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Abstract—Entropy rate of discrete random sources are a concatenation operation
real valued functional on the space of probability measures B - s - s
associated with the random sources. If one equips this space aextbeX® = abeX.

with a topology one can ask for the analytic properties of .
the entropy rates. A natural choice is the topology, which is For formal convenience, we have ampty word] such that

induced by the norm of total variation. A central result is that ¥0 = {4}
entropy rate is Lipschitz continuous relative to this topobgy.
The consequences are manifold. First, corollaries are obtaed Throughout this paper we will writ§) = XN = ®;’i02

that refer to prevalent objects of probability theory. Secod, 5, the set of sequences ovér and B for the_o--algebra
the result is extended to entropy rate of dynamical systems.

Third, it is shown how to exploit the proof schemes to give a gengrated by the cylinder sets. We identify cylinder sets
direct and elementary proof for the existence of entropy rae of B With sets of wordsAp € ¥* such thatB is the set of
asymptotically mean stationary random sources. sequences which start with the wordsAn.

Index Terms—Entropy rate, ergodic theorems, entropy, dy- . . . .
namical system, asymptotically mean stationarity. As usual, we identify stochastic processes:).en With
values inY with probability measure®x on the measurable
space((2, B) and vice versa via the relationship (as discussed
above,a = ag...a;_1 € X! corresponds to the cylinder set of

NTROPY rate is a key quantity in information theorysequences starting with the womi

as it is equal to the average amount of information per B
symbol of a random source if it exists. Therefore, it is naltur Px(a) = P({Xo = a0, X1 = a1, ..., Xy—1 = ar-1}),
to ask how entropy rate behaves if knowledge of rando@here the term on the right hand side is the probability that
sources is subject to uncertainties which, for example, m@ye random source emits the symbals ..., a;_; at periods
be inherent to inference processes and/or originate frasynop, ...t — 1. As a consequence of the extension theorem ( [12],
channels. However, closed formulas for entropy rate exikt o p. 54, th. A), a stochastic procegk, ) is uniquely determined
in rare examples. For example, already hidden Markov ssurgg; the valuesPx (a) for all @ € .
(HMSs) seem to defy a convenient formula although there
is one for the special case of Markov sources. Therefore, Al Finite signed measures
this case, recent efforts focused on the direct investiganf
analytic properties of entropy rate like smoothness or even
analyticity [20], [21], [29], [30], [25], [16].

I. INTRODUCTION

P(X) C {P:B(X) — R}

be the set of finite, signed measures(6n (X)), that is, the

The_ purpose_of this paper is to_contrlbute to the ISSU€ Lt ofs-additive but not necesarily positive, finite set functions
analytic properties of entropy rate in a more general fashio n B(Z). We write P instead of P(X), if the alphabet is

Namely, \_/ve study the behavior of entropy r ate re[ative to tm%derstood. By eventwise addition and scalar multiplagti
topology induced by the norm of total variation. This toppio ﬁ(z) becomes a vector space. The most important relevant
{ .

is one of the natural choices and it is ubiquitous in bo properties of finite signed measures are summarized in the
theoretical and practical work. We show that entropy rate f8l|owing theorem (see [12], ch. VI for proofs)
1l , ch. .

Lipschitzian on the whole space of discrete random source
which is, due to an elementary theorem of Rademacher, closd heorem 2.1:
to differentiability.

We will use this result to give a more elementary proof
of the existence of entropy rate for asymptotically mean
stationary sources which, for example, contain the clas$es P=P, —P_
arbitrary HMSs [24] and quantum random walks (QRWSs) [1],
[5] as has recently been proven [6].

1) The Jordan decompositiotheorem tells that for every
P € P there are finite measurd3,, P_ such that

and for every other decompositidh = P, — P, with
measures’, P it holds thatP, = P, +0, P, = P_+0
for another measuré. In this senseP, and P_ are
unigue and callegbositiveresp.negative variationThe

As usual,X* = U;»o¥' is the set of all words (strings measurg P| := P, + P_ is calledtotal variation
of finite length) over the finite alphabét together with the 2) In parallel to the Jordan decomposition we have the
Hahn decompositionof  into two disjoint events
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such thatP_(Q;) = 0 and P, (2_) = 0. Q4,Q_ are [1l. ANALYTIC PROPERTIES OF ENTROPY RATES
uniquely determined up toP|-null-sets.

S o A. Lipschitz continuity
3) Thenorm of total variation||.||7v on P is given by

Our main result is the following theorem, which tells that th
. - entropy rates are Lipschitz continuous on the cone of measur
1Pllzy = [PI() = P (&) + P-(&) with respect to the topology induced by the norm of total

=Py(Q4) + P-(Q-).  variation.

Obviously|||P|||7v = ||P||7v- .Theorem 3.1The regl valued functiond is Lipschitzian
with Lip(H) = log |X|, i.e.

As the norm of total variation seems to be the most natural [H(P1) — H(P2)[ < (log [X) [Py = Pall7v,
choice for_ a norm, it is omnip_resent in both related theqada_ti where Py, P, € P+(%).
and practical work. Computation of the norm of total vadati
however, is not always easy. The following lemma shows aNote that this makes the entropy rates a Lipschitzian func-
practicable way. tional on the (convex) subset of probability measuresPof
which one usually is interested in.

Lemma 2.1: )
To be prepared for the proof we present two lemmata, which
1P|y = sup Z |P@)| = lim Z |P(@a)|. incorporate the essential ideas. We write
teN Gese =Y _
1Pll7ve == ) |P(a)]
Again, P(a) denotes the value of the finite signed measBire aext
on the cylinder set of sequences having prefix for a signed measur® € P and
Proof: As the proof is of purely measure theoretical 1
nature, we have deferred it to appendix A. N H'(P) := 3 > P(a)log P(a),
aext

Lemma 2.2:Let P;Q € P(X) be two finite, signed mea-

+ e
sures. Then it holds that for a measureP € P*. Note that for a probability measure,

P(a) coincides with the probability that a sequence emitted
by the random source relative 18 starts with the wordi, as

Zlé% |P(B) —Q(B)| < [[P—Qllrv discussed above. Lemma 2.1 tells that
< 2sup |P(B) - Q(B)|. lim [|P|7v,: = [|P||7v-
BeB t—o0

Hence the topology induced by the norm of total variation fyote that]|.[|7v; is not a norm or.
that of the metric Lemma 3.1:Let P,Q € Pt be two measures such that

|IP = Q||7v < L. Then it holds that
d(P,Q) = sup |[P(B) — Q(B)|.
pep [H'(P) — H'(Q)]

Proof: We have deferred the measure theoretical proof to < (log || + 1 log 1 VAP = Qllrve
appendix B.. [ | - t 7P =Qllrve v

Note further, as one can see from the proof of lemma Z}Q'hereo +log 00 := 0 in case of||P — Q]|rv,: = 0.

that for two probability measures;, P it holds that For the proof of this lemma we will need two sublemmata.

[P, — Py||py = 2 sup |PL(B) — Py(B)]. Sublemmal: Let
Beb h: [0,1] — R
x —  xlog %
B. Entropy Rates

Then it holds forz,y € [0, 1]:
We write PT C P for the subset of measures, which is a

convex cone inP and view the entropy rates as a functional |z —y| < é = |h(z) — h(y)| < h(lz —y]). (1)
on it:
_ Proof: The proof is a technical, analytic exercise. Note
H: PHE) — R first that 7/(z) = logL — 1 and 2”/(z) = —1. Henceh is
P —  limsup,ey + Y gese P(a)log P(la) " concave, has a global maximum atand h(1) = 1. We
therefore note that
Note that we define entropy rates, in a slightly more general
fashion, not only for probability measures. r<h(z) <= z<

: )

Q|-



Because of Proof: Obviously H!(P) = HY(Q) in case of||P —
Ql|rv.e = 0. In case of| [P — Q||7v.. > 0 we have

1 1
h(z) — h(y)| = ||h(z) — h(=)| = |h(=) = h
Ih@) = hw)l = [Ih() = k()] 1| () 1 i ) - @)
1 1
< max{|h(x) — h(-)]|, |h(=) — h(y - a)l a)log ——
{Ih(=) (€)| | (e) ()|} |§t )log —— @) —Q(a)log Q(a)'
and the fact that is monotically increasing of0, %] we can, < 1 P(a)lo L lo 1
without loss of generality, assume that eithery > 1 or - a;ﬂ (@log P(a) Q(a)log Q( )|
zy <1l Subl. 1 1 1
|P(a) — Q(a)|log —5———F7=
As Z P@ - Q@)
1 Subl- 2 1 |1P — Qllzv.e [
Ve e [=,1]:  |W(x)] <1, 4) = log
¢ Z = P = Qllrve
and because of the mean value theorem, it holds that = —||P Qllrv.( Z B | ~ztlog [X]
1 aext
cszysl = |h(@)-h@l<lz—yl. 6 iy 1 )
: : aert |E|t 1P = Qllrv.e
Because of equation (2) we obtain the statement for the case 1 1
1 — — - -
c S%yﬁl t||P Q||TV7t(t10g |E|+ ||P_Q||TV.,t).
It remains the case (w.lo.g: < y) z < y < % Here it [ ]

holds that|h(z) — h(y)| = h(y) — h(z). We note that the  To get control of the limes superior involved in the definitio
function log% — 1 is positive and monotonically decreasingf entropy rates we will further need

on [0, 1] ((¥)). We obtain the claim from the calculation _
¢ Lemma 3.2:Let (a;) and(b;) two non-negative real valued

sequences such that

) = ()| = [ (tog 7~ D

lay —b] <e¢;  and tlirgo ct = c.

= / (log 7— —1)dt Then it holds that
Y e (6)
s=t-—w /y (1ogl ~1)ds |h?isogp a; — hmsup byl < c.
0 S

11v—* Proof: Without loss of generality assume :=
= [5 log g} =h(y — ). lim sup a; > limsup b; =: b. Choose a subsequenkg) such
thatlim; . ax;) = a. We obtain

Lot now " a-b<e-lmsuwby = lmsway - limswbi
< limsup |ag@) — bpe| < c.
An_l = {(E:(l’l,...,l’n)ERn|(Ei 20,2:@:1}, t—o0
i |
be the usual regulat — 1-dimensional simplex iR". We are now in position to prove theorem 3.1.
) Proof: As Lipschitz continuity is a local property, we
; < ) )
Sublemmaz: Let0 < K €R, 2<n €N and can, without loss of generality, assume thi@ — Q||7v <
e e " e 1 Puttinga; := H*(P) andb; := H*(Q) one obtains by
At =K A" = {2z eR"| (1/K)z € A"}, Smma 3.1 that ®) ! @
. 1
The function lac = be| < [|P = Qllrv,e(log [E] + 2P = Qllrvie) =: ce.
i : Akn-1 - R @ One further observes that, because of the definitiof[0fv
€= (21,00 m) = Y wilog - and lemma 2.1, that
attains a global maximum at:= (K/n, ..., K/n). Jim ¢, = lim ||P = Ql|7v,(log %] + —IIP Qllrv,e)
Proof: This is a straightforward generalization of the case = ||P Qllrv - log |X].

K =1, for which the claim is a well known result (e.g. [138.
Plugging (a;), (b;) and (¢;) into lemma 3.2 then yields the

We are now able to prove lemma 3.1. desired result. [ ]



We conclusively remark that the idea of the proof dependsB Differentiability
a certain extent on the choice of the norm. To demonstrade thi
we rephrase lemma 3.1 in a more general fashion, without tg
“soul” of an entropy. Therefore I&R?} := {z = (z1,...,2,) €
R™ | z; > 0} and Corollary 3.1: Let V' C P be a finite-dimensional linear
hy, : R" . R subspace of. Let B(V') be the Borels-algebra onV and A
the Lebesgue measure oW, 5(V)). Then the functional

Some corollaries of the theorem above will now shed light
i the issue of differentiability of entropy rates.

= (21, Tn) @ Sz log zii,
wheren > 2 and0log oo := 0. A more prosaic version of H:V — R
lemma 3.1 then reads

1 1
hnCC —hn S =1 ’ 1+ 10 ’
|hn(@) = ha ()] < [l =yl - ( logn 8 ||:v—y||1)

is differentiable almost everwhere (w.rX) on V.

Proof: Identify V' with an R". Rademacher’s theorem (
[7]) tells that Lipschitzian functionals on @R™ are differen-
where||z||y = >, |z;| as usual. An straightforward consetiable A\-a.e. This is precisely what yields the corollary. m
guence of the lemma now is that

Finally, one sees that the entropy rates of a finite-
Vec R, 36 € R, Vn >2Ve,yc AL dimensional set of probability measures can be approxinate

|z —yli <6 = |hn(z) — ha(y)| <e, (8) PY Polynomials.

which, when translated back to entropies, tells that theopgt ~ Corollary 3.2: Let K C P a finite-dimensional compact
rates are uniformly continuous da*. We now note that the subset (e.g. the subset of probability measures of a finite-
statement of the generalized lemma need not be true relagigensional subspace @f). Then

to norms||.||, different from||.||;. More formally:

H: K — R
Lemma 3.3:Let 2 < p < oo and||z||, = ¢/, =[P the
usualp-norm onR™. Then it holds that can be uniformly approximated by polynomials.
- Proof: Identify K with a compact subset aR™. The
JeeRy VO €Ry In > 23w,y € A theorem of Stone-Weierstrass ( [23]) tells exactly whatdge
llz = yllp <0, [hn(z) — hn(y)| > € the result. [ |
which is just the negation of (8). REMARK. We conjecture that the differentiability of the entropy

Proof: Indeed, lete :11/2 andz_S € R* arbitrary. Choose rates can be proved for the whole spaelthough the proof scheme
anm € N, such thatn > 5. Then find anNy > m, such that fom above cannot be exploited. However, we have not sueckid

for every N > No on Ay _ constructing a process at which the entropy rate is notrdifféable.
1 1 1
(=5 )2 =1/ = <.
N N N IV. ENTROPY RATES OF SIGNED MEASURES AND OF
It follows that DYNAMICAL SYSTEMS
||(l’ - l70’ . 0) — (l’ - i)”p < ||(i, . i)||p In this section we would like to analyze analytic properties
n__m N N N N of more general definitions of entropy rates. Before it comes
mtimes to the details we would like to describe how to uncouple
a1 N-BE _ yit the entropy rates’ definition from the definition of a random
—V Np-1 T o source and to extend it to the whole sp&ef finite, signed
_1 1 1 measures.
SN7E =I5 5)ll2 <O,
Definition 4.1: Let P € P be a finite, signed measure. Let
but . » . e
P, resp.P_ be its positive resp. negative variation. Then we
1 1 1 1 define the entropy ratéIl(P) of P to be
hAn(—,.c; —,0,...,0) — An (=, ...y —
| N(m7 3 m7 ) ) ) N(N7 ) N)| . - -
RS H(P):=H(P;) — H(P-).

= log m —log N| — 1.
log N | | N—oo We straightforwardly obtain
We therefore find arV € N and suitablec, y € Ay _1 which

support the statement of the lemma. Corollary 4.1: Entropy rate viewed as a functional on the

whole linear spaceP(X) is Lipschitzian with Lip(H) =
One could thus intuitively be led to the assumption thatog 2.
entropy rates need not be continuous with respect to other proof: Let P,() € P(2) be two finite signed measures.

natural norms as, say, the norms given through the spaggsthe properties of the Jordan decomposition one obtains
L,(2, B, P) (definition see below). See, however, the discus-

sion in section IV-A. 1Py — Q4llrv, [|IP- = Q—|lrv < [P =Q||rv.



Thus we have Lemma 4.1 ([23]):Let1 <p<g< oo andP € PT a
|ﬁ(P) . ﬁ(@ﬂ _ |ﬁ(P+) . ﬁ(P_) . ﬁ(Q+) + ﬁ(Q_)I measure. Then it holds that

< [H(Py) - H(Q4)| + H(Q-) - H(P.)| 1£1l, < P77 |f],.
<log [Z[(||Ps — Q4llrv + 11Q— — P-[|7v)

< 2log [3] - [P — Q|lzv. Note first that this maked,(2, B, P) a subspace (as a

vector space only) ofL, (2, B, P) for all p > 1. We can
B therefore consider the entropy rate to be a functional on
We will exploit this in the following subsections. Ly(2, B, P) as described above fdr,. Thus we obtain the
following corollary.

A. Entropy rates of signed measures andigi{<2, B, P) Corollary 4.2: Let P € P+ a measure. The entropy rate
Let P be a measure off2, B) and L, (2, 3, P) be the space functionalH on L, (2, B, P) is Lipschitzian with
of P-integraple func'gionsf (uniquely determined up td°- Lip(H) =2 P(Q)l—% log [Z.
nullsets) equipped with the norm
Proof:
£l = [ 171aP e

o , H(f) -H(g)| < 2-log[Z]-|[f—glh
If @ is a finite, signed measure, l&t= Q. — Q_ its Jordan L. 4.1 i
decomposition andQ| = Q. + Q_ its total variation (see < 2:-log [Z]- P(Q) 7[|f — gllp-
section II). We writeP; << P, if m

Py(B)=0 = Py(B)=0

. . B. General dynamical systems
for B € B and say thaf’; is absolutely continuous w.r.i%, as Y 4

usual. The theorem of Radon-Nikodym tells us that the vectort€t (2,8, P,T) be a dynamical system, that is, in the

space ofP-integrable functions is isomorphic to the subspad@0St general definition a measure spdég 5, ) with a
measurable functio’ : @ — €. Note that, in this section,
Pp:={Q € P||Q| << P} (Q, B) is anarbitrary measurable space. The entropy rates
F- dynamical systems are defined in three steps [2]. We first

that is to the subspace of signed measures whose total Vgefine the entropy of a finite subfield of 5 by

ation is absolutely continuous w.r2. More concretely, the
isomorphism® : L,(Q, B, P) — Pp is described by the rule H(A,P):=— Z P(A)log P(A).

AcA
*()(B) = [ sap ) ) -
B Now letT—"A := {T""A| A € A} and further\/;_; T A
for B € B, and the inverse ob is given by be the finite subfield of3, which consists of all intersections
of elements of thel'*A, i = 0,...,n — 1. The entropy of a
Pp — Ly finite field A relative toT is then given by
Q g % - %, . 1 n—1 .
Where% is the Radon-Nikodym derivative of a measurg, H(A P, T) = h,?l_?;p EH( yo A
for which P* << P. Observe further that ) ) = )
Finally the entropy of the dynamical system is
e (N)llrv = [If]], —

H(P,T) :=sup H(A,T).
which makes® an isometry of normed spaces. Thus, the A
entropy rated, viewed as a functional of; by the law where the supremum ranges over all finite subfiellsof
= = B. We moreover introduce thk-th order entropy rateof a
H(f) := H(2(/)) dynamical system i
are, by theorem 3.1 Lipschitz continuous 6r(Q2, B, P) for H(P,T,k) = sup H(AT)
all measuresP. | A=k
Itis now an interesting question to ask whether the entrophere here the supremum ranges only over the finite subfields
rates are also continuous considered as a functional on theyith & elements. As entropy increases by splitting up events
normed spaces,, (2, B, P) for arbitraryp €]1, oo[, where the we have

norms are given by H(P,T,k) <H(P,T,k+1)

£l ::/|f|p dP. for all k¥ € N. Consider nowH (P, T, k) as a functional of

the probability measure oP. It is then a byproduct of the

This proves indeed to be true, which is quickly seen by a lodkvestigations from above that this functional is continso
at the subsequent lemma. with respect to the norm of total variation.



Theorem 4.1:Let (2, 8) be a measurable space afd: As a corollary we can tell something about the behaviour
Q2 — Q be a measurable function. The k-th order entropy raté the entropy rates of dynamical systems themselves.

H(,T,k): PH(Q,B) — R Corollary 4.3: Let (2, B) be a measurable space afd:
P —  H(P,T, k) Q2 — Q be a measurable function. The entropy rate
is continuous relative to the topology induced by the norm of H(.T): PT(Q,B) — o R
total variation. P — H(PT)

Proof: Let (P,) a sequence of probability measure
which converges to a probability measuPe We have from
the above theorem 3.1 tha&f (A, P,T) is Lipschitzian with
a Lipschitz constanfog |.4| where |A] is the number of
elements ofd. Letk € N ande € R... There is a finite subfield
F with |F| = k such thatH (P, T, k) — H(F,P,T) < e. We

Ss lower semicontinuous relative to the topology induced by
the norm of total variation.

Proof: Let P, be a sequence of probability measures that
converges in norm of total variation to a measéeWe have
to show that

obtain liminf H(P,,T) > H(P,T).
lim inf H(P,,T,k) > lim inf 7 (Fs Po, T) Assume the contrary so that we find a subsequé@cewith
(%) = = 5 o o
= H(F,P,T) > H(P,T) —e. with 6 > 0. Because ofimy_,.. H(P,T,k) = H(P,T) we
where (x) follows from the continuity ofH (F, P,T). As ¢ find a Ko € N such that for allk > K, we have
was arbitrary we obtain H(P.T.k) > H(P,T) 1) (13)
liminf H(P,, T, k) > H(P, T, k). , 3
n—00 Because of (12) we also find &, € N such that for all
It remains to show n > No 5
limsup F(P,,, T, k) < F(P, T, k) H(Pin), T) <H(P,T) = 30. (14)

n—oo

o Because of theorem 4.1 we find¥ € N, which, without
to finish the proof. We assume the contrary and let

loss of generality can be chosen greater thgnsuch that for

§ :=limsup H(P,, T, k) — H(P, T, k) > 0. all n > Ny
n—oo . o 6
We first find a subsequencel(n) such that H(Pyn), T, Ko) > H(P, T, Ko) — 3 (15)

limy, oo H(P(»), T, k) equals the limit superior of Taken altogether we find that

H(P,,T,k). With it we find a Ny € N such that for

— — (15—, — 0
all n > Ny H(H(Nl),T) > H(H(Nl),T, K()) > H(P,T, Ko) - g
— = = 26
Second we find &V, € N, which, without loss of generality, where the first inequality follows from the monotonicity of
can be assumed to be greater thénsuch that H(P,T, k) in k. The resulting inequality, however, is a con-
. 5 tradiction to (14). [ ]
[[Piny — PllTv < 3log &
V. ENTROPY RATES AND ASYMPTOTIC MEAN
and hence, by theorem 3.1 AT ONARITY
|H(A, Pyny, T) — H(A, P, T)| < 9 (10) Let (Q,B,P,T) _be a dynamip_al system as explained above,
3 that is, (Q2, B, P) is a probability space and” : Q@ — Q
for all finite subfieldsA with |A| = k. Last we find a finite is a measurable function. The dynamical system is called
subfield 7 with |F| = k such that stationary if
= J VBeB: P(B)=P(T 'B
H(F, Py, T) > H(Pi, TR = 5. (1) (B) = P(T"E)

and asymptotically mean stationary (AMSIf there is a

In sum we obtain measureP on (2, B) such that

_ (10) )
H(F,P,T) > H(F,P, 1) — = n—1 . )
( ) . ( 1(N1) ) 235 o VB eB: lim l Z P(T—zB) _ P(B)
T ==, = n—oo N 4
> H(Pyn,), T, k) — 3 > H(P,T,k), i=0

o It is easily seen that the resulting dynamical system
which is a contradiction to the definition (P, T,%). ® (Q,B,P,T) is stationary.P is therefore called thetationary



meanof the system. Asymptotically mean stationary systemghere(x) follows from a well known and elementary theorem
were an area of active research mostly in the late 80's [8], [1 (e.g. [13], p.22, theorem 2.1) and the second equation is
[11]. With the help of Birkhoff's famous ergodic theorem [17 obvious. Because of

[19], [26] it can be shown that asymptotic mean stationasity
equivalent to the existence of ergodic properties with eéesp
to bounded measurements [11].

1 1
0 < SJH(X) < SHN(PxoT™")

< 1log card(X)F — 50 0
In this section we consider the dynamical systems t
(Q, B, P, T), which are (canonically) associated to discretd"
random source¢X,), that is, (2, B) is the sequence space () llf(X) < lHk(X) < llog card(S)* — . 0,
from the introduction,P is the probability measure relative 3 3 3
to (X;) andT : Q@ — Q is the shift operator, that is, the assertion follows from an application of the sandwich
(Tw); = wi41. Consequently, we call a random sourcéheorem. [ ]

(asymptotically mean) stationary if its dynamical system i In the following we will write

In the following we will show how one can obtain a direct =
proof for the existence of entropy rates for AMS random P, == ZPX 0T~
sources by means of theorem 3.1. Note that it is a corollary of niso

the famous theorem of Shannon-McMillan-Breiman in its most Corollary 5.1: Let (X;) be a random source and
general form, that the entropy rates of this class of random’B’PX’T) be the associated dynamical system. Then it
sources exist. However, the proof given here is much mogg|4s that

elementary. See the final remarks of this section for a more

. . 1
detailed comparison of the two proofs. ¥n€N: lim ;(Ht(Px) — H'(P,))=0.
Proof: This follows from the equation
A. Proof for the existence of entropy rates of AMS sources Ll
Let (X;) be a discrete random source with valueglimand - Z H'(Px o T™") < H'(P,)
(Q, B, Px,T) the associated dynamical system as described i=0
above. We will again write 1l .
9 g—ZHt(PX oT™") +log n,
HY(Px) := HY(X) := H(X;..X}) "iso
o _ 1 which can be seen from [10], Lemma 2.3.4 and induction on
= Z Px(a)log 5——-
- Px(a) n. m
aext
— We now define
Remember thaH(X) was defined to béimsup, } H'(X).
H: P — R

The following lemma will show that the entropy rates Bf
and Px oT—* coincide for allk, which is a well known result. P = liminfien 1 Y e P(@) log % '

Lemma 5.1:Let (X;) be a discrete random source anéne obtains the same analytic propertieskbby rephrasing
(Q,B, Px,T) be the associated dynamical system. Then IgRmma 3.2 withlim inf instead oflim sup.

holds that As a corollary we now obtain thdl as well asH of Px
1 incide.
lim 2 (H!(Px) — H'(Px o T~*)) = 0. and theP,, coincide
tmoet Corollary 5.2: Let (X;) be a discrete random source and
Proof: Using the notationdb € X" is the concatenation (Q,B, Px,T) be the associated dynamical system. Then it
of the wordsa € ¥F,b € %) holds that
- Px(T~"{b}) H(Px) = H(P),
IF(X) :=IF(Px) = Px ({ab})log ———~+
FOO =1 (Px) = 30 37 Px({ah)log = TS HPy) = H(Po
acxk pext
and for all n € N.
Proof: Use corollary 5.1 in order to apply lemma 3.2 to
1 - Px({a})  the sequence := L H!(Px)), (b, := 2 H'(Px o T—*)) for
JH(X) = JF(Px) =~ Px ({ab})log ==~ . QU 1= ¢ X)), (be := ¢ X .
i (X) i (Px) + 72276 EZt x ({ab}) log Px({ab}) the first equation. For the second one rephrase lemma 3.2 with
aesbex liminf instead oflim sup. [ ]
one obtains

The key to the proof for the existence of the entropy
l(Ht(PX) + (X)) *) lHkth(X) rates is now that the convergence involved in the definition
t ‘ t of asymptotic mean stationarity respects the norm of total

= %(I,’f(X) + HY(Px o T7F)) variation.



Theorem 5.1:Let (2,8, P,T) be an AMS dynamical sys- VI. CONCLUSION

p i it = Lyl —i . . .
tem ar_ldP the stationary mean. WHtB, := 5 > ;5 PoT™". The analyses presented in this article helped get a more
Then it holds that

general grip of the analytic properties of the entropy rates
lim ||P, — PHTV =0. of discrete random sources. This may serve as an orientation
koo when dealing with entropy rates of more special classes of

We will not prove the theorem here, but rather tell thd@ndom sources. We also have given rise to a range of open
the theorem is a consequence of the theorems developedipPlems. For example, it would be interesting to know to
[9]. Alternatively, in a more direct fashion, one can prové"hat extentour_ arguments can be strengtheneq. To put it more
the theorem by means of Krengel's ergodic theorem, sE@NCrete we raise two exemplary questions. First, do eptrop
[27]. We finally remark that the convergence on the sefél€s have_; stronger_z?\nalytlc properties than Lipschitzicon
of the underlyingo-algebra involved in the definition of ity: say, differentiability> Second, do entropy rates disve
asymptotic mean stationarity is usually referred tosaeng NiC€ analytic properties when considering coarser tope$og
convergence whereas convergence in norm of total variaiorjhan that of total variation? It is known that the subclass of
also referred to aSkorokhod weakonvergence. Skorokhodstationary random sources is upper semicontinuous rel&div
weak convergence implies strong convergence as it can g Weak topology [10]. We believe that analogous resu“h_s ca
translated to uniform convergence on the sets of the uridgrly P& obtained on the weak topology for the subclass of *finite-

o-algebra, see lemma 2.2. For the above theorem however, f@ensional” random sources [5], a class encompassing the
need the inverse direction. hidden Markov models. As an additional benefit, this would,

) highly probably, yield new existence proofs in the stylehudtt
Now we can prove the existence of entropy rates for AM§ section V.

sources.
Theorem 5.2:Let (X,) be a discrete AMS random source APPENDIXA
and(Q, B, Px,T) be the associated dynamical system. Pet PROOF OF LEMMA 2.1

be the stationary mean of the system. Then it holds that

For the proof, we identify, as usual, cylinder sdse B
with sets of wordsdp € X! (B is the set of sequences which
are the continuations of the words #g). In our notation, we
correspondingly obtain

o 1
H(P) = H(PX) = tlggo ;Ht(Px),

that is the entropy rate dPy exists and is equal to that of the
stationary mearP.

Proof: As the P,, converge in TV-norm tdP (theorem 5.1) P(B) — Pla 16
we obtain, because of the continuity Bf, H (theorem 3.1), (B) ags (@) (16)
that
— - - _ for a measureP resp.
lim H(P,) =H(P) and Ilim H(P,) =H(P).
_ | P(B)= Y Pi(a)- P-(a) (17)
It follows, asH(P,) andH(P,,) are constant with respect to acAp

n (corollary 5.2) andH(P) = H(P) (as the entropy rates of . . .
stationary sources exist) thBE(Px ) — H(Py) — H(P). m ;c))r aP S|g£ed measureP with Jordan decomposition
= + —_— .
FINAL REMARK: As mentioned above, the result is usually
obtained as a corollary of the theorem of Shannon-McMiBaaiman The approximation theorem (see Halmos [12], p. 56, Th. D)

[28], [22], [3]. [4], which was iteratively extended [2], 4], [15] tells that, given a measurB, an eventB € B ande € R,
to finally hold for AMS sources in 1980 [9], [10]. The final rdsu we will find a cylinder setF such that

however, is centered around a difficult proof for the classtafionary

random sources. This proof is split up into two parts. Onet firs P(BAF) <e,
shows the result for the class of ergodic, stationary seunaich,

in turn, requires involved ergodic theorems. The extengiogeneral
stationary sources then needs the brilliant, but sophistit concept
of the ergodic decomposition of stationary random sour8gsThe

proof given here is thus simpler from a range of aspects asbidsed Proof: The second equation follows immediately from
on the comparatively tiny proof for the existence of entroptes of

stationary sources only. Note that this way we do not everd nee Z |P(a)| = Z |Z P(aa)

where BAF = (B \ F) U (F \ B) is the symmetric set
difference. A straightforward consequence of this is that
|P(B) — P(F)| < e.

the concept of ergodicity. It is also more elementary as mhelved aext aext a€X
theorem 3.1 can be obtained by means of basic calculus abmig. —|P(a)|
theorem 5.1 seems to require an ergodic theorem. Finally that in _ _
. . . . . < =
[5] it was shown that the class of finite-dimensional randamrses, - Z Z |P(aa)l Z |P(a)l

which includes the hidden Markov sources, is AMS. We themefo aextaex aexit

would like to point out that the entropy rates for the wholassl of which shows tha(}_, s |P(a)|):en is @ monotonically in-
hidden Markov sources exist, which seems to be widely unknow creasing sequence. It remains to show that it converges to



[|P|lrv. In the given situation, this translates to demonstrateet now B € B be an arbitrary event. Because of the

that, givene € R, there isTy € N with approximation theorem (see beginning of appendix A) there
Z \P@)] > ||| . is a sequence of cylinder setBy)en With
TV — €.
aexTo lim |P—Q|(Brx A B) =0.

Therefore letP, , P_ be the Jordan decomposition Bfand,
correspondingly2 = Q,UQ_ be the Hahn decomposition. AsA straightforward consequence lny.—.o. [P — Q|(By) =
a consequence of the approximation theorem (see above)( e— @)(B) and therefore
To .
\f/:/r:t?] To € N and a cylinder set corresponding tb C X khigo \P(By) — Q(Bi)| = |P(B) — Q(B)|.
€
PI(©) A 4) < § (18) As |P(B) - QB < [P - Qllrv, also

a straightforward || = P, + P_) consequence of which is 1P(B) = Q(B) < [[P = Qllrv-

that both
—+ . .
Po(Qs A A) < € and P(Q, A A) < € (19) Let now ¢ € R™. For the second inequality we have to

4 prove the existence of a sé& € 3, such that
Now note that the generd A (B = A A B in combination 1
with Q_ = (Q, and (19) yields |P(B) — Q(B)| > §||P— Qllrv — e
P (Q_ACA) =P, AA) < i (20) First, because of lemma 2.1, we fingt N such that
(19) and (20) then yield the inequalities > IP@) — Q@) > ||P = Qllrv — 2.
CA) 0 p i\ A) < PLy A A) < S @1 e
P (LA) P4\ A) < Pr(Qy )<Z( ) We put
and P_(24)=0 € Ay = {aeXx'|P(a)>Qa)},
P(4) =" P(2\0A) < P (2 ALA) < 7. (22) Ay = {aex'| Q@) > P@)}
Moreover, it is straightforward from (19) and (20) that and obtain
€
Py(4) > Pr(Q4) - (23) (P(A1) = Q(A1)) + (P(A2) — Q(A2))
as well as . = Y (P(@) - Q@)+ Y (Qa) - P(a))
P_(04) > P-(2-) - ;. (24) acA, g€ Ay (26)
We finally compute - Z |P(a) a)| > ||P = Qllrv — 2.
acxt
> IP@I =3 IP@I+ > |P@) Hence, for at least onee {1,2},
aexTo acA acCA ]
>| Y P@)+] ) P@) P(4) = QA) > 5P = Qllrv —e. (D)
acA acCA -
= |P(A)| + |P(CA)]
=[Py (A) = P_(A)| + |P+(CA) — P-(CA)| ACKNOWLEDGMENT
> Py(A) — P-(A) + P_(CA) — P;(CA) The author would like to thank Ulrich Faigle whose sug-
(21),(22) € € € € estions motivated much of the work presented here.
> (P - - P -7 P P
(23),(24) 4 4 4 4
= Po(Q4) + P_(Q-) — e = ||Pllzv — <. REFERENCES
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