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Abstract. An algebraic criterium for the ergodicity of discrete random sources is
presented. For finite-dimensional sources, which contain hidden Markov sources
as a subclass, the criterium can be effectively computed. This result is obtained on
the background of a novel, elementary theory of discrete random sources, which
is based on linear spaces spanned by word functions, and linear operators on these
spaces. An outline of basic elements of this theory is provided.
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1 Introduction

The theory of finite-valued Markov chains is fundamental forprobability and informa-
tion theory. By identifying states with the vertices of a graph and edge weights with
transition probabilities one can conveniently infer a variety of statistical properties by
inspecting combinatorial properties of the graph. A prevalent example is that (a special
form of) ergodicity is equivalent to the underlying graph being irreducible and aperiodic
(e.g. th. 6.4.17, [8]).

However, in case of hidden Markov chains (HMCs)—we subsequently speak of
hidden Markov sources (HMSs) when we want to address the random source associated
to an HMC—the inspection of combinatorial properties of theunderlying Markov chain
is of limited use to demonstrate ergodicity. In the general case, only sufficient, but not
necessary conditions could be established, namely, the hidden Markov chain inherits
ergodicity from the underlying Markov chain. For related work see [16, 7, 17] and also
the excellent review [15] and citations therein. The main result of this paper is a novel—
and to the best of our knowledge, the first—sufficient and necessary condition for the
ergodicity of an arbitrary hidden Markov chain.
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The criterium can be naturally established within a generaltheory of discrete-time,
discrete-valued stochastic processes, which interprets processes as vectors in certain
functional vector spaces. The first author has developed this theory in [3]. Since this
work was written in German, the present paper also serves to make this line of research
more accessible to an English-reading audience, while at the same time simplifying
some aspects of the original theory as given in [3].

In sum, the original contributions of this paper are

(i) making accessible basic parts of the general algebraic theory of random sources
given in [3], with improvements in simplicity and clarity ofthe theoretical account,
including and up to a general algebraic criterium for ergodicity of discrete random
sources,

(ii) to provide a criterion that characterizes ergodicity for the class of finite-dimensional
sources (which include HMMs), which is based on standard spectral properties of
a matrix and can be computationally tested

(iii) and, as a minor contribution, to sketch a general theory of classification of ergodic
random sources.

The general framework within which we work branches from thetheory of ob-
servable operator models (OOMs)which has been developed in the field of machine
learning by the second author as a generalization of HMMs [13]. OOMs, in turn, can be
seen as the culmination of a long series of investigations into the equivalence of HMMs
(e.g., [6] [10] [12], survey in [13]), which has led to a generalization of hidden Markov
sources termedlinearly dependent processes[6] or finitary sources[10].

2 Random sources and word functions

As usual,Σ∗ = ∪k≥0Σ
k denotes the set of all strings of finite length over the finite

alphabetΣ together with the concatenation operation:

w ∈ Σt, v ∈ Σk =⇒ wv ∈ Σt+k

where the word� ∈ Σ0 of length|�| = 0 is theempty string. We denote thelength
of w ∈ Σt by |w| = t and writeat ∈ Σt for the concatenation oft times the lettera.
Given a random source(Xt) we write

pX(v = v0...vt) = Pr({X0 = v0, ..., Xt = vt})

for the probability that the associated random source emitsthe stringv0v1...vt at periods
s = 0, ..., t. Accordingly, we think of random sources(Xt) as being specified by word
functions

pX : Σ∗ → [0, 1] ⊆ R such that
∑

a∈Σ

p(wa) = p(w) for all w ∈ Σ∗, (1)

assumingp(�) = 1, which implies
∑

w∈Σt

p(w) = 1 for all t = 0, 1, . . .. (2)
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Note that this class of word functions fully describe the class of one-sided random
processes with values inΣ. To discern them from arbitrary word functions we refer to
them asstochastic word functions (SWFs)in the following.

If convenient from a technical point of view, we identify one-sided random sources
and the associated SWFs with probability measures on the measurable space of one-
sided sequences

Ω = ΣN =

∞⊗

t=0

Σ

equipped with theσ-algebraB generated by the cylinder sets. In this vein, we sometimes
identify subsets of wordsA ⊂ Σt with cylinder setsC[A] ∈ B with whereC[A] is the
set of all sequences whose prefixes are strings fromA. In the special case ofA = {v}
for a single wordv = v0...vt we have thatC[v] := C[{v}] = {X0 = v0, ..., Xt = vt}.
In this vein, ifp is an SWF andP is the probability measure associated withp then

P (C[A]) = p(A) :=
∑

v∈A

p(v)

for A a subset of words of equal length.

2.1 Operators

Upon having seen the stringw = w0...wt at timet, we think of the random source(Xt)
as being in astatethat depends only onw and completely describes the probabilities for
the symbols to be produced at timest+1, t+2, .... This is reflected by a transformation
of the SWFp into an SWFpw where

pw(v) := p(v|w) = Pr{Xt+1 = v1, . . . , Xt+k = vk|w} = p(wv)/p(w).

for v = v1...vkΣk.
This transformation can be described by anobservable operator[13] τw which, in

a more general fashion, acts as a linear operator on the linear space of word functions
RΣ∗

= {f : Σ∗ → R} and is defined by

(τwf)(v) := f(wv)

for all v ∈ Σ∗. Note further that

τw1...wt
= τwt

◦ ... ◦ τw1 . (3)

If τw is applied to an SWFp with p(w) > 0 then1/p(w)τwp = pw andτwp = 0 in
case ofp(w) = 0. Accordingly, we define wepw = 0 in case ofp(w) = 0. We callpw a
predictor functionof p. We extend the definitions of observable operators and predictor
functions from wordsw to subsets of words of equal lengthA ⊂ Σt by setting

τAf :=
∑

w∈A

τwf
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that is,(τAf)(v) =
∑

w∈A f(wv), and (p(A) :=
∑

v∈A p(v)) pA := 1/p(A)τAp

We further introduce theevolution operatorµ onRΣ∗

which is defined by

(µf)(v) :=
∑

a∈Σ

(τaf)(v) =
∑

a∈Σ

f(av).

By multinomial expansion we obtain

µtf = τΣtf =
∑

v∈Σt

τvf. (4)

2.2 Spaces and norms

We consider the set of word functionsRΣ∗

as a vector space and define

S := span{f ∈ RΣ∗

| f is stochastic}

which is the linear subspace of finite linear combinations ofSWFs. Note thatS can
be identified with the linear space of finite, signed measureson (Ω,B). Therefore, we
can make it a normed space by equipping it with the norm of total variation which we
denote by||.|| (see appendix A for a brief compilation of the theory of finite, signed
measures). Furthermore, in [19] it was shown that

||p|| = sup
t∈N

∑

v∈Σt

|p(v)| = lim
t∈N

∑

v∈Σt

|p(v)| (5)

for p ∈ S which is a more handy characterisation of the norm of total variation in case
of the measurable space at hand.

Clearly,τw(S) ⊂ S for all w ∈ Σ∗. HenceτA(S) ⊂ S as well asµ(S) ⊂ S.

Lemma 1. LetA ⊂ Σt be a subset of words of equal length. Then it holds that

||µ|| = ||τA|| = 1 (6)

where here||.|| refers to the operator norm of endomorphisms onS.

Proof. ¿From
X

v∈Σs

|τAp(v)| =
X

v∈Σt

|
X

w∈A

p(wv)| ≤
X

w∈Σt

X

v∈Σs

|p(wv)|

=
X

u∈Σt+s

|p(u)| ≤ ||p||
(7)

we obtain||τA|| ≤ 1. Further choose a sequenceω ∈ Ω =
N∞

t=0 Σ such thatw is a prefix of
ω for aw ∈ A. Let pω be the SWF associated with the random source that emits the sequenceω
with probability one, that is

pω(v) =

(

1 v is a prefix ofω

0 else
.

It follows that both||pω|| = 1 and||τApω|| = 1 from which we obtain||τA|| = 1. Fromµ = τΣ

we infer the left equation of (6). ⋄
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2.3 Dimension

Given an SWFp, we consider thepredictor space

Vp := span{pw | w ∈ Σ∗} = span{τwp | w ∈ Σ∗} ⊂ S ⊂ RΣ∗

that is, the linear subspace of finite linear combinations ofpredictor functions. This
subspace can be identified with the column space of the infiniteprediction matrix

Pp = [p(v|w)v,w∈Σ∗ ] ∈ RΣ∗×Σ∗

. (8)

Analogously we define theevolution space

Ep := span{µtp | t ∈ N} ⊂ S ⊂ RΣ∗

which, because of (4), is a subspace ofVp.
The dimension ofVp for an SWFp is referred to as thedimensionof p resp. as

the dimension of the random source associated withp. Accordingly, a random source
is said to befinite-dimensionaliff dimVp < ∞. Analogously, the dimension ofEp is
referred to as theevolution dimensionof p resp. of the random source associated withp
andp is said to befinite-evolutiondimensionaliff dim Ep < ∞.

As finite dimension implies finite evolution dimension, the class of finite-dimensional
sources is contained in that of the finite-evolutiondimensional sources. It can be shown
that there are infinite-dimensional sources of finite evolution dimension [5].

If the dimension of an SWFp is finite there is a practicable way for reading it off
the prediction matrix. Therefore, we setΣ≤t to be the set of strings of length at mostt
and define

Vt
p := span{pw |w ∈ Σ≤t}.

ObviouslyVt
p ⊂ Vt+1

p for all t ∈ N.

Lemma 2.
∀t ∈ N : Vt

p = Vt+1
p ⇒ dim p = dimVt

p. (9)

Proof. It suffices to show thatVt+n
p = Vt

p for all n ∈ N. We will do that by induction onn
wheren = 0 is trivial. Let n > 0. Note that, because of (3),

Vt+n
p = spanVt+n−1

p ∪ (
[

a∈Σ

τa(Vt+n−1
p )). (10)

Therefore, the left hand side of (9) translates to

τa(Vt
p) ⊂ Vt

p (11)

for all a ∈ Σ. To finish the proof we compute

Vt+n
p

(10)
= span(Vt+n−1

p ∪ (
[

a∈Σ

τa(Vt+n−1
p ))

(∗)
= span(Vt

p ∪ (
[

a∈Σ

τa(Vt
p))

(11)
= Vt

p.
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where(∗) follows from the induction hypothesis. ⋄

Corollary 1.
dim p = n ⇒ Vp = Vn−1

p . (12)

Proof. Consider
span{p} = V0

p ⊂ V1
p ⊂ ... ⊂ Vn−1

p ⊂ Vn
p

which is a chain of vector spaces of lengthn + 1. Because of (9) any equality in this chain will
establish the desired result. Because ofn being the dimension ofVp we will not find more than
n − 1 proper inclusions in this chain. So, at the latest,Vn−1

p = Vn
p . ⋄

In an analogous fashion we study the row space of the predictor matrix. Therefore
we set

Pp,t := [p(v|w)]v∈Σ≤t,w∈Σ∗ ∈ RΣ≤t×Σ∗

that is, the rows ofPp which refer to strings of length at mostt. We further write

fv := [p(v|w)]w∈Σ∗

for thev-row ofP . Note that foru, v, w ∈ Σ∗

fu(wv) = p(u|wv) =
1

p(wv)
p(wvu) =

p(w)

p(wv)
p(vu|w) =

p(w)

p(wv)
fvu(w). (13)

Lemma 3.

∀t ∈ N : rk Pp,t = rk Pp,t+1 ⇒ dim p = rk Pp,t. (14)

Proof. We show that rkPp,t+2 = rk Pp,t+1 from which the claim follows by induction on
t. By assumption, for eachv ∈ Σt+1

fv =
X

u∈Σ≤t

αv,ufu

that is, thev-row is a linear combination ofu-rows where|u| ≤ t. Let nowv = v1...vt+2 ∈
Σt+2. Writing v′ = v2...vt+2 ∈ Σt+1 we find that

fv(w) = p(v|w) =
1

p(w)
p(wv) =

1

p(w)
p(wv1v

′)

=
p(wv1)

p(w)
fv′(wv1) =

X

u∈Σ≤r

p(wv1)

p(w)
αv′,ufu(wv1)

(13)
=

X

u∈Σ≤r

αv′,ufuv1(w)

which shows thatfv is a linear combination of vectors fromPp,t+1. ⋄

Corollary 2.
dim p = n =⇒ rk Pp = rk Pp,n−1. (15)
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Proof. This follows from considerations which are completely analogous to that of corol-
lary 1. ⋄

Gathering the results from corollaries 1,2 the following lemma is obvious.

Lemma 4. Letp be an SWF such thatdim p ≤ n. Then

dim p = rk [p(v|w)]v,w∈Σ≤n−1 = rk [p(wv)]v,w∈Σ≤n−1 .

That is,n is the rank of the finite submatrix ofPp whose entries refer to words up to
lengthn − 1 only.

Proof. The left equation follows straightforwardly from corollaries 1,2 and the right one
comes fromp(wv) = p(w)p(v|w). ⋄

2.4 Conditional SWFs

If p is an SWF of a random source(Xt) associated with a probability measureP on
(Ω,B) andB ∈ B is an event for whichP (B) > 0 we define an SWFpB by

pB(v = v0...vt) :=
1

P (B)
P (C[v] ∩ B) =

1

P (B)
P ({X0 = v0, ..., Xt = vt} ∩ B)

that ispB(v) reflects our knowledge about seeing the wordv when we already know
thatB is to happen. We refer topB as aconditional SWF. We can establish the following
relationship between conditional SWFs and predictor functions.

Lemma 5. Letp be an SWF andA ⊂ Σt whereP (C[A]) = p(A) =
∑

v∈A p(v) > 0
for the probability measureP associated withp. It holds that

τApC[A] = µtpC[A] = pA =
1

p(A)
τAp. (16)

Proof. Let v ∈ Σ∗. We compute

(µtpC[A])(v) =
X

w∈Σt

pC[A](wv)
pC[A](wv)=0,w 6∈A

=
X

w∈A

pC[A](wv) = (τApC[A])(v)

which establishes the first equation of (16). Furthermore,

(τApC[A])(v) =
X

w∈A

pC[A](wv)

=
X

w∈A

1

P (C[A])
P (C[A] ∩ C[wv]) =

X

w∈A

1

P (C[A])
P (C[wv])

=
X

w∈A

1

p(A)
p(wv) =

1

p(A)
(τAp)(v)

where the third equation follows fromC[wv] ⊂ C[A] which in turn is implied byw ∈ A. ⋄
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Lemma 6. Let p be an SWF andB ∈ B such thatP (B) > 0 for the probability
measureP associated top. There is a sequence of subsets of wordsFn ⊂ Σn such that

lim
n→∞

||pC[Fn] − pB|| = 0. (17)

Proof. ¿From the approximation theorem ([9]) we obtain a sequence of cylinder setsC[Fn]
such that

P (C[Fn] △ B) −→
n→∞

0

whereA△B is the symmetric set difference of two eventsA, B. Without loss of generality, these
cylinder sets can be chosen such thatFn ⊂ Σn. Because of|P (Fn) − P (B)| ≤ P (Fn △B)
this in particular yieldsP (Fn) →n→∞ P (B). Therefore without loss of generality,P (Fn) > 0
for all n. It is well known (e.g. [7],?) that

||P − Q|| = 2 sup
B∈B

|P (B) − Q(B)| (18)

for arbitrary probability measuresP, Q. Therefore

||pFn − pB || = 2 sup
C∈B

|P (C|Fn) − P (C|B)| = |
1

P (Fn)
P (Fn ∩ C) −

1

P (B)
P (B ∩ C)|.

Knowing on one hand that1/P (Fn) →n→∞ 1/P (B) and on the other hand, by standard ar-
guments from measure theory, that|P (Fn ∩ C) − P (B ∩ C)| ≤ P ((Fn ∩ C)△ (B ∩ C)) ≤

P (Fn △B) →n→∞ 0 we obtain the claim of the lemma. ⋄

3 Ergodic Properties

3.1 Stationarity

We callp ∈ S stationaryif µp = p. For an SWFp this is equivalent todim Ep = 1, that
is, p has evolution dimension1. This straightforwardly translates to stationarity of the
associated random sourceP as stationarity needs to be checked on generating events
alone (here we immediately getP (T−1C[v]) = P (C[v]) for all stringsv ∈ Σ∗, where
T is the familiar shift operator). Vice versa,µp = p for the SWFp of a stationary
random sourceP . As eigenvectors of a linear operator, the stationary random sources
span a linear subspace

Sµ := span{p SWF|µp = p} = {p ∈ S |µp = p}.

3.2 Asymptotic Mean Stationarity

A random sourceP is calledasymptotically mean stationary(AMS) if there is a sta-
tionaryP̄ such that

∀B ∈ B : lim
n→∞

1

n

n−1∑

i=0

P (T−iB) = P̄ (B). (19)
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P̄ is called thestationary meanof P . A SWFp is calledasymptotically mean stationary
(AMS) if its associated random sourceP is. Furthermore, we denote an SWFp for
which there is a stationary SWF̄p ∈ Sµ such that

lim
n→∞

||
1

n

n−1∑

i=0

µip − p̄|| = 0 (20)

asstrongly asymptotically mean stationary (strongly AMS). It can be shown that strong
asymptotic mean stationarity is equivalent to asymptotic mean stationarity [18]. Here,
we restrict ourselves to noting that strong asymptotic meanstationarity straightfor-
wardly implies asymptotic mean stationarity as (20) translates to that the convergence
of (19) is uniform inB ∈ B, see (18). However, the reverse implication requires an
involved ergodic theorem.

As it was shown in [5], finite evolution dimension implies asymptotic mean station-
arity.

Theorem 1. Letp be an SWF withdim Ep < ∞. Then it holds that

lim
n→∞

||
1

n

n−1∑

i=0

µip − p̄|| = 0

for a stationary SWF̄p. Hencep is (strongly) AMS.

Proof. See [5], cor. 3.3. ⋄

As finite dimension implies finite evolution dimension this implies that finite-dimensional
random sources are AMS. Note further the following lemma.

Lemma 7. Letp be a strongly AMS SWF. Then it holds that

dim(Ep ∩ Sµ) = 1 (21)

whereEp is the closure of the evolution space ofp in S.

Proof. The definition of the stationary mean̄p as the limit of the1/n
Pn−1

i=0 µip ∈ Ep

immediately implies that̄p ∈ Ep. Hencedim(Ep ∩ Sµ) ≥ 1. Let p∗ ∈ Ep ∩ Sµ. We will show
that

dist (p∗, span{p̄}) = inf
q ∈ span{p̄}

||p∗ − q|| = 0

from which the assertion follows. Therefore letǫ ∈ R+ and (qk)k∈N be a sequence fromEp

which converges top∗. By definition ofEp we can write

qk =
X

j∈Jk

αj,kµjp

for suitable finiteJk ⊂ N andαj,k ∈ R. Therefore

1

n

X

i=0

µiqk =
X

j∈Jk

αj,k(
1

n

n−1
X

i=0

µi+jp) −→n→∞

X

j∈Jk

αj,kp̄ ∈ span{p̄}.
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ChooseK ∈ N such that
||p∗ − qK || <

ǫ

2
(22)

and, according to the considerations from above,NK ∈ N such that forq∗ :=
P

j∈JK
αj,K p̄ ∈

span{p̄}

||
1

NK

NK−1
X

i=0

µiqK − q∗|| <
ǫ

2
. (23)

It follows that

dist(p∗, span{p̄}) ≤ ||p∗ − q∗||

= ||p∗ −
1

NK

NK−1
X

i=0

µiqK +
1

NK

NK−1
X

i=0

µiqK − q∗||

≤ ||p∗ −
1

NK

NK−1
X

i=0

µiqK || + ||
1

NK

NK−1
X

i=0

µiqK − q∗||

µp∗=p∗,(23)
< ||

1

NK

NK−1
X

i=0

µip∗ −
1

NK

NK−1
X

i=0

µiqK || +
ǫ

2

≤
1

NK

NK−1
X

i=0

||µi|| · ||p∗ − qK || +
ǫ

2

(6)

≤ ||p∗ − qK || +
ǫ

2

(22)
< ǫ.

⋄

3.3 Invariant Events

An eventI ∈ B is calledinvariant if T−1I = I. The set of invariant eventsI is a
sub-σ-algebra ofB.

Stationary probability measures can be identified by their values on invariant events
alone. This is a consequence of the following lemma.

Lemma 8. LetP be astationary finite signed measureon (Ω,B), that is

∀B ∈ B : P (T−1B) = P (B).

Then
P = 0 ⇐⇒ ∀I ∈ I : P (I) = 0.

Proof. We have deferred the measure-theoretical proof to appendixA. ⋄

Note further that for SWFsp

µp = p ⇒ ∀I ∈ I : µpI = pI (24)

meaning that conditioning stationary SWFs on invariant events results in stationary
SWFs which, when translated back to random sources, is a well-known result.

The following lemma is a key insight of this paper.
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Lemma 9. Let p be a stationary SWF andI ∈ I be an invariant event. Then it holds
that

pI ∈ Vp. (25)

That is,pI lies in the closure ofp’s predictor space inS.

Proof. For technical convenience, we subsequently identifyp with its associated probability
measureP . The casep(I) = 0 is trivial. For p(I) > 0 choose a sequence of subsets of strings
Fn ⊂ Σn such that||pC[Fn] − pI || −→ 0 according to lemma 6. Without loss of generality
p(C[Fn]) > 0 for all n. We compute

||τFnp − pI ||
(16),(24)

= ||µnpC[Fn] − µnpI ||

≤ ||µn|| · ||pC[Fn] − pI ||TV

(6)

≤ ||pC[Fn] − pI ||.

Therefore, theτFn ∈ Vp converge topI . HencepI ∈ Vp. ⋄

3.4 Ergodicity

A SWFp is said to beergodicif its associated probability measureP is. That is,

∀I ∈ I : P (I) ∈ {0, 1}. (26)

For technical convenience, we will identifyp with P and writep(I) in the following.

REMARK If p is induced by a Markov chain then ergodicity, as given by thisdefi-
nition, is, in terms of the Markov chain, characterized by that there is only one closed,
irreducible set of states (see th. 6.3.4, [8]).

Clearly, if p is AMS thenp is ergodic if and only if its stationary mean̄p is. More-
over, if A ∈ Σt is a subset of words andp is ergodic, then

pA(I)
(16)
= µtpA(I) = pA(T−tI) = pA(I) =

1

p(A)
p(A∩ I) =

{

1 p(I) = 1

0 p(I) = 0
. (27)

Hence,pA is itself ergodic as it agrees on the invariant sets withp. The main result of
this paper is that in case of AMS SWFsp the concepts of ergodicity and predictor space
can be coupled.

Theorem 2. Let p be an AMS SWF andVp be the closure of its predictor space inS.
Then the following statements are equivalent:

(i) p is ergodic.
(ii) Vp ∩ Sµ = span{p̄}.
(iii) dim(Vp ∩ Sµ) = 1.
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Roughly speaking, the theorem tells that there is only one stationary word func-
tion in the boundary of the predictor space of an ergodic AMS SWF p and that is the
stationary mean ofp.

Proof. The equivalence of(ii) and(iii) is immediate as, by definition of the stationary mean
p̄, it always holds that

p̄ ∈ Ep ⊂ Vp (28)

(i) ⇒ (ii): Let p be ergodic. Because of (28), we have span{p̄} ⊂ Vp ∩ Sµ for any choice
of AMS p. Therefore it suffices to show

Vp ∩ Sµ ⊂ span{p̄}.

Assume the contrary, that is the existence of aq ∈ Vp with µq = q which is linearly independent
of p̄. Let pn be a sequence inVp that converges toq. Choose a basis of predictor functions(pvi)
and representpn over this basis:

pn =
X

i

αi,npvi .

Because of (27) we know that thepvi agree withp on the invariant sets. Thereforepn(I) ∈
{0,

P

αi,n} for all invariant I . Convergence of thepn to q in norm of total variation further
implies

∀I ∈ I : pn(I) →n→∞ q(I).

Hence the limes
K := lim

n→∞

X

i

αi,n

exists and

q(I) =

(

K if p(I) = p̄(I) = 1

0 if p(I) = p̄(I) = 0
.

AssumingK = 0 would mean thatq(I) = 0 for all invariantI . As a consequence of lemma 8
we would obtainq = 0 in this case which is a contradiction to the linear independence ofq. In
case ofK 6= 0 we obtain that(1/K)q is a stationary finite signed measure which agrees withp̄
on the invariant sets. Hence (again because of lemma 8)

(1/K)q = p̄

which again is a contradiction to the linear independence ofq.

(iii) ⇒ (i): Let p be not ergodic. Hence there is an invariantI with

p̄(I) = p(I) = α ∈]0, 1[. (29)

As p̄ ∈ Vp we know from the definition of predictor space that

Vp̄ ⊂ Vp.

¿From lemma 9 we further know that

p̄I , p̄∁I ∈ Vp̄.

Because of (29)

p̄I(I) = 1 6= 0 = p̄∁I(I)

p̄I(∁I) = 0 6= 1 = p̄∁I(∁I)
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which implies that̄pI , p̄∁I are linearly independent as finite signed measures. This immediately
reveals them as linearly independent word functions. ⋄

This theorem becomes particularly useful in case of finite-dimensional SWFsp.

Corollary 3. Letp be a finite-dimensional SWF. Thenp is ergodic if and only if

dim(Vp ∩ Sµ) = 1. (30)

Proof. As p is AMS (see th. 1) theorem 2 applies forp. It remains to notice thatVp = Vp

for finite-dimensionalVp. ⋄

It is this corollary that the algorithm for deciding ergodicity of hidden Markov
sources is based on. We will expand on this issue in section 5.1.

4 Classification of ergodic sources

We conclude our general treatment of ergodic sources this section with some remarks
on how the different classes of such sources, as introduced by this wor,k are related to
one another. WritingSe,AMS resp.Se,edim resp.Se,dim resp.Se, µ for the classes of
ergodic AMS resp. ergodic finite-evolutiondimensional resp. ergodic finite-dimensional
resp. ergodic stationary sources it holds that

Se,AMS ⊃ Se,edim ⊃

{

Se,dim

Se,µ

(31)

where the first inclusion is theorem 1 and the second one immediately follows from the
definitions of stationarity, dimension and evolution dimension. We also know that

Se,dim 6⊂ Se,µ

as, for example, it is known that hidden Markov sources are finite-dimensional (see [10,
12, 5]) and there are non-stationary ergodic hidden Markov sources. Furthermore,

Se,AMS ) Se,edim

because of the following lemma.

Lemma 10. There is an ergodic AMS source of infinite evolution dimension.

Proof. Let Σ = {a, b} andα ∈]0, 1[. We consider the SWFp which is recursively defined
by

p(v) =

8

>

<

>

:

1 v = �

α|w|+1p(w) ∃w ∈ Σ∗ : v = wa

(1 − α|w|+1)p(w) ∃w ∈ Σ∗ : v = wb

. (32)
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For example,p(abab) = α(1 − α2)α3(1 − α4). It is straightforward to show thatp is indeed an
SWF. It encodes the independent process(Xt)t∈N with values inΣ given by

P (Xt = a) = αt+1, P (Xt = b) = 1 − αt+1

and
P (X0 = a0, · · · , Xt−1 = at−1) = P (X0 = a0) × · · · × P (Xt−1 = at−1).

Note first that (v ∈ Σ∗)

µkp(v) =

8

>

<

>

:

1 v = �

α|v|+kµkp(w) ∃w ∈ Σ∗ : v = wa

(1 − α|v|+k)µkp(w) ∃w ∈ Σ∗ : v = wb

, (33)

which can straightforwardly inferred by induction onk.

Infinite evolution dimension: For showing thatdim Ep = ∞ we consider the matrices

An := (µk−1p(ai))1≤i,k≤n ∈ R
n×n.

¿From (33) we infer

µkp(ai) = α
Pi

t=1(k+t).

Hence

det(An) = det

0

B

B

B

@

α α2 ... αn

α1+2 α2+3 ... αn+n+1

...
...

. . .
...

α1+...+n−1 α2+...+n . . . αn+...+2n−1

1

C

C

C

A

=
n

Y

k=1

α2n−1det

0

B

B

B

@

1 α . . . αn−1

1 α2 . . . α2(n−1)

...
...

. . .
...

1 αn . . . αn(n−1)

1

C

C

C

A

=
n

Y

k=1

α2n−1
Y

1≤i,j≤n,i<j

(αi − αj) 6= 0,

where the last equation follows from that the matrix is aVandermonde matrix(see [11], sec. 6.1).
Therefore, the rank of the infinite set(p, µp..., µn−1p, ...) is not bounded which translates to
dim Ep = ∞.

Asymptotic mean stationarity: We define a vector̄p by

p̄(v) =

(

1 if v = b|v| = b...b ∈ Σ|v|

0 else
(34)

and prove that

lim
n→∞

||µnp − p̄||TV
(5)
= lim

n→∞
sup
t∈N

X

v∈Σt

|µnp(v) − p̄(v)| = 0 (35)
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from which we can clearly infer thatp is AMS. Consider

X

v∈Σt

|µnp(v) − p̄(v)| = 1 − µnp(bt) +
X

v∈Σt\{bt}

µnp(v). (36)

To order to show (35) we will show thatµnp(bt) converges to1 uniformly in t. Therefore, we
will prove that (letlog be the natural logarithm)

log
1

µnp(bt)
≤

αn+1

(1 − α)2
, (37)

as this implies

1 ≥ µnp(bt) ≥ (exp(
αn+1

(1 − α)2
))−1 −→

n→∞
1

and with it the assertion. To do this we first note that, because of the mean value theorem, for all
r > 1 there isξ ∈ [r − 1, r] such that

log(r) − log(r − 1) =
log(r) − log(r − 1)

r − (r − 1)
= (log)′(ξ) =

1

ξ
≤

1

r
. (38)

In order to establish (37) we finally compute

log
1

µnp(bt)

(33)
= log(

t
Y

l=1

1

1 − αl+n
) = log(

t
Y

l=1

(1/α)l+n

(1/α)l+n − 1
)

=

t
X

l=1

log((1/α)l+n) − log((1/α)l+n − 1)

(38)

≤

t
X

l=1

1

(1/α)l+n − 1
=

t
X

l=1

αl+n

1 − αl+n
≤

t
X

l=1

αl+n

1 − α

= (1 − α)

t
X

l=1

αl+n = (1 − α)αn+1
t

X

l=1

αl−1

≤
αn+1

(1 − α)2
.

Therefore,p is AMS.

Ergodicity: As a preparation, we consider that forv ∈ Σ∗

τaµkp(v) = µkp(av) = αk+1 · µk+1p(v),

τbµ
kp(v) = µkp(bv) = (1 − αk+1) · µk+1p(v)

(39)

where the equations on the left are just the definition ofτa, τb and the equations on the right
follow by induction on the word length|v|. This implies

τaµkp, τbµ
kp ∈ span{µk+1p} ⊂ Ep.

from which we immediately getτa(Ep) ⊂ Ep, τb(Ep) ⊂ Ep. Hence, because of (3),

τw(Ep) ⊂ Ep
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for all w ∈ Σ∗ which further translates toVp ⊂ Ep. As alwaysEp ⊂ Vp we finally obtain

dim (Vp ∩ Sµ) = dim (Ep ∩ Sµ)
(21)
= 1

and theorem 2 implies the ergodicity ofp. ⋄

FINAL REMARK: The relationship between the classes of stationary and finite-
dimensional ergodic sources has not been fully explored yet. Unlike in the case of
arbitrary non-ergodic sources, the question of existence of an infinite-dimensional, sta-
tionary source has not been answered for the class of ergodicsources. As is easily
checked, the aforementioned example sourcep (see [5], lemma 6) has the remarkable
property thatVp ⊂ Sµ which further translates todim(Vp ∩Sµ) = ∞. This is quite the
opposite of being ergodic according to theorem 2.

5 Observable Operator Models

Finite-dimensional random sourcesp can be parameterized by identifying the finite-
dimensionalVp with an Rn wheren = dimVp and providing matrix representations
Tv for the observable operatorsτv. The crucial point is that such a parameterization is
finite as, by providing matrix representationsTa for a ∈ Σ only we obtain the remaining
matrices by

Tv=vt...v1 = Tvt
· ... · Tv1

which holds because of (3). To put it more concrete, we choosea basis of predictor
functionspwj

, j = 1, ..., n that are identified withei = (0, .., 0, 1
i
, 0, ..., 0) ∈ Rn and

setep to be the coordinate representation ofp according to this basis. If
∑n

j=0 αa,i,jej

is a representation ofτapwi
on this basis then corresponding matrix representationsTa

of τa are obtained by setting
(Ta)ij := αa,i,j .

Observe further that probabilitiesp(v = v1...vt) can be read off the coefficients of
Tvep ∈ Rn (which representsτvp) the following way:

ev =

n∑

i=1

βiei ⇒ p(v) =

n∑

i=1

βi.

This follows from the translation

p(v) = τvp(�) =

n∑

i=1

βipwi
(�)

︸ ︷︷ ︸

=1

back to the world of word functions. These observations are summarized within the
following theorem.
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Theorem 3. A SWFp is finite-dimensional if and only if there isn ∈ N such that on
Rn there areep ∈ Rn andTa ∈ Rn×n, a ∈ Σ for which

p(v = v1...vt) = 1
T
nTvt

...Tv1ep (40)

where1n = (1, ..., 1) ∈ Rn.

Proof. See [13, 5] for variants of the following. By identifyingVp with Rn for n = dimVp

and, accordingly,ep with a coordinate vector ofp and Ta with matrix representations of the
observable operatorsτa : Vp → Vp, the first direction follows from the considerations from
above. For the inverse direction define

gv := 1
T
v = 1

T Tvt ...Tv1

for all v = v1...vt ∈ Σ∗. Define word functionspi, i = 1, ..., n by

pi(v) := gvei

for all v ∈ Σ∗. Now consider thew-row of the prediction matrixP , that is

Pw := (p(v|w))w∈Σ∗

in case ofp(w) 6= 0, see (8). LetTwep =
P

i αiei. According to (40) we compute

p(v|w) =
1

p(w)
p(wv)

=
1

p(w)
1

T Twvep =
1

p(w)
1

T TvTwep =
1

p(w)
fvTwep

=
n

X

i=1

1

p(w)
αifvei =

n
X

i=1

1

p(w)
αipi(v).

This translates to thatPw is a linear combination of thepi. Hence

dim p = rk P = dim span{Pw |w ∈ Σ∗} ≤ dim span{pi | i = 1, ..., n} ≤ n.

⋄

Note immediately that for an SWFp given by a representation from the theorem,
the SWF’s dimension does not necessarily have to coincide with that of the underlying
Rn. Indeed it is easy to come up with examples wheren > dim p.

Definition 1 ([13]). Tuples(Rn, (Ta)a∈Σ , ep) encoding finite-dimensional SWFsp have
been termedObservable Operator Models(OOMs). Ifn = dim p we speak of aminimal-
dimensionalOOM:

The investigation of OOMs has led to a class of learning algorithms which, on a
variety of natural instances, outperform their classical counterpart, the EM algorithm,
for HMCs [14]. Therefore note that HMCs can be canonically transformed to OOMs
which, above all, reveals them as finite-dimensional. We will draw the connection be-
tween HMCs and OOMs in subsection 5.1.
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5.1 HMCs to OOMs

In its most prevalent form, a finite-valued HMM is given by a set of hidden states
Q = {1, ..., n} and a finite setΣ of output symbols. The hidden states form a Markov
chain and corresponding transition probabilitiesaij of changing from statei to state
j are collected in a matrixA = (aij) ∈ Rn×n. We further have anemission prob-
ability distribution for each hidden state over the output symbols which are givenby
an emission matrixE = (eia)1≤i≤n,a∈Σ whereeia is the probability that symbol
a ∈ Σ is emitted from statei ∈ Q. Finally, there is aninitial probability distribu-
tion π = (π1, ..., πn) over the hidden states. The probability that the HMM emits a
string of symbolsv = v1...vt ∈ Σt is then computed as

PHMM (v = v1...vt) =
∑

i1...it∈Qt

πi1ei1v1ai1i2ei2v2 ...ait−1it
eitvt

.

To identify the HMM as finite-dimensional, we define matricesOa ∈ Rn×n for each
output symbola ∈ Σ through

(Oa)ij =

{

eia i = j

0 i 6= j

and further
Ta := AT Oa ∈ Rn×n.

It then turns out that
PHMM (v) = 1

T
nTvt

...Tv1π

which, because of theorem 3, shows that the random source encoded by the HMM has
dimension of at mostn.

5.2 Ergodicity of OOMs

If an OOM is minimal-dimensional the theorems from earlier sections can be applied
to it by identifying the OOM as a coordinate representation of the finite-dimensional
SWF encoded by it. This provides us with a way to check minimal-dimensional OOMs
for ergodicity.

Theorem 4. Let (Ta ∈ Rn×n)a∈Σ , ep ∈ Rn be a minimal-dimensional OOM. Let
M :=

∑

a∈Σ Ta be the sum of the matricesTa. Then the finite-dimensional SWFp
encoded by the OOM is ergodic if and only if

dim Eig (M ; 1) = 1

that is,M ’s eigenspace of the eigenvalue1 is one-dimensional.

Proof. This is straightforwardly established by identifying the parameterization with a co-
ordinate representation of the finite-dimensional SWFp where it turns out thatM is a matrix
representation of the evolution operatorµ. Subsequent application of corollary 3 yields the re-
sult. ⋄
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6 Computationally Testing HMCs for Ergodicity

Based on the insights from section 5 we can come up with an algorithm for checking
HMCs for ergodicity.

1. Produce a matrix representationM of the evolution operator in an equivalent minimal-
dimensional OOM.

2. Check the dimensiond of the eigenspace of the matrixM =
∑

a∈Σ T̃a for the
eigenvalue1.

3. Output yes, ifd = 1 and no else.

As checking the dimension of eigenspaces is routine, the second point poses no
major problems. The first point, though, needs to be illustrated.

We cast the first point’s problem in a more general fashion andconsider arbitrary
SWFsp such thatdim p ≤ n. According to lemma 4

m := dim p = rk [p(wv)]v,w∈Σ≤n−1 ≤ n.

We choose wordsvi, wj ∈ Σ≤n−1, i, j = 1, ..., m such that the matrix

V := [p(vi|wj)]i,j=1,...,m

is regular. As a consequence we know thatpwj
, j = 1, ..., m is a basis ofVp.

Lemma 11. Let p be an SWF of finite dimension. Letwj , vi, i, j = 1, ..., m andV be
chosen by the procedure from above. Define matrices

Wa := [p(avi|wj)]i,j=1,...,m

for all a ∈ Σ. Then(pwj
) is a basis ofVp and

Ta := V −1Wa

is a matrix representation corresponding to the coordinaterepresentation

Φ : Vp −→ Rm

pwj
7→ ej

.

HenceM :=
∑

a∈Σ Ta is a matrix representation of the evolution operator.

Proof. Consider the alternative coordinate representation

Φ′ : Vp −→ Rm

pwj 7→ V j

whereV j := (p(v1|wj), ..., p(vm|wj)) is thej-th column ofV . Fromτapwj (vi) = p(avi|wj)
we know that for a matrix representationT ′

a of τa according toΦ′

T ′
a(V j) = W j

a (41)
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whereW j
a is the j-th column ofWa. Note thatΦ′ ◦ Φ−1(ej) = V j . So Φ′ ◦ Φ is precisely

described by the matrix representationV . Therefore we obtain a commutative diagram

Rm Ta−→ Rm

?

yV
?

yV

Rm T ′
a−→ Rm

.

which translates toV Ta = T ′
aV . Because of (41)T ′

aV = Wa from which the lemma’s assertion
follows. ⋄

REMARK As spectra of linear operators do not change under similarity transforma-
tions we could have directly chosenM ′ :=

∑

a∈Σ T ′
a as a choice for the evolution

operator whereT ′
a would have been defined by the equationsT ′

a(V j) = W j
a . However

we wanted to provide a basis such that the matrix representations give rise to an OOM.

6.1 Example

We conclude with an example of an ergodic HMM whose underlying Markov chain is
not ergodic. LetM be a3-state HMM over the alphabet{0, 1} parameterized by

A =





1
2

1
4

1
4

0 1 0
0 0 1



 andE =





1 0
0 1
0 1





whereA is the transition matrix of the underlying Markov chain andE is the emission
matrix of the hidden states over the symbols{0.1}. At the beginning, state no.1 is
entered with probability one. The underlying Markov chain has two closed, irreducible
sets of states (states no.2 and3 each make up one of them) hence is not ergodic. Indeed,
a somewhat closer second look immediately reveals the ergodicity of the HMC as a
stochastic process that almost surely generates sequenceswith only finitely many0s.

According to the procedure above, we find that the dimension is2 and that

V =

[
p(�) p(�|0)
p(0) p(0|0)

]

=

[
1 1
1 1

2

]

is regular. Further

W0 =

[
p(0) p(0|0)
p(00) p(00|0)

]

=

[
1 1

2
1
2

1
4

]

and

W1 =

[
p(1) p(1|0)
p(10) p(10|0)

]

=

[
0 1

2
0 0

]

According to lemma 11 a matrix representation of the evolution operator is

M = V −1(W0 + W1) =

[
−1 2
2 −2

] [
1 1
1
2

1
4

]

=

[
0 − 1

2
1 3

2

]

.

One can then straightforwardly check thatM ’s eigenvalues are1 and1/2, from which
dimEig(M ; 1) = 1 follows. Hence the HMCM is ergodic.
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7 Discussion

In this paper, we have developed a criterion for an HMC to be ergodic that can be algo-
rithmically tested. However, the algorithm presented hereis exponential in the number
of hidden states of the HMC and thus of limited use. It is an open question whether
there is an efficient algorithm which outputs matrix representations of the operators in-
volved in the theory presented here and we conjecture that, indeed, there is. A hint to
this is that Balasubramanian [2] claims to have one to solve the identifiability problem
whose solution in [12] as well is based on an exponential algorithm and the solutions
presented in these works are relatives of ours.

In a subsequent paper, we shall explore the spectrum of the evolution operator to
expand on the issue of classification of finite-dimensional sources which is justified
by that they do not only include HMMs, but also quantum randomwalks [1], [4], a
statistical model that serves the emulation of Markov chainMonte Carlo methods on
quantum computers.

A Finite signed measures

A finite, signed measure on(Ω,B(Σ)) is a σ-additive but not necesarily positive, fi-
nite set function onB(Σ). The most relevant properties of finite signed measures are
summarized in the following theorem (see [9], ch. VI for proofs).

Theorem 5.

(i) TheJordan decompositiontheorem tells that for everyP ∈ P there are finite mea-
suresP+, P− such that

P = P+ − P−

and for every other decompositionP = P1 −P2 with measuresP1, P2 it holds that
P1 = P+ + δ, P2 = P− + δ for another measureδ. In this sense,P+ andP− are
unique and calledpositiveresp.negative variation. The measure|P | := P+ + P−

is calledtotal variation.
(ii) In parallel to the Jordan decomposition we have theHahn decompositionof Ω into

two disjoint eventsΩ+, Ω−

Ω = Ω+ ∪̇ Ω−

such thatP−(Ω+) = 0 andP+(Ω−) = 0. Ω+, Ω− are uniquely determined up to
|P |-null-sets.

(iii) The norm of total variation||.||TV onP is given by

||P ||TV := |P |(Ω) = P+(Ω) + P−(Ω) = P+(Ω+) + P−(Ω−).

Obviously|| |P | ||TV = ||P ||TV .
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A.1 Proof of lemma 8

Before it comes to proving the lemma, we provide us with a preparatory result.

Lemma 12. Let P be a finite, signed measure on(Ω,B). ThenP ◦ T−1 = P if and
only if bothP+ ◦ T−1 = P+ andP− ◦ T−1 = P− are.

Proof. The inverse direction is obvious asP = P+ − P−. For the other direction first note
that for an arbitrary measureQ, by definition of the norm of total variation (th. 5,(iii))

||Q ◦ T−1|| = Q(T−1Ω) = Q(Ω) = ||Q||. (42)

Further observe thatP = P ◦ T−1 = P+ ◦ T−1 − P− ◦ T−1. Hence

||P || = ||P ◦ T−1|| = ||(P+ − P−) ◦ T−1||

≤ ||P+ ◦ T−1|| + ||P− ◦ T−1||

(42)
= ||P+|| + ||P−|| = ||P ||.

Therefore||P || = ||P+ ◦ T−1|| + ||P− ◦ T−1||. As P = P+ ◦ T−1 − P− ◦ T−1 the lemma’s
claim follows from the uniqueness property of the Jordan deocmposition (see th. 5,(i)). ⋄

We are now in position to prove lemma 8.

Proof. “=⇒” is trivial. For the inverse direction we assume the existence of a finite signed
measureP 6= 0 with P (I) = 0 for I ∈ I. Because of lemma 12P+, P− are stationary and
so, without loss of generalityP+ 6= 0. Let Ω+, Ω− the Hahn decomposition ofP , that is,Ω =
Ω+ ∪̇Ω− andP+(Ω+) = P+(Ω), P−(Ω−) = P−(Ω). As P+ > 0 we obtainP+(Ω+) > 0.
We now define

I+ := lim sup
n

T−nΩ+ =
\

n≥0

[

m≥n

T−mΩ+ ⊂
[

n≥0

T−nΩ+.

Clearly,I+ is invariant. Further

P−(I+) ≤ P−(
[

n≥0

T−nΩ+)

≤
X

n≥0

P−(T−nΩ+)
(∗)
=

X

n≥0

P−(Ω+) = 0

as well as

P+(I+) = P+(lim sup
n

T−nΩ+)

(∗∗)

≥ lim sup
n→∞

P+(T−nΩ+)
(∗)
= P+(Ω+) > 0,

where(∗) follows from lemma 12 and(∗∗) is a consequence of Fatou’s lemma Herewith

P (I+) = P+(I+) − P−(I+) = P+(I+) > 0.

which is a contradiction to thatP vanishes on the invariant events. ⋄
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