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Abstract. An algebraic criterium for the ergodicity of discrete rantdsources is

presented. For finite-dimensional sources, which contaidem Markov sources
as a subclass, the criterium can be effectively computeid.r€bult is obtained on
the background of a novel, elementary theory of discretdaamsources, which
is based on linear spaces spanned by word functions, arat bperators on these
spaces. An outline of basic elements of this theory is pexbid
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1 Introduction

The theory of finite-valued Markov chains is fundamental daybability and informa-
tion theory. By identifying states with the vertices of agieand edge weights with
transition probabilities one can conveniently infer a etyriof statistical properties by
inspecting combinatorial properties of the graph. A presabxample is that (a special
form of) ergodicity is equivalent to the underlying graplirtagirreducible and aperiodic
(e.g.th. 6.4.17, [8]).

However, in case of hidden Markov chains (HMCs)—we subsetiyispeak of
hidden Markov sources (HMSs) when we want to address th@msdurce associated
to an HMC—the inspection of combinatorial properties ofteerlying Markov chain
is of limited use to demonstrate ergodicity. In the geneaakg only sufficient, but not
necessary conditions could be established, namely, tldehitMarkov chain inherits
ergodicity from the underlying Markov chain. For relatedriwsee [16,7,17] and also
the excellent review [15] and citations therein. The masuheof this paper is a novel—
and to the best of our knowledge, the first—sufficient and &y condition for the
ergodicity of an arbitrary hidden Markov chain.
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The criterium can be naturally established within a gendedry of discrete-time,
discrete-valued stochastic processes, which interpretsepses as vectors in certain
functional vector spaces. The first author has developediigiory in [3]. Since this
work was written in German, the present paper also serveske tthis line of research
more accessible to an English-reading audience, whileeaséime time simplifying
some aspects of the original theory as given in [3].

In sum, the original contributions of this paper are

(i) making accessible basic parts of the general algebh&iory of random sources
given in [3], with improvements in simplicity and clarity tfe theoretical account,
including and up to a general algebraic criterium for ergitgiof discrete random
sources,

(ii) to provide a criterion that characterizes ergodicdythe class of finite-dimensional
sources (which include HMMs), which is based on standardtspigproperties of
a matrix and can be computationally tested

(i) and, as a minor contribution, to sketch a general thediclassification of ergodic
random sources.

The general framework within which we work branches from tiveory of ob-
servable operator models (OOMshich has been developed in the field of machine
learning by the second author as a generalization of HMME {2@Ms, in turn, can be
seen as the culmination of a long series of investigaticestive equivalence of HMMs
(e.g., [6][10] [12], survey in [13]), which has led to a gealkezation of hidden Markov
sources termelihearly dependent processf or finitary sourceg10].

2 Random sources and word functions

As usual,X* = Ug>oX* denotes the set of all strings of finite length over the finite
alphabet?’ together with the concatenation operation:

wEEt,UEEk =  wve XHF

where the word] € X° of length|dJ| = 0 is theempty string We denote théength
of w € X' by |w| = t and writea' € X* for the concatenation dftimes the letter.
Given a random sourdgX;) we write

px (v =vg...vs) = Pr({Xo = vo, ..., Xy = v })

for the probability that the associated random source ghststringuyvs ...v; at periods
s =0, ..., t. Accordingly, we think of random sourcéX) as being specified by word
functions

px X" —[0,1] CR suchthal}  p(wa) =p(w) forallwe £*, (1)
acX
assuming(d) = 1, which implies
> pw)=1 forallt=0,1,... (2)

weXt
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Note that this class of word functions fully describe thessl@f one-sided random
processes with values iR. To discern them from arbitrary word functions we refer to
them asstochastic word functions (SWHs)the following.

If convenient from a technical point of view, we identify eailed random sources
and the associated SWFs with probability measures on theuradzle space of one-

sided sequences
N=s"=Q)x
t=0

equipped with the-algebrab generated by the cylinder sets. In this vein, we sometimes
identify subsets of wordd c X* with cylinder setsC[A] € B with whereC[A4] is the

set of all sequences whose prefixes are strings fdoim the special case A = {v}

for a single wordy = vy...v; we have thaC[v] := C[{v}] = {Xo = vo, ..., Xt = vt }.

In this vein, ifp is an SWF and’ is the probability measure associated witthen

P(C[A]) = p(A) =) _ p(v)
vEA

for A a subset of words of equal length.

2.1 Operators

Upon having seen the string = wy...w; at timet, we think of the random sour¢e;)

as being in statethat depends only om and completely describes the probabilities for
the symbols to be produced at times1,t+ 2, .... This is reflected by a transformation
of the SWFp into an SWFp,, where

Pw(v) == pv|w) = Pr{X1 = v1,..., Xipr = vp|w} = p(wv)/p(w).

for v = vy...v, 2%,

This transformation can be described bydoservable operatdfl 3] 7., which, in
a more general fashion, acts as a linear operator on the kpeae of word functions
R>" = {f: X* — R} and is defined by

(wa)(v) = f(wv)
for all v € X*. Note further that
Twl---wt :th O"-oTun' (3)

If 7, is applied to an SWk with p(w) > 0 thenl/p(w)r,p = pw @andr,p = 0in
case ob(w) = 0. Accordingly, we define we,, = 0 in case ofp(w) = 0. We callp,, a
predictor functiorof p. We extend the definitions of observable operators and ghadi
functions from wordsw to subsets of words of equal lengthc X by setting

TAf = Z Twlf

weA
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that s, (74 f) (v) = 3 e 4 f(wo), and p(A) == 3, 4 p(v)) pa = 1/p(A)Tap
We further introduce thevolution operatog, onR>" which is defined by

()W) ==Y (raf)w) = Y f(av).
acy acX
By multinomial expansion we obtain
pf=roef =Y 7l 4
veX?t
2.2 Spaces and norms

We consider the set of word functioRs”~ as a vector space and define
S :=spar{f € R*" | f is stochasti§

which is the linear subspace of finite linear combination§@{Fs. Note thatS can
be identified with the linear space of finite, signed measare?, B). Therefore, we
can make it a normed space by equipping it with the norm of t@dation which we
denote by||.|| (see appendix A for a brief compilation of the theory of finggned
measures). Furthermore, in [19] it was shown that

=su v)| = lim v 5
17l tegvgt p(v)] fENggzt p(v)] (5)

for p € S which is a more handy characterisation of the norm of totebtian in case
of the measurable space at hand.

Clearly,7,,(S) c Sforallw € X*. Hencer4(S) C S as well asu(S) C S.

Lemma 1. Let A C Xt be a subset of words of equal length. Then it holds that
pl] = [l7all =1 (6)

where heré|.|| refers to the operator norm of endomorphisms$n

Proof. ¢From

Do lrap@)l = Y1 plwo) < D0 D Ip(w)l

veXS veEXt weA weXtveXs

= > Ip() <yl

ugXtts

@)

we obtain||74|| < 1. Further choose a sequencec 2 = Q;-, X such thauw is a prefix of
w foraw € A. Letp,, be the SWF associated with the random source that emits gueseay
with probability one, that is

() 1 wis a prefix ofw
wl V) = .
P 0 else

It follows that both||p.,|| = 1 and||Tap.|| = 1 from which we obtairj|74|| = 1. Fromy = 7%
we infer the left equation of (6). o
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2.3 Dimension
Given an SWh, we consider th@redictor space
V, :=spaf{p, | w € ¥*} = spar{r,p | w e £*} ¢ S c RY

that is, the linear subspace of finite linear combinationgreflictor functions. This
subspace can be identified with the column space of the iafinéidiction matrix

Pp = [p(v|w)v,wex-] € R (8)
Analogously we define thevolution space
&, :=sparu'p|te N} c S c RY

which, because of (4), is a subspace/pf

The dimension ol,, for an SWFp is referred to as theimensionof p resp. as
the dimension of the random source associated withccordingly, a random source
is said to bdinite-dimensionaiff dim),, < oco. Analogously, the dimension &, is
referred to as thevolution dimensioof p resp. of the random source associated with
andp is said to bdinite-evolutiondimensiondf dim &, < oco.

As finite dimension implies finite evolution dimension, th&ss of finite-dimensional
sources is contained in that of the finite-evolutiondimenal sources. It can be shown
that there are infinite-dimensional sources of finite evofutimension [5].

If the dimension of an SWH is finite there is a practicable way for reading it off
the prediction matrix. Therefore, we sBE to be the set of strings of length at mest
and define

t.__ <t
V, = spar{p, |w € Y=}

ObviouslyV) c Vit! forall t € N.

Lemma 2.
VteN: V=Vt = dimp=dimV}. (9)

Proof. It suffices to show thaw;, "™ = V; for all n € N. We will do that by induction om
wheren = 0 is trivial. Letn > 0. Note that, because of (3),

v =spanV, U (| (V). (10)
acX
Therefore, the left hand side of (9) translates to
a(Vp) C V), (11)
for all « € X. To finish the proof we compute

yin (19 span(Vit" U ( U T (VETTY)
acX

(*) (11)
= span(V, U (] m(V}) = V.

acX

5
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where(x) follows from the induction hypothesis. o

Corollary 1.
dimp=n = V,=V'"" (12)

Proof. Consider
spar{p} =Vy C Vs C..CVp vy
which is a chain of vector spaces of length- 1. Because of (9) any equality in this chain will

establish the desired result. Becausex difeing the dimension o, we will not find more than
n — 1 proper inclusions in this chain. So, at the Iategtfl =V, o

In an analogous fashion we study the row space of the predicitrix. Therefore

we set -
Pyt := [p(v|w)]yep<t wes- € R>™ %%

that is, the rows of?, which refer to strings of length at mostWe further write

Jo = [p(v|w)]w62*

for thew-row of P. Note that foru, v, w € X*

Fulwn) = plufu) =~ plwon) = H pioufu) = 20w, 9
Lemma 3.
VteN: KPpt=tkPpiy1 = dimp=rkP,;. (14)

Proof. We show that rkP, ;12 = rk P, :+1 from which the claim follows by induction on
t. By assumption, for each € X'

fv = Z Oév,ufu
uge X<t
that is, thev-row is a linear combination ofi-rows whereju| < t. Let nowv = v1...v142 €
X2 Writing v’ = va...ve12 € X' we find that

1 1 /
Jo(w) = p(v|w) = mp(wv) IT)P(WUIU )

plwvy P
— ( fv (wvy) Z oe,u/,ufu (wvr)
p(w) .
u€X="
(13)
= auufun ()
ueX<r
which shows thaff, is a linear combination of vectors frof, ;1. o

Corollary 2.
dimp=n = kP, =rkP, 1. (15)
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Proof. This follows from considerations which are completely agalus to that of corol-
lary 1. o

Gathering the results from corollaries 1,2 the followingnfea is obvious.

Lemma 4. Letp be an SWF such thalfim p < n. Then

dimp =rk [p(U|w)]v,w€E§"*1 =rk [p(wv)]v,weﬂﬁnfl'

That is,n is the rank of the finite submatrix @f, whose entries refer to words up to
lengthn — 1 only.

Proof. The left equation follows straightforwardly from corolies 1,2 and the right one
comes fromp(wv) = p(w)p(v|w). o

2.4 Conditional SWFs

If pis an SWF of a random sour¢&;) associated with a probability measuPeon
(£2,B) andB € Bis an event for whict?(B) > 0 we define an SWKB” by

1 1
pP (v =vg..vy) := mP(C[U] N B) = mP({XO =vg,.... Xt =v} N B)
that isp?(v) reflects our knowledge about seeing the wordhen we already know
thatB is to happen. We refer 1o as aconditional SWEWe can establish the following
relationship between conditional SWFs and predictor fiomst

Lemma 5. Letp be an SWF andl ¢ X* whereP(C[A]) = p(A) = >, c4p(v) >0
for the probability measur® associated withp. It holds that

1

clA] Al = = ——Tap. 16
PA o) AD (16)

TapCA = ptp©l

Proof. Letv € X*. We compute
C[A](wv):O,wéA
W) = 37 pMwe) T 3 p (wo) = (7ap”) (v)
wet wEA
which establishes the first equation of (16). Furthermore,

(rap” ) () = 3~ p“ M (wo)

weA

= # wv|) = ; wv

-y @p@w) = L (rap)(v)

wEA - p( )

where the third equation follows frofi[wv] C C[A] which in turn is implied byw € A. o
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Lemma 6. Let p be an SWF and3 € B such thatP(B) > 0 for the probability
measureP associated tp. There is a sequence of subsets of wdrdsC X" such that

dim[[pCH = pP[ = 0. (17)

Proof. ¢From the approximation theorem ([9]) we obtain a sequehcgliader setsC|[F,]
such that
P(CIF,]AB) — 0

whereA A B is the symmetric set difference of two everitsB. Without loss of generality, these
cylinder sets can be chosen such that C ™. Because of P(F,) — P(B)| < P(F, A B)
this in particular yieldsP (F,,) —n—o P(B). Therefore without loss of generalitf,( F,,) > 0
for all n. Itis well known (e.g. [7],?) that

IP = Q| = 2sup |[P(B) — Q(B)| (18)
BeB
for arbitrary probability measureB, Q. Therefore

™ = p?|| zzggm(cm) — P(C|B)| =] P(F,NC) - P(BNC)|.

L L
P(Fy) P(B)
Knowing on one hand that/P(F,) —n— 1/P(B) and on the other hand, by standard ar-
guments from measure theory, th&(F,, NC) — P(BNC)| < P((F,NC)A(BN(C)) <

P(F, A B) =, 0we obtain the claim of the lemma. o

3 Ergodic Properties

3.1 Stationarity

We callp € S stationaryif pp = p. For an SWh this is equivalent telim £, = 1, that

is, p has evolution dimensioh. This straightforwardly translates to stationarity of the
associated random sourétas stationarity needs to be checked on generating events
alone (here we immediately g&(7~1C[v]) = P(C|[v]) for all stringsv € ¥*, where

T is the familiar shift operator). Vice versap = p for the SWFp of a stationary
random sourcé’. As eigenvectors of a linear operator, the stationary remdources
span a linear subspace

S, = spar{p SWF| up = p} = {p € S| up = p}.

3.2 Asymptotic Mean Stationarity

A random sourceP is calledasymptotically mean stationafAMS) if there is a sta-
tionary P such that

n—1

1 ) _
B : lim — P(T™'B) = P(B). 19
vB € BB nl_{gon; (T~'B) = P(B) (19)
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Pis called thestationary meawf P. A SWFp is calledasymptotically mean stationary
(AMS) if its associated random souréeis. Furthermore, we denote an SVyHor
which there is a stationary SWFe S,, such that

n—1

1 .
li il n—pll =0 20
nggollnéoup ol (20)

asstrongly asymptotically mean stationary (strongly AMSgan be shown that strong
asymptotic mean stationarity is equivalent to asymptogamstationarity [18]. Here,
we restrict ourselves to noting that strong asymptotic m&ationarity straightfor-
wardly implies asymptotic mean stationarity as (20) trates to that the convergence
of (19) is uniform inB € B, see (18). However, the reverse implication requires an
involved ergodic theorem.

As it was shown in [5], finite evolution dimension implies agytotic mean station-
arity.
Theorem 1. Letp be an SWF withlim £, < cc. Then it holds that

n—1
1 :
li — 'p—p|l|=0
L ;:()up Pl
for a stationary SWk. Hencep is (strongly) AMS.

Proof. See [5], cor. 3.3. o

As finite dimension implies finite evolution dimension thigilies that finite-dimensional
random sources are AMS. Note further the following lemma.

Lemma 7. Letp be a strongly AMS SWF. Then it holds that
dim(&,NS,) =1 (21)
whereé, is the closure of the evolution spacepdh S.

n—1

Proof. The definition of the stationary meanas the limit of thel/n > """ ' u'p € &,
immediately implies thap € &,. Hencedim(E, N S,.) > 1. Letp* € &, N S,.. We will show
that

dist (p*, spap}) = inf *—gq||=0
(p",spar(p}) = B llp™ — all

from which the assertion follows. Therefore letce R and (gx)ren be a sequence froid,
which converges tp*. By definition of £, we can write

=Y arn’p
JEJg
for suitable finiteJ, C N anda; i, € R. Therefore

n—1
%Zﬂi% => Oéjﬁk(% D utp) —nce Y kb € spar{p}.
=0 1=0

JET) JEJg
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ChooseK € N such that
IIP*—qK||<§ (22)
and, according to the considerations from abdVe, € N such that fog™ := ZjEJK oKD €
spar{p}
1 Nig—1 . . .
I ; pax —d'l| < 5 (23)
It follows that

dist(p”, spa{p}) < |lp” — q"|l

| Nk | Nk
=" = 5 ; Hak + 5o ; wax —q'l|
Ny —1 Ny -1

* 1 [3 1 7 *
< - — —+ || — —
<llp N ;:O waxl| IINK ;:O wax —q"|

Ng—1 Ng—1

up™=p*,(23) 1 i % 1 i €

< [ _ —

||NK;MP NK;quIH2
Ny —1

1 ; €
< — I p™ — h
<A ;) 1 11p* = axel| + 5

© € (22)
<" —axll+5 < e

3.3 Invariant Events
An event! € B is calledinvariantif 7-'I = I. The set of invariant evenis is a
subo-algebra off5.

Stationary probability measures can be identified by thedines on invariant events
alone. This is a consequence of the following lemma.

Lemma 8. Let P be astationary finite signed measuwa ({2, B), that is
VBeB: P(T 'B)=P(B).
Then
P=0 < VIeZI: P()=0.

Proof. We have deferred the measure-theoretical proof to appekdix o
Note further that for SWFs

pp=p = VIeI:pup'=p' (24)

meaning that conditioning stationary SWFs on invariantnéveesults in stationary
SWFs which, when translated back to random sources, is awelln result.

The following lemma is a key insight of this paper.
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Lemma 9. Let p be a stationary SWF anfl € 7 be an invariant event. Then it holds
that

pl eV, (25)

That is,p’ lies in the closure of’s predictor space irsS.

Proof. For technical convenience, we subsequently identifyith its associated probability
measureP. The case(I) = 0 is trivial. Forp(I) > 0 choose a sequence of subsets of strings
F, C X" such that||p“!¥»] — p!|| — 0 according to lemma 6. Without loss of generality
p(C[Fx]) > 0 for all n. We compute

1, (16),(24) n_C[Fn n I
llrrap =o' = [ p ) — |
(6)
n C[Fp I C[Fp I
s T e ol e [ [
Therefore, ther, €V, converge te’. Hencep! € V. o

3.4 Ergodicity

A SWFp is said to beergodicif its associated probability measufeis. That is,
VieZ: P(I)e{0,1}. (26)

For technical convenience, we will identifywith P and writep(I) in the following.

REMARK If p is induced by a Markov chain then ergodicity, as given by tl&g-
nition, is, in terms of the Markov chain, characterized battthere is only one closed,
irreducible set of states (see th. 6.3.4, [8]).

Clearly, if p is AMS thenp is ergodic if and only if its stationary meanis. More-
over, if A € X' is a subset of words angis ergodic, then

pa(D) 2 iy (1) = T = pA(1) = —Zp(AnT) = {(1) ol) =

Hencep4 is itself ergodic as it agrees on the invariant sets witfithe main result of
this paper is that in case of AMS SWgs$he concepts of ergodicity and predictor space
can be coupled.

1
o) =0 (27)

Theorem 2. Letp be an AMS SWF ani, be the closure of its predictor spaceh
Then the following statements are equivalent:

(i) pisergodic.
(i) V, NS, = spar{p}.
(i) dim(V, NS,) = 1.



12 A. Schonhuth, H. Jaeger

Roughly speaking, the theorem tells that there is only oagostary word func-
tion in the boundary of the predictor space of an ergodic AM®S and that is the
stationary mean gf.

Proof. The equivalence dfii) and(ii) isimmediate as, by definition of the stationary mean
P, it always holds that o
peEE CVyp (28)
(i) = (ii): Letp be ergodic. Because of (28), we have sfganc V, N S, for any choice
of AMS p. Therefore it suffices to show
Yy NS, C spar{p}.

Assume the contrary, that is the existence gf@V, with g = ¢ which is linearly independent
of p. Letp,, be a sequence M, that converges tg9. Choose a basis of predictor functiofis, )
and represent,, over this basis:

Pn = Z Oli,npui .

Because of (27) we know that the, agree withp on the invariant sets. Therefogg, (I) €
{0,>" a;,»} for all invariant I. Convergence of the,, to ¢ in norm of total variation further
implies
VIeZ: pn(I) =noeo q(I).
Hence the limes
K := lim Zaiﬂl

exists and

K ifp(I)=p(I)=1

(= {K i =pn =1,

0 ifp(I)=p(I)=0
AssumingK = 0 would mean thag(I) = 0 for all invariant. As a consequence of lemma 8
we would obtaing = 0 in this case which is a contradiction to the linear independeofq. In

case ofK # 0 we obtain tha{1/K)q is a stationary finite signed measure which agrees with
on the invariant sets. Hence (again because of lemma 8)

(1/K)g=p

which again is a contradiction to the linear independencg of
(#9t) = (i): Letp be not ergodic. Hence there is an invaridntith
p(I) = p(I) = a €]0,1[. (29)
Asp €V, we know from the definition of predictor space that
V5 CVp.

¢, From lemma 9 we further know that

PP €V
Because of (29)

p(I) =1#0=p(I)
p'(CI)=0#1=p"(CI)
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which implies thaﬁ’,ﬁ“ are linearly independent as finite signed measures. Thistiiately
reveals them as linearly independent word functions. o

This theorem becomes particularly useful in case of finiteethsional SWF.

Corollary 3. Letp be a finite-dimensional SWF. Theris ergodic if and only if

dim(V, N S,) = 1. (30)

Proof. As p is AMS (see th. 1) theorem 2 applies farlt remains to notice tha?, = V,
for finite-dimensional,,. o

It is this corollary that the algorithm for deciding ergoitijicof hidden Markov
sources is based on. We will expand on this issue in section 5.

4 Classification of ergodic sources

We conclude our general treatment of ergodic sources tht®osewith some remarks
on how the different classes of such sources, as introdug#ddwor,k are related to
one another. WritingS, aars resp.Se,edim 1€SP.Se,dim resp.Se, u for the classes of
ergodic AMS resp. ergodic finite-evolutiondimensionaprergodic finite-dimensional
resp. ergodic stationary sources it holds that

Se m
Se.ams D Seedim D{ 4 (31)
Sen

where the first inclusion is theorem 1 and the second one inatedygfollows from the
definitions of stationarity, dimension and evolution dirsiem. We also know that

Se,dim ¢ Se,,u

as, for example, it is known that hidden Markov sources arefgimensional (see [10,
12, 5]) and there are non-stationary ergodic hidden Markovces. Furthermore,

Se,AAIS _,D._ Se,edim

because of the following lemma.
Lemma 10. There is an ergodic AMS source of infinite evolution dimemsio

Proof. Let ¥ = {a,b} anda €]0, 1. We consider the SWp which is recursively defined
by
1 v="01
p(v) = < al¥Tip(w) JweX: v=wa. (32
(1= Hpw) Jwe X*: v=mwb

13
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For examplep(abab) = a(1 — a?)a®(1 — a*). It is straightforward to show thatis indeed an
SWEF. It encodes the independent process).cn with values inX’ given by

P(X;=a)=a""" P(X,=b)=1—a'""

and
P(Xo =ao, - ,Xt—1 = at71) = P(Xo = ao) X o X P(Xt—l = at—l)-
Note firstthat ¢ € X™)
1 v="01
1p) = < ol Fp(w) JweX: v=wa, (33)
(1=l uFp(w) Jwe T v=wb

which can straightforwardly inferred by induction én

Infinite evolution dimensiorFor showing thatlim £, = co we consider the matrices

k—1

An = (1" 'p(a’))1<ih<n € R™.

¢From (33) we infer

u'pla’) = o=t 70,
Hence
o o? a”
Oél+2 a2+3 an+n+1
det(Ar) = det
a1+“;+n71 a2+j“+n . an+.“.+2nfl
1 O(n71
n 1a2 ... 2D
2n—1
= « det
k=1 Lo :
lam ... Q™D
n
= H ot H (o —a?) #0,
k=1 1<i,j<n,i<j

where the last equation follows from that the matrix Masmdermonde matrifsee [11], sec. 6.1).
Therefore, the rank of the infinite séb, up..., " 'p,...) is not bounded which translates to
dim &, = oo.

Asymptotic mean stationarityVe define a vectop by

1 ifo=0b""=b.be "
p(v) = 34
p(v) {0 olse (34)
and prove that
. n _ 5 . n _
lim [5"p —pllrv 2 lim sup 37 |u"p(v) ~p(o)| = 0 (35)
n—oo n—oo e

vext



Characterization of ergodic hidden Markov sources 15

from which we can clearly infer thatis AMS. Consider

D utp() =) = 1= pu"p(®) + D p"p(v). (36)

veXt vEXT\{bt}
To order to show (35) we will show that”p(b*) converges td uniformlyin t. Therefore, we
will prove that (letlog be the natural logarithm)
1 S an+1 7
prp(dt) — (1 —a)?

log (37)

as this implies

an+1

— ) — 1

(1 — Oé)2 n— o0

and with it the assertion. To do this we first note that, begafishe mean value theorem, for all
r > 1thereis{ € [r — 1,7] such that

1> p"p(b") > (exp(

log(r) — log(r — 1) , 1 1
1 —1 —1) = = (1 =-< - 38
og(r) —log(r — 1) = === = (log) () = £ < (38)
In order to establish (37) we finally compute
) i 1 i ()t yiAn
logunp(bt) 1 (ll_[l 1— Ocl+” - 11:[1 1/0( l+n _
t
= log((1/)"™™) = log((1/a)" "™ = 1)
=1
(38) l+n t al+n
= <
*Zl/a”"— Zl—a”"*;l—a
t
(1-a) Zoe —a)a"HZaFl
=1 =1
an+1
T (-2
Thereforep is AMS.
Ergodicity: As a preparation, we consider that foe X"
k k k+1 k+1
Ta V) = av) =« . v),
pp(v) = pplav) pp(v) (29)

(1 _ ak+1) . k+1

Topp(v) = p*p(bv) = 1 p(v)

where the equations on the left are just the definitionrgfr, and the equations on the right
follow by induction on the word lengtfv|. This implies

Tai"p, Top"p € spar{u T p} C €.
from which we immediately get.(£,) C &, (&) C &p. Hence, because of (3),

Tw(&p) C&Ep
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for all w € X which further translates tv, C &,. As alwaysg, C V, we finally obtain

dim (Y, NS,) = dim (5, N S,.) 21

and theorem 2 implies the ergodicity pf o

FINAL REMARK: The relationship between the classes of stationary antk{fini
dimensional ergodic sources has not been fully exploredlyelike in the case of
arbitrary non-ergodic sources, the question of existefied infinite-dimensional, sta-
tionary source has not been answered for the class of ergodices. As is easily
checked, the aforementioned example sopr¢see [5], lemma 6) has the remarkable
property that’, C S, which further translates tdim(), N S,,) = co. This is quite the
opposite of being ergodic according to theorem 2.

5 Observable Operator Models

Finite-dimensional random sourcgscan be parameterized by identifying the finite-
dimensionaly,, with anR™ wheren = dim V), and providing matrix representations
T, for the observable operators. The crucial point is that such a parameterization is
finite as, by providing matrix representatichisfor « € X' only we obtain the remaining
matrices by

Tomvyowy = Loy oo - Ty

which holds because of (3). To put it more concrete, we chaolsasis of predictor
functionsp,,,,j = 1,...,n that are identified witke; = (0,..,0,1,0,...,0) € R™ and

sete, to be the coordinate representatiorpaiccording to this basis. §-7_ c,i je;
is a representation of,p,,, on this basis then corresponding matrix representations
of 7, are obtained by setting

(Ta)ij = i j-

Observe further that probabilitiegv = v;...v:) can be read off the coefficients of
Tyep € R™ (which represents, p) the following way:

€y = Zﬁiei = p() = Zﬁz‘-
i—1

=1

This follows from the translation
p() = 7op(0) = Bipw; ()
=1 T

back to the world of word functions. These observations aremsarized within the
following theorem.
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Theorem 3. A SWFp is finite-dimensional if and only if there is € N such that on
R™ there aree,, € R™ andT, € R"*", a € X for which

p(v=wv1..0) = 11T, .. Ty e, (40)
wherel,, = (1,...,1) € R™.
Proof. See [13, 5] for variants of the following. By identifying, with R™ for n = dim V),
and, accordinglye, with a coordinate vector op and T, with matrix representations of the

observable operators, : V, — Vp, the first direction follows from the considerations from
above. For the inverse direction define

go =11 =1"T,,.. T,
forallv = vy...v; € X*. Define word functiong;,: = 1, ...,n by
pi(v) == guei
for allv € X*. Now consider thev-row of the prediction matrisP, that is
Puw = (p(v|w))we s+

in case ofp(w) # 0, see (8). Lelwe, = Y, ases. According to (40) we compute

1
p(v|w) = mp(wv)

I .7 I .7
= ——1 Tyvep = ——1 T, Type, =
p(w) " p(w) !

L
p(w)

- Z Laifuei => %Oéipi(v)-

— p(w) — p(w

fvaep

This translates to th&®,, is a linear combination of thg;. Hence
dimp =rk P = dimspaq{Py |w € X} < dimspap; |i = 1,...,n} < n.
<&

Note immediately that for an SW§ given by a representation from the theorem,
the SWF’s dimension does not necessarily have to coincittethat of the underlying
R™. Indeed it is easy to come up with examples where dim p.

Definition 1 ([13]). Tuples(R™, (T,)qex, €p) €ncoding finite-dimensional SWEhave
been terme@®bservable Operator Moddl®OMS). Ifn = dim p we speak of ainimal-
dimensionaDOM:

The investigation of OOMs has led to a class of learning dtlgms which, on a
variety of natural instances, outperform their classicalnterpart, the EM algorithm,
for HMCs [14]. Therefore note that HMCs can be canonicalynsformed to OOMs
which, above all, reveals them as finite-dimensional. Wé dvdw the connection be-
tween HMCs and OOMs in subsection 5.1.
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5.1 HMCsto OOMs

In its most prevalent form, a finite-valued HMM is given by & sé hidden states

Q@ = {1,...,n} and a finite sef’ of output symbols. The hidden states form a Markov
chain and corresponding transition probabilities of changing from state to state

j are collected in a matrixl = (a;;) € R™*™. We further have ammission prob-
ability distribution for each hidden state over the output symbols which are diyen
an emission matridd = (e;q)1<i<n.acx Wheree,, is the probability that symbol

a € X is emitted from staté € (. Finally, there is arinitial probability distribu-
tion 7 = (m,...,m,) over the hidden states. The probability that the HMM emits a
string of symbols) = v;...v; € X% is then computed as

PHI\{M('U = ’Ul...’Ut) = E T30 €Ci1v1 Qiqin Cigvg iy 14 Cipvy -
i1...1 EQ?

To identify the HMM as finite-dimensional, we define matricgs € R™*™ for each
output symbok € X' through

€ia Z:]
Oai':
(©u): {0 oy

and further
T, = ATO, € R™".

It then turns out that
Py (v) =157, .. T,

which, because of theorem 3, shows that the random sourceleddy the HMM has
dimension of at most.

5.2 Ergodicity of OOMs

If an OOM is minimal-dimensional the theorems from earliect®ons can be applied
to it by identifying the OOM as a coordinate representatibthe finite-dimensional
SWF encoded by it. This provides us with a way to check minidiadensional OOMs
for ergodicity.

Theorem 4. Let (T, € R"*"),ex,e, € R™ be a minimal-dimensional OOM. Let
M := 3,5 T, be the sum of the matriceés,. Then the finite-dimensional SWF
encoded by the OOM is ergodic if and only if

dim Eig (M;1) = 1

that is, M'’s eigenspace of the eigenvalués one-dimensional.

Proof. This is straightforwardly established by identifying therameterization with a co-
ordinate representation of the finite-dimensional SyMrhere it turns out thaf/ is a matrix
representation of the evolution operajarSubsequent application of corollary 3 yields the re-
sult. o
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6 Computationally Testing HMCs for Ergodicity

Based on the insights from section 5 we can come up with anritigofor checking
HMCs for ergodicity.

1. Produce a matrix representatibhof the evolution operator in an equivalent minimal-
dimensional OOM.

2. Check the dimensiod of the eigenspace of the matrid = 3=, T, for the
eigenvalud.

3. Output yes, ifl = 1 and no else.

As checking the dimension of eigenspaces is routine, thensepoint poses no
major problems. The first point, though, needs to be illustta

We cast the first point’s problem in a more general fashion@nasider arbitrary
SWFsp such thadim p < n. According to lemma 4

m = dimp = rk [p(wv)], yex<n-1 < n.
We choose words;, w; € X<"~1 4 j =1,...,m such that the matrix
Vo= [p(uilw))lij=1,....m

is regular. As a consequence we know that, j = 1, ..., m is a basis ol/,,.

Lemma 11. Letp be an SWF of finite dimension. Lef,v;,4,j = 1,...,m andV be
chosen by the procedure from above. Define matrices

Wa := [p(avi|w;)]i j=1,...m
forall a € ¥. Then(p,, ) is a basis ofl, and
T, =V W,
is a matrix representation corresponding to the coordimaggesentation

$:V, —R™

Pw; — €

HenceM := )" .. T, is a matrix representation of the evolution operator.

Proof. Consider the alternative coordinate representation

PV, — R
ij = VJ

whereV7 := (p(vi|w;), ..., p(vm|w;)) is thej-th column of V. Fromrapu,; (vi) = p(avi|w;)
we know that for a matrix representati@ij of 7, according tad’

T,(V?) =w! (41)
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where W7 is the j-th column of W,. Note that®’ o = (e;) = VI. Sod’ o & is precisely
described by the matrix representatign Therefore we obtain a commutative diagram

V] %

g Lo, pm
which translates t& 7, = T, V. Because of (41J.V = W, from which the lemma’s assertion
follows. o

REMARK As spectra of linear operators do not change under similaehsforma-
tions we could have directly chosevi’ := 3 _.. T;; as a choice for the evolution
operator wher&, would have been defined by the equati@ij§V’’) = /. However
we wanted to provide a basis such that the matrix represensagive rise to an OOM.

6.1 Example

We conclude with an example of an ergodic HMM whose undegiyitarkov chain is
not ergodic. LetM be a3-state HMM over the alphabéb, 1} parameterized by

111 10
211

A=1010| andE= |01
001 01

whereA is the transition matrix of the underlying Markov chain afids the emission

matrix of the hidden states over the symbgls1}. At the beginning, state nd. is

entered with probability one. The underlying Markov chaas two closed, irreducible

sets of states (states rioand3 each make up one of them) hence is not ergodic. Indeed,

a somewhat closer second look immediately reveals the migodf the HMC as a

stochastic process that almost surely generates sequeiticesly finitely many0s.
According to the procedure above, we find that the dimensi@rand that

v o [p@) p(DIO)] 3 [1 1]

[p(0) p(0j0)] 13

is regular. Further

_ [ p(0) p(ojo)] _ [13
Wo = 1,00) p(00|0>} = [é %}

and

_ [p() p(1]0)] _[03
W = p(10) p(10|0)] - {0 0]

According to lemma 11 a matrix representation of the evotutiperator is
-1 20[11 -1
M=V Wy + W) = L1l = 0 2.
2 2] |31 L3
One can then straightforwardly check tiidts eigenvalues aré and1/2, from which
dim Eig(M;1) = 1 follows. Hence the HMCM is ergodic.
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7 Discussion

In this paper, we have developed a criterion for an HMC to gedic that can be algo-
rithmically tested. However, the algorithm presented lieexponential in the number
of hidden states of the HMC and thus of limited use. It is annopeestion whether
there is an efficient algorithm which outputs matrix repreagons of the operators in-
volved in the theory presented here and we conjecture tidged, there is. A hint to
this is that Balasubramanian [2] claims to have one to sdigedentifiability problem
whose solution in [12] as well is based on an exponentialrdtyo and the solutions
presented in these works are relatives of ours.

In a subsequent paper, we shall explore the spectrum of tiatmn operator to
expand on the issue of classification of finite-dimensiowoairses which is justified
by that they do not only include HMMs, but also quantum randeatks [1], [4], a
statistical model that serves the emulation of Markov ciMénte Carlo methods on
quantum computers.

A Finite signed measures

A finite, signed measure of1?, B(X')) is a c-additive but not necesarily positive, fi-
nite set function or3(X’). The most relevant properties of finite signed measures are
summarized in the following theorem (see [9], ch. VI for pig)o

Theorem 5.

(i) TheJordan decompositiatheorem tells that for everfy € P there are finite mea-
suresP, , P_ such that

P=P - P_

and for every other decompositidgh= P; — P, with measures$;, P it holds that
P, = Py + 4, P, = P_ + ¢ for another measuré. In this senseP, and P_ are
unique and calleghositiveresp.negative variationThe measuréP| := Py + P_
is calledtotal variation

(ii) In parallel to the Jordan decomposition we have th@hn decompositioaf {2 into
two disjoint events?,, 2_

Q=0,00_

such thatP_(2;) = 0 and P, ({2_) = 0. £24, 2_ are uniquely determined up to
| P|-null-sets.
(iii) The norm of total variatiori|.||ry onP is given by

[Pllzv i= |PI(2) = Py (2) + P_(R2) = Po(2:) + P_(02.).

Obviously|| |P| ||rv = ||P||Tv -
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A.1 Proof of lemma 8
Before it comes to proving the lemma, we provide us with a arafry result.

Lemma 12. Let P be a finite, signed measure ¢, B). ThenP o T-! = P if and
only if bothP, o T-! = P, andP_oT~! = P_ are.

Proof. The inverse direction is obvious &= Py — P_. For the other direction first note
that for an arbitrary measur@, by definition of the norm of total variation (th. 5iii))
1QeT ™! =Q(T'2) = Q(2) = |Ql- (42)
Further observe thd? = PoT ' =P, oT"!' — P_ o T '. Hence

IPI[=IPoT | = ||(Ps — P-) o Tl
S|P oT [+ [P0 T

(42)
= [Pyl +IP-| = [|P]]-

Therefore||P|| = ||[Py o T ||+ ||P- o T ||.ASP = Py o T~! — P_ o T~ the lemma’s
claim follows from the uniqueness property of the Jordarcdgmsition (see th. §;)). o

We are now in position to prove lemma 8.

Proof. “="1s trivial. For the inverse direction we assume the exiseeaf a finite signed
measureP # 0 with P(I) = 0 for I € Z. Because of lemma 1P, P_ are stationary and
so, without loss of generality’y # 0. Let 2, £2_ the Hahn decomposition d@?, that is,2 =
N.UN_ and Py (24) = Py(2),P_(2-) = P_(2). As Py > 0 we obtainP; (£2;) > 0.
We now define

Iy :==limsupT "2, = ﬂ U T, C U T "0y

n>0m>n n>0

Clearly, I+ is invariant. Further

P_(I4) < P-(|J 77" 924)

n>0

<Y P (T P(2:)=0
n>0 n>0

as well as

P+(I+) = P+(11m sup TﬁnQJr)

(%) «
> limsup Py (T7"024) & PL(02,) > 0,

n—00

where(x) follows from lemma 12 andx«x) is a consequence of Fatou’s lemma Herewith
P(Iy) =Py (Iy) = P-(Iy) = Pr(I}) > 0.

which is a contradiction to thd®? vanishes on the invariant events. o
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