\right) \cap L_{j}=l$, where l is a line segment parallel to the x -axis with $|l|=2$ and $B\left(P_{i}^{k}\right) \cap U_{j}=u$ for a line segment u with the same properties as l.

Fig. 4. A clause gadget G_{i}^{k} (cube defined by p_{i}^{k} and q_{i}^{k}) with L_{j}, U_{j} passing through. (Note that $\pi_{s_{i}^{k} r_{i}^{k}}$ is not crossed by any L_{j} or U_{j} because with z-coordinate $m+1$ the points s_{i}^{k} and r_{i}^{k} are located behind the variable gadgets G_{j}.)

From the placement of the points it is evident that all $m+1$ clause gadgets G_{i}^{k} are copies of G_{i}^{1} shifted in x-direction which we need for technical reasons. The $G_{i}^{k}, 1 \leq i \leq n, 1 \leq k \leq m+1$, follow each other with a horizontal spacing of 3 along the x -axis in the following order:
[Clause Gadget Order] $G_{1}^{1}, \ldots, G_{n}^{1}, G_{1}^{2}, \ldots, G_{n}^{2}, \ldots, G_{1}^{m+1}, \ldots G_{n}^{m+1}$.
Now we determine the placement of the $2(m+1) \operatorname{occ}\left(x_{j}\right)$ remaining points from A_{j} on each variable gadget. These points are essential as they represent the occurrence of a variable x_{j} as literal x_{j} or $\neg x_{j}$ respectively in a clause c_{i}. Their
positions influence the structure of the $\operatorname{TMMSN}\left[P_{\alpha}, R_{\alpha}\right]$ and the lower bound on its length. The lower bound to $\left|T M M S N\left[P_{\alpha}, R_{\alpha}\right]\right|$ is then attained by the solution if we can save a fixed length for every clause. In this case, every clause is satisfiable by a consistent truth assignment. This again is true if and only if α is satisfiable. We achieve this by a placement of the points of $A_{j}, 1 \leq j \leq m$, with respect to the following rule.

Placement Rule:

- If literal x_{j} occurs in c_{i}, we place

$$
\begin{aligned}
& \frac{p_{i, j}^{k}}{p_{i, j}^{k}}=(5 n(k-1)+5(i-1)+3,0, j)\left(\text { on } L_{j}\right) \text { and } \\
& =(5 n-1)+5 i, 2, j)\left(\text { on } U_{j}\right) \text { for } 1 \leq k \leq m+1 .
\end{aligned}
$$

- If literal $\neg x_{j}$ occurs in c_{i}, we place

$$
\begin{aligned}
& \frac{p_{i, j}^{k}}{p_{i, j}^{k}}=(5 n(k-1)+5(i-1)+1,0, j)\left(\text { on } L_{j}\right) \text { and } \\
& =(5 n(k-1)+5(i-1)+3,2, j)\left(\text { on } U_{j}\right) \text { for } 1 \leq k \leq m+1
\end{aligned}
$$

This means that for each variable x_{j} that occurs in clause c_{i} there is one point of A_{j} (on L_{j} or U_{j}) inside each G_{i}^{k} and one point to the left or to the right of G_{i}^{k}. Whether the point inside G_{i}^{k} is located on L_{j} or U_{j} depends on which literal of x_{j} occurs in c_{i}. As an example consider formula α with only one variable and two clauses $\alpha=(a) \wedge(\neg a)$ for the sake of simplicity, although this is no exact E3SAT formula (see Fig. 5).

Fig. 5. Example: P_{α} for $\alpha=(a) \wedge(\neg a)$.

We have determined the coordinates for all points of P_{α} which together with the relation R_{α} completes the construction of the instance $\left[P_{\alpha}, R_{\alpha}\right.$]. The size of our construction is in $O\left(m^{2} n\right)$ and thus with $m \leq 3 n$ polynomial in $O\left(n^{3}\right)$.

Lower bound on $\left|\operatorname{TMMSN}\left(\left[P_{\alpha}, R_{\alpha}\right]\right)\right|$ and structural properties. Proceeding with the reduction, we give a lower bound c_{α} to the length of the solution to the TMMSN problem on $\left[P_{\alpha}, R_{\alpha}\right]$. Let M be any Manhattan network on $\left[P_{\alpha}, R_{\alpha}\right]$, i.e. a set of axis parallel line segments containing at least
one shortest path for each point pair from R_{α} (which need not be of minimal length amongst such sets). Further, denote with $\pi_{u v}^{*}$ a shortest path between a point pair $\{u, v\} \in R_{\alpha}$, that is contained in the solution $M .{ }^{2}$

Each network M can be partitioned into the following three sets of segments U_{M}, V_{M} and C_{M} :

The set $U_{M} \subseteq M$ contains all fixed line segments. These are all segments that have to be contained in the solution, because they constitute unique $L_{1}{ }^{-}$ shortest paths i.e. the paths between the corner points of the variable gadgets and the paths between each two points r_{i}^{k} and s_{i}^{k} :

$$
\begin{equation*}
U_{M}=\bigcup_{1 \leq j \leq m} \partial B\left(E_{j}\right) \cup \bigcup_{1 \leq i \leq n, 1 \leq k \leq m+1} \pi_{r_{i}^{k} s_{i}^{k}} . \tag{1}
\end{equation*}
$$

The set $V_{M} \subseteq M$ contains all segments from M that contribute to L_{1}-shortest paths between point pairs $\{u, v\} \in \bigcup_{1 \leq j \leq m} A_{j} \times A_{j}$ without segments that already occur in U_{M} :

$$
\begin{equation*}
V_{M}=\bigcup_{u \neq v \in A_{j}, 1 \leq j \leq m} \pi_{u v}^{*} \backslash U_{M} . \tag{2}
\end{equation*}
$$

The set $C_{M} \subseteq M$ contains all segments from M that contribute to L_{1}-shortest paths between the points pairs $\left(p_{i}^{k}, q_{i}^{k}\right)$ without segments that already occur in U_{M} or V_{M} :

$$
\begin{equation*}
C_{M}=\bigcup_{1 \leq i \leq n, 1 \leq k \leq m+1} \pi_{p_{i}^{k} q_{i}^{k}}^{*} \backslash U_{M} \cup V_{M} \tag{3}
\end{equation*}
$$

Let $\min _{X}, X \in\{U, V, C\}$ be defined as: $\min _{X}=\min _{M}\left|X_{M}\right|$.Then $|M| \geq c_{\alpha}$ with $c_{\alpha}:=\min _{U}+\min _{V}+\min _{C}$ is true for all M and especially:

Property $1\left|\operatorname{TMMSN}\left(\left[P_{\alpha}, R_{\alpha}\right]\right)\right| \geq c_{\alpha}$
Thus we can determine the desired lower bound c_{α} as the sum of $\min _{U}, \min _{V}$, $\min _{C}$ by minimizing the lengths of U_{M}, V_{M} and C_{M} independently over all M. The set U_{M} contains the fixed segments of $\partial B\left(E\left(x_{j}\right)\right)$ with length $10(m+$ 1) $n+4$ for each of the m variable gadgets and the line segments $\overline{r_{i}^{k} s_{i}^{k}}$ of length 1 for the $(m+1) n$ clause gadgets. Thus the length of U_{M} is always $\left|U_{M}\right|=m i n_{U}$ and $\min _{U}$ only depends on m and n :

$$
\begin{equation*}
\min _{U}=(10(m+1) n+4) m+(m+1) n \tag{4}
\end{equation*}
$$

${ }^{2}$ In general there are different $\pi_{u v}^{*}$, but in cases where we discuss the geometric structure of one such $\pi_{u v}^{*}$ in detail, it will be unique in M.

As the structure of U_{M} is also the same for all M, we set $U=U_{M}$. To determine $\min _{V}$, we further partition V_{M} : Let V_{j} be the subset of V_{M} containing all segments from the paths $\pi_{u v}^{*} \backslash U,\{u, v\} \in A_{j} \times A_{j}$. Then $V_{M}=\bigcup_{1 \leq j \leq m} V_{j}$ and $\left|V_{M}\right|=\sum_{1 \leq j \leq m}\left|V_{j}\right|$. The latter holds, because A_{j} and $A_{l \neq j}$ are geometrically independent by the placement of the parallel planes on the z -Axis. Therefore $\pi_{u v}^{*}, u, v \in A_{j}$, and $\pi_{w t}^{*}, w, t \in A_{l \neq j}$ can not share any segments.

Thus it is sufficient to determine the minimum length of V_{j} for all variables. For this, we consider a basic variable gadget which is the (2-D) rectangle $\partial B\left(E_{j}\right)$ including the corner points. All points A_{j} also lie on $\partial B\left(E_{j}\right)$, especially on L_{j} and U_{j}. Moreover all pairs $\{p, q\}$ of (x - $)$ neighbouring points, i.e. $p=\left(x_{p}, y_{p}, z_{p}\right)$ and $q=\left(x_{q}, y_{q}, z_{q}\right)$ such that $p, q \in A_{j}$ and $\nexists r=\left(x_{r}, y_{r}, z_{r}\right) \in A_{j}: x_{p}<x_{r}<$ x_{q}, are located on different of the two segments L_{j} and U_{j}. We call such a $\{p, q\}$ an alternating point pair or state that points (of a set) alternate, if all neighboring point pairs are alternating point pairs.

Property 2 The points of A_{j} alternate on L_{j} and U_{j}.

Fig. 6. Alternating points of A_{j} : All shortest paths $\pi_{u v}^{*}$ between (x)-neighboured points contain induced segments.

This can be seen by the following inductive argument: Let c_{i} be the first clause of α containing x_{j} as a literal, which results in a point $p_{i, j}^{k}$ located on L_{j} and $\overline{p_{i, j}^{k}}$ on U_{j} to the right of $p_{i, j}^{k}$ as determined by the placement rule. Let c_{l} be the next clause of α where variable x_{j} occurs. If literal x_{j} occurs in c_{l}, a point $p_{l, j}^{k}$ is again located on L_{j} (and to the right of $\overline{p_{i, j}^{k}}$) followed by $\overline{p_{l, j}^{k}}$ on U_{j} : The alternation is kept. The same is true, if $\neg x_{j}$ occurs in c_{l}, because $\overline{p_{l, j}^{k}}$ is located on U_{j} inside G_{l}^{k}, but $p_{l, j}^{k}$ is located to the left of G_{l}^{k}, between $\overline{p_{l, j}^{k}}$ and $\overline{p_{i, j}^{k}}$ The same is true for all other possible sequences of occurrence of a variable x_{j}.

With Property 2, it suffices to consider the interconnection of alternating points on the lower and upper horizontal edge of a given 2D rectangle to determine the minimal length of each V_{j}. This situation corresponds to the original MMN problem on the point set P_{j}. All points on L_{j} (U_{j} resp.) are already interconnected by L_{1}-shortest paths via L_{j} (U_{j} resp.). L_{j} and U_{j} are contained in U and thus do not contribute to $\left|V_{j}\right|$. Further, we only need to connect a point u on L_{j} to both its neighbours on U_{j} directly. All other points
on U_{j} are then connected to u via its neighbours automatically. Thus V_{j} only contains vertical segments s of length $|s|=2$ which start on L_{j} and end on U_{j} (or vice versa). The minimal length of V_{j} is then determined by the minimal number $\min _{s}\left(V_{j}\right)$ of such segments used.

Lemma $1 \min _{s}\left(V_{j}\right)=(m+1) \operatorname{occ}\left(x_{j}\right)$

PROOF. Consider the neighbors u on L_{j} and v on U_{j} to the right of u and their vertical projections u^{\prime} on U_{j} and v^{\prime} on L_{j} (Fig. 6). Let s be a vertical segment which starts on L_{j} and ends on U_{j} (or vice versa). Any such segment contributing to $\pi_{u v}$ has to be situated in $B(\{u, v\})$ which identifies with the rectangle $\left(u, v^{\prime}, v, u^{\prime}\right)$ in this case. Thus s can contribute to at least one $\pi_{u v}$. Let w be the right neighbour of v on L_{j}. Then a segment s contributing to $\pi_{v w}$ has again to lie within $B(\{v, w\})$. Further $B(\{u, v\}) \cap B(\{v, w\})=\overline{v v^{\prime}}$ and $\overline{v v^{\prime}}$ can contribute to both $\pi_{u v}$ and $\pi_{v w}$. We call such a segment, starting from a point q on either L_{j} or U_{j} respectively and ending in its vertical projection q^{\prime} on U_{j} resp. L_{j}, an induced segment (by q). Thus any induced segment can contribute to two shortest paths $\pi_{p q}$ and $\pi_{q r}, p$ and r being q 's left and right neighbor. For any three rectangles $B(\{u, v\}), B(\{w, t\}), B(\{x, y\}), u, v, w, t, x, y \in A_{j}$ the intersection is empty (even if $v=w$ and $t=x$). Thus no segment s can contribute to more than two shortest paths between neighboring points in A_{j}. As $\left|A_{j}\right|=2(m+1) \operatorname{occ}\left(x_{j}\right)$, we have to connect $2(m+1) \operatorname{occ}\left(x_{j}\right)-1$ neighbouring point pairs. Using induced segments leads to the following minimal number of segments needed:

$$
\left\lceil\frac{2(m+1) \operatorname{occ}\left(x_{j}\right)-1}{2}\right\rceil=\left\lceil\frac{2(m+1) \operatorname{occ}\left(x_{j}\right)}{2}\right\rceil-\left\lfloor\frac{1}{2}\right\rfloor=(m+1) o c c_{x}
$$

We can now determine the minimal length of V_{M} as the sum of all $\min _{s}\left(V_{j}\right)$ multiplied by the length of the segments $|s|=2$. With Lemma 1, $\min _{s}\left(V_{j}\right)$ depends on the number of occurrences of variable x_{j} in α which is not known for the general α. On the other hand the total number of variable occurrences in α is $3 n$ as the definition of E3SAT claims three literals in each of n clauses. Thus we obtain $\left|V_{M}\right|=\min _{V}$, which again only depends on n and m :

$$
\begin{equation*}
\min _{V}=2 \sum_{1 \leq j \leq m} \min _{s}\left(V_{j}\right)=2 \sum_{1 \leq j \leq m}(m+1) o c c\left(x_{j}\right)=2(m+1) 3 n . \tag{5}
\end{equation*}
$$

Before we proceed, we make some remarks on the structure of the sets $V_{j} \subset$ V_{M} of minimal length. The proof of Lemma 1 suggests only to use induced segments, but does not specify which segments should be chosen. Let $S=$
$s_{1}, \ldots, s_{2 o c c\left(x_{j}\right)}$ be the x-ordered sequence of segments induced by the points of A_{j}. Of course, V_{j} can not only contain the left half of S, as they would only complete half the shortest paths $\pi_{u v}^{*}, u, v \in A_{j}$. But we obtain all necessary shortest paths, if we take every second next induced segment. Starting from the left, these are all segments induced by a point on L_{j} and starting from the right we obtain all segments induced by a point on U_{j}. We will refer to the set of segments induced by all points of A_{j} on L_{j} as the set low (dashed in Fig. 6) and to the set of segments induced by all points of A_{j} on U_{j} as the set $u p_{j}$ (dotted in Fig. 6) respectively. We refer to both sets as the parities of the variable gadget G_{j}. The parities of G_{j} identify with the two possible nice minimum vertical covers of A_{j} as defined in [1] and [6] and obviously together with the rectangle edges of G_{j} each of the sets contains all desired $\pi_{p q},\{p q\} \in A_{j}$.

Fig. 7. a) $V_{j}=u p_{j} ;$ b) Parity change between r and r^{\prime}; c) $V_{j}=l o w_{j}$.

Later on, the parities of V_{j} are interpreted as the possible truth values of x_{j}. Unfortunately, $l o w_{j}$ and $u p_{j}$ are not the only possible sets V_{j} with minimum length. As there are $2(m+1) \operatorname{occ}\left(x_{j}\right)-1$ point pairs $\{u, v\} \in A_{j} \times A_{j}$ to be fully interconnected, only $(m+1) o c c\left(x_{j}\right)-1$ induced segments are necessary and the last $\pi_{u v}^{*}$ can be completed by a non-induced segment. Further, not all induced segments in V_{j} have to belong to the same parity of G_{j} (see Fig. 7). This would lead to an inconsistency of a derived truth assignment. We define:

Definition 4 Assume the segments of V_{j} are sorted from left to right (by x-order of the inducing points). Then any two subsequent segments are considered as a parity change if they are of different parities, i.e. one segment belongs to low ${ }_{j}$ and the other to $u p_{j}$ or vice versa (see r and r^{\prime} in Fig. 7b).

Lemma 2 Any set V_{j} of minimal length contains at most one parity change or one non-induced segment.

Fig. 8. a) Two parity changes in V_{j}; b) No parity change in V_{j} with $\left|V_{j}\right|=\left|V_{j}^{\prime}\right|-2$: V_{j}^{\prime} was not minimal.

PROOF. First, we see that V_{j} cannot contain two non-induced segments. If we assume otherwise, we know that each of them contributes to only one of the $2(m+1) \operatorname{occ}\left(x_{j}\right)-1$ shortest paths. Even if we use only induced segments for the remaining $2(m+1) \operatorname{occ}\left(x_{j}\right)-3$ paths we need the following total number of segments:

$$
\begin{aligned}
& 2+\left\lceil\frac{2(m+1) o c c\left(x_{j}\right)-3}{2}\right\rceil=2+\left\lceil\frac{2(m+1) o c c\left(x_{j}\right)}{2}\right\rceil-\left\lfloor\frac{3}{2}\right\rfloor= \\
& 2+(m+1) o c c_{x}-1=(m+1) o c c_{x}+1=m_{s}\left(V_{j}\right)+1
\end{aligned}
$$

This contradicts the minimality of V_{j} by Lemma 1 and we just have to consider two cases left: First, assume V_{j} contains two parity changes. Let \bar{s}, \bar{t} and \bar{u}, \bar{v} be the two pairs of subsequent segments forming the parity changes and s, t, u, v the points from which the segments extend (Fig. 8 a). W.l.o.g. the segment \bar{s} belongs to $l o w_{j}, \bar{t}$ and \bar{u} belong to $u p_{j}$ and \bar{v} again to $l o w_{j}$: We can divide V_{j} into three parts. Segments from $l o w_{j}$ situated at the left and right end of G_{j} and segments from $u p_{j}$ in between. We look at the part of G_{j} containing the segments of $u p_{j}$ which is specified by $B(\{s, v\})$ (Fig. 8 a): The left and right sides of $B(\{s, v\}), \bar{s}$ and \bar{v} are both from low ${ }_{j}$, which means s and v are both on L_{j}. As the points on L_{j} and U_{j} are alternating (Property 2), $B(\{s, v\})$ contains one more point on U_{j} than on L_{j} inside. Moreover V_{j} contains all segments extending from those points on U_{j}, as there are no segments from $l o w_{j}$ inside $B(\{s, v\})$ and otherwise there would be a pair of neighboring points (x, y) inside $B(\{s, v\})$ such that $\pi_{x y} \nsubseteq U \cup V_{j}$. Thus, we can exchange all segments from $u p_{j}$ inside $B(\{s, v\})$ for all segments from $l o w_{j}$ inside $B(\{s, v\})$, which is one segment less (Fig. 8 b). This contradicts the minimality of V_{j}.

Second, assume V_{j} contains a parity change and a non-induced segment. Then the non-induced segment induces a parity change in the following sense: Let s be the non-induced segment, u the next point of A_{j} to the left and v the next point of A_{j} to the right of s in x-order (see Fig. 9). W.l.o.g. u lies on L_{j} and v on U_{j}. Then s only contributes to $\pi_{u v}^{*} \in U \cup V_{j}$. Thus neither $\bar{u} \in V_{j}$ nor $\bar{v} \in V_{j}$. Otherwise s would be superfluous and contradict the minimality of V_{j}.

Now let $t \in A_{j}$ be the next point to the left of u and $w \in A_{j}$ the next point to the right of v. As we have seen above, there cannot be any more non-induced segment in $V_{j}\left(\overline{s^{\prime}}\right.$ or $\overline{s^{\prime \prime}}$ in Fig.9), $\bar{t} \in V_{j}$ and $\bar{w} \in V_{j}$. Otherwise there would be no $\pi_{t u}$ and $\pi_{v w}$ in $U \cup V_{j}$ (see Fig. 9). Now neither the structure nor the number of locally needed segments changes, if s is shifted to the left or to the right until $s=\bar{u}$ or $s=\bar{v}$. In both cases, we either have a second parity change and thus again case 1 or u or v coincide with corner points from E_{j} and thus s has been superfluous from the beginning. This again contradicts the minimality of V_{j}.

Fig. 9. Non-induced segment \bar{s} causes a parity change.

Each parity change causes the later derived truth assignment to be inconsistent. Thus we must avoid any parity change, but with Lemma 2 the derived truth value from the whole construction for each variable can still be inconsistent. Yet we show that there is always at least one part of our construction that has the desired property and neither contains a non-induced segment nor a parity change.

Definition 5 First we define the eight corner points $b_{1}^{k}, \ldots, b_{8}^{k}$ of a cuboid cub ${ }^{k}, 0 \leq k \leq m+1$ as follows:

$$
\begin{aligned}
c u b^{k}=\left\{b_{1}^{k}\right. & =(5 k n,-1,0), b_{2}^{k}=(5(k+1) n,-1,0) \\
b_{3}^{k} & =(5(k+1) n, 3,0), b_{4}^{k}=(5 k n, 3,0) \\
b_{5}^{k} & =(5 k n,-1, m+1), b_{6}^{k}=(5(k+1) n,-1, m+1) \\
b_{7}^{k} & \left.=(5(k+1) n, 3, m+1), b_{8}^{k}=(5 k n, 3, m+1)\right\}
\end{aligned}
$$

Then let a block $b^{k}, 1 \leq k \leq m+1$ be defined as: $b^{k}=B\left(P_{\alpha}\right) \cap B\left(c u b^{k}\right)$.
Lemma 3 There exists a block $b^{*} \in\left\{b^{1}, \ldots, b^{k}\right\}$ such that no parity change and no non-induced segments occurs on the parts of all variable gadgets within b^{*}.

PROOF. Remember that $\left[P_{\alpha}, R_{\alpha}\right]$ contains $m+1$ copies of each clause gadget in the clause gadget order. With the definition of the blocks $b^{k}, 1 \leq k \leq m+1$ we now "virtually" divide the whole instance $\left[P_{\alpha}, R_{\alpha}\right]$ into parts of length $5 n$ such that every block b^{k} contains the copy G_{i}^{k} of any clause gadget. As we know from Lemma 2, we can only have one parity change or one non-induced segment on each of the m variable gadgets, but we constructed $m+1$ blocks b^{k}. Thus it is impossible to scatter the m possible parity changes/non-induced segments over all blocks and we obtain at least one block b^{*} containing the clause gadgets G_{i}^{*} without parity changes and non-induced segments.

Any truth assignment derived only from parities of the sets V_{j} in b^{*} must consequently be consistent by Lemma 3 .

Now we determine the minimal length of the last set C_{M}, which consists of parts of the paths $\pi_{p_{i}^{k} q_{i}^{k}}^{*}$. As they are mutually geometrically independent, we consider each $\pi_{p_{i}^{k} q_{i}^{k}}^{*}$ separately. The length of each $\pi_{p_{i}^{k} q_{i}^{k}}^{*}$ comprises of the distances between p_{i}^{k} and q_{i}^{k} in x - y - and z -direction. By definition of a $L_{1^{-}}$ shortest path: $\left|\pi_{p_{i}^{k} q_{i}^{k}}\right|=2+4+(m+1)$ and by the definition of C_{M} we only count line segments $s \in \pi_{p_{i}^{k} q_{i}^{k}}^{*}$ for $\min _{C}$ if $s \notin U \cup V_{M}$. Thus, apart from its pure length, we also have to consider the structure, i.e. geometric location, of such a path as we did for $\pi_{u v}^{*},\{u, v\} \in A_{j} \times A_{j}$.

Generally $\pi_{p_{i}^{k} q_{i}^{k}}^{*}$ can only contain segments located inside G_{i}^{k}, which is spatially bounded by $\partial B\left(P_{i}^{k}\right)$. As U already contains the $2 m$ line segments $L_{j}, U_{j}, 1 \leq$ $i \leq m$ which cross each clause gadget completely in x-direction, $\pi_{p_{i}^{k} q_{i}^{k}}^{*}$ can run along one of these segments to bridge the x-distance between p_{i}^{k} and q_{i}^{k}. This will be the case in an optimal solution, as on the one hand the total length of the solution gets smaller. On the other hand, the paths contributing to C_{M} cannot influence U in turn, because the line segments of U are fixed by unique shortest paths.

In y-direction $\pi_{p_{i}^{k} q_{i}^{k}}^{*}$ has two possible courses: There may be a vertical segment $s \in V_{M}$ located inside G_{i}^{k} or not (see Fig. 10). In the first case, $\pi_{p_{i}^{k} q_{i}^{k}}^{*}$ can run along s, such that only half of the y-distance between p_{i}^{k} and q_{i}^{k} has to be bridged by line segments in C_{M}. Thus the length of s does not contribute to $\min _{C}$. In the second case, $\pi_{p_{i}^{k} q_{i}^{k}}^{*}$ can still run along $\pi_{r_{i}^{k}, s_{i}^{k}}^{*} \in U$, which is also not counted for $\min _{C}$. But this only saves C_{M} a line segment of length 1 . Therefore, in any optimal solution, $\pi_{p_{i}^{k} q_{i}^{k}}^{*}$ will always run along $s \in V_{M}$ located in G_{i}^{k}, if such a segment exists (Fig. 10a) and along $\pi_{r_{i}^{k}, s_{i}^{k}}^{*} \in U$ if not (Fig.

Fig. 10. A path $\pi_{p_{i}^{k} q_{i}^{k}}$.
10b). In turn C_{M} may influence the position of segments in V_{M}, but not their number, as an additional segment in V_{M} costs a length of 2 , whereas it only saves a length of 1 in C_{M}, taking the use of $\pi_{r_{i}^{k}, s_{i}^{k}}^{*}$ into account. This leads to the following property which will be essential in the final step of the reduction.

Property $3\left|C_{M}\right|=\min _{C} \Leftrightarrow \forall G_{i}^{k} \exists s \in V: s$ is located in G_{i}^{k}.
Since neither U nor V_{M} contains any line segment in z-direction, because the respective point pairs all share the same z-coordinate, C_{M} has to contain such segments of length $m+1$ for each $\pi_{p_{i}^{k} q_{i}^{k}}^{*}$ in any solution and the choice of those line segments is independent from U and V_{M}.

Finally each C_{M} must afford no line segments in x-direction, at least line segments of total length 2 in y-direction and $m+1$ in z-direction for each $\pi_{p_{i}^{k} q_{i}^{k}}^{*}$, which determines $\min _{C}$ to:

$$
\begin{equation*}
\min _{C}=2(m+1) n+(m+1)^{2} n . \tag{6}
\end{equation*}
$$

This completes the computation of the lower bound c_{α} to the length of an optimal solution $\operatorname{TMMSN}\left(\left[P_{\alpha}, R_{\alpha}\right]\right)$ and by equations 4,5 and 6 we obtain:

$$
\begin{align*}
c_{\alpha}= & \min _{U}+\min _{V}+\min _{C} \tag{7}\\
= & 10(m+1) m n+4 m+(m+1) n+6(m+1) n \tag{8}\\
& +2(m+1) n+(m+1)^{2} n \tag{9}\\
= & (m+1)^{2} n+10(m+1) m n+9(m+1) n+4 m \tag{10}
\end{align*}
$$

\mid TMMSN $\left(\left[P_{\alpha}, R_{\alpha}\right]\right) \mid$ attending the lower bound. Let M be an optimal solution TMMSN $\left(\left[P_{\alpha}, R_{\alpha}\right]\right)$ and $V=V_{M}, C=C_{M}$. In the above paragraph we have determined the lower bound c_{α} on $|M|$, which is attended, if the length of each of the sets U, V and C equals its minimum length $\min _{U}, \min _{V}, \min _{C}$ over
all M. For U and V, this is possible for every instance $\left[P_{\alpha}, R_{\alpha}\right]$, as $\min _{U}$ and $\min _{V}$ only depend on n and m. But with Property $6|C|$ also depends on the geometric structure of $V \subset \operatorname{TMMSN}\left(\left[P_{\alpha}, R_{\alpha}\right]\right)$. The latter again depends on the actual position of the segment inducing points $\bigcup_{1 \leq j \leq m} A_{j}$, which is chosen due to the placement rule, i.e. due to the occurrence of literals in clauses of α. We show:

Theorem $4\left|\operatorname{TMMSN}\left(\left[P_{\alpha}, R_{\alpha}\right]\right)\right|=c_{\alpha} \Leftrightarrow \alpha$ is satisfiable.

PROOF.

$\left|\operatorname{TMMSN}\left(\left[P_{\alpha}, R_{\alpha}\right]\right)\right|=c_{\alpha} \Rightarrow \alpha$ is satisfiable. From $\left|\operatorname{TMMSN}\left(\left[P_{\alpha}, R_{\alpha}\right]\right)\right|=c_{\alpha}$ and Property 1 follows that $|U|=\min _{U},|V|=\min _{V},|C|=\min _{C}$. With Property 3 there must be a segment $\bar{s} \in V$ located in every clause gadget G_{i}^{k}, especially in every clause gadget G_{i}^{*}. Considering b^{*} from Lemma $3, \bar{s}$ must be an induced segment, as there are no non-induced segments in b^{*}. Let V_{j}^{*} be the subset of segments of V_{j} located inside b^{*}, then the following truth assignment ν is well defined and consistent, as no parity changes or induced segments occur inside b^{*}.

- $V_{j}^{*}=l o w_{j} \Rightarrow \nu\left(x_{j}\right)=1$.
- $V_{j}^{*}=u p_{j} \Rightarrow \nu\left(x_{j}\right)=0$.

Let \bar{s} located in G_{i}^{*} be induced by a point $s \in A_{j}$ then s is on L_{j}, if variable x_{j} occurs in clause c_{i} of α and on U_{j}, if $\neg x_{j}$ occurs in c_{i} due to the placement rule. Thus $\bar{s} \in$ low $_{j}$ if x_{j} occurs in c_{i} and $\bar{s} \in u p_{j}$ if $\neg x_{j}$ occurs in c_{i}. With the above truth assignment $\nu\left(x_{j}\right)=1$ if x_{j} occurs in c_{i} and $\nu\left(x_{j}\right)=0 \Leftrightarrow \nu\left(\neg x_{j}\right)=1$ if $\neg x_{j}$ occurs in c_{i}. In both cases c_{i} is satisfied by ν. With Property 3 this holds for every clause of α and thus ν satisfies α.
$\left|\operatorname{TMMSN}\left(\left[P_{\alpha}, R_{\alpha}\right]\right)\right|=c_{\alpha} \Leftarrow \alpha$ is satisfiable. If α is satisfiable, there exists a truth assignment ν such that every clause of α is satisfied, i.e. for each clause c_{i} there exists one variable x_{j} occurring in c_{i} such that $\nu\left(x_{j}\right)$ satisfies c_{i}. We now construct TMMSN $\left(\left[P_{\alpha}, R_{\alpha}\right]\right)$ by choosing the line segments of the sets V and C partly depending on ν. (U is fixed by $\left[P_{\alpha}, R_{\alpha}\right]$.) Choose $V=\bigcup_{1 \leq j \leq m} V_{j}$ as follows:

- $\nu\left(x_{j}\right)=1 \Rightarrow V_{j}=$ low $_{j}$.
- $\nu\left(x_{j}\right)=0 \Rightarrow V_{j}=u p_{j}$.

Thus $|V|=\min _{V}$ is minimal due to Lemma 1. Moreover, C can also be chosen with minimum length: If $x_{j}\left(\neg x_{j}\right)$ occurs in c_{i}, a point s is placed inside G_{i}^{k} on $L_{j}\left(U_{j}\right)$. Let x_{j} be the variable satisfying c_{i} under ν, i.e. $\nu\left(x_{j}\right)=1$ $\left(\nu\left(\neg x_{j}\right)=1\right)$, if $x_{j}\left(\neg x_{j}\right)$ occurs in c_{i}. Then by the placement rule and the definition of V above the induced segment $\bar{s} \in V_{j} \subset V$ is located inside G_{i}^{k}. This holds for every $G_{i}^{k}, 1 \leq i \leq n, 1 \leq k \leq m+1$, and a line segment $\bar{s} \in V$
and by Property $3|C|=\min _{C}$. Thus the sets U, V, C can be chosen such that they are of minimum length and $\left|\operatorname{TMMSN}\left(\left[P_{\alpha}, R_{\alpha}\right]\right)\right|$ attains the lower bound $c_{\alpha}=\min _{U}+\min _{V}+\min _{C}$.

Since the construction of the instance $\left[P_{\alpha}, R_{\alpha}\right]$ contains $4+2(m+1) \operatorname{occ}\left(x_{j}\right)$ points for each variable x_{j} and $4(m+1) n$ points for each clause c_{i} of α and $m \leq 3 n$, we need $4 m+2(m+1) 3 n+4(m+1) n^{2} \leq 12 n+18(n+1) n+12(n+1) n^{2} \in$ $O\left(n^{3}\right)$ points. All points having integer coordinates within the range of their number, the construction is polynomial in the input size. Thus together with Theorem 4 we have proved the $N P$-hardness of the TMMSN decision problem. As the TMMSN decision problem also is in $N P$ we state:

Proposition 5 The TMMSN decision problem is $N P$-complete.

4 Conclusion

We have introduced the TMMSN problem, a generalization of the MMN, but not the RSMA problem. We have proved the TMMSN problem to be NPOcomplete in three dimensions, which is the complexity first result regarding >2 dimensions.

5 Acknowledgements

Thanks to the anonymous referees for their many detailed and helpful comments, which contributed to tighten Lemma 2 and encouraged my research for the approximability result.

Special thanks to Ansgar Grüne for catching the catch in the early version.

References

[1] Benkert, M., Widmann, F., Wolff, A.: The minimum Manhattan network problem: Approximations and exact solutions, Computational Geometry: Theory and Applications 35, No.3: 188-208, 2006
[2] Chepoi, V., Nouioua, K., Vaxes, Y.: A rounding algorithm for approximating minimum Manhattan networks, Theoretical Computer Science 390, No. 1: 5669, 2008
[3] Fuchs, B., Schulze, A.: A Simple 3-Approximation of Minimum Manhattan Networks, Technical Report zaik2008-570, ZAIK, University of Cologne, 2008.
[4] Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NPcomplete, SIAM J. Appl. Math., 32:826-834, 1977.
[5] Gudmundsson, J., Levcopoulos, C.,Narasimhan, G.: Approximating a minimum Manhattan network. Nordic Journal of Computing, 8(2), 219-232, 2001
[6] Kato, R., Imai, K., Asano, T.: An Improved Algorithm for the Minimum Manhattan Network Problem. Proceedings of the 13th International Symposium on Algorithms and Computations (ISAAC 2002), Volume 2518 of Lecture Notes in Computer Science, 344-356, Springer, 2002
[7] Koehler, M.: Diplomarbeit: Berechnung minimaler Manhattan Netzwerke. University of Bonn, 2006
[8] Lam, F., Alexandersson, M., Pachter, L: Picking Alignments from (Steiner) Trees. Journal of Computational Biology 10(3-4): 509-520. June 1, 2003.
[9] Nouioua, K.: Thèse de Doctorat en Informatique: Enveloppes de Pareto et Réseaux de Manhattan: charactéresations et algorithmes. Université de la Mediterranée, 2005
[10] K. Nouioua: Une approche primale-duale pour le problme du reseau de Manhattan minimal. RAIRO Operations Research (submitted for publication).
[11] Papadimitriou, C., Yannakakis, M.: Optimization, approximation and complexity classes, Journal of Computer and System Sciences, 43:425-440, 1991.
[12] Shi, W., Su, C.: The rectilinear Steiner arborescence problem is NP-complete, Symposium on Discrete Algorithms, 780-787, 2000.
[13] Seibert, S., Unger, W.: A 1.5-approximation of the minimal Manhattan network problem, Proceedings 16th International Symposium on Algorithms and Computation (ISAAC 2005), Volume 3827 of Lecture Notes in Computer Science, 246-255, Springer, 2005

