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Alexander Schönhuth,Member, IEEE,

Abstract—Entropy rate of discrete random sources are a
real valued functional on the space of probability measures
associated with the random sources. If one equips this space
with a topology one can ask for the analytic properties of
the entropy rates. A natural choice is the topology, which is
induced by the norm of total variation. A central result is that
entropy rate is Lipschitz continuous relative to this topology.
The consequences are manifold. First, corollaries are obtained
that refer to prevalent objects of probability theory. Second,
the result is extended to entropy rate of dynamical systems.
Third, it is shown how to exploit the proof schemes to give a
direct and elementary proof for the existence of entropy rate of
asymptotically mean stationary random sources.

Index Terms—Entropy rate, ergodic theorems, entropy, dy-
namical system, asymptotically mean stationarity.

I. I NTRODUCTION

ENTROPY rate is a key quantity in information theory
as it is equal to the average amount of information per

symbol of a random source if it exists. Therefore, it is natural
to ask how entropy rate behaves if knowledge of random
sources is subject to uncertainties which, for example, may
be inherent to inference processes and/or originate from noisy
channels. However, closed formulas for entropy rate exist only
in rare examples. For example, already hidden Markov sources
(HMSs) seem to defy a convenient formula although there
is one for the special case of Markov sources. Therefore, in
this case, recent efforts focused on the direct investigation of
analytic properties of entropy rate like smoothness or even
analyticity [20], [21], [29], [30], [25], [16].

The purpose of this paper is to contribute to the issue of
analytic properties of entropy rate in a more general fashion.
Namely, we study the behavior of entropy rate relative to the
topology induced by the norm of total variation. This topology
is one of the natural choices and it is ubiquitous in both
theoretical and practical work. We show that entropy rate is
Lipschitzian on the whole space of discrete random sources
which is, due to an elementary theorem of Rademacher, close
to differentiability.

We will use this result to give a more elementary proof
of the existence of entropy rate for asymptotically mean
stationary sources which, for example, contain the classesof
arbitrary HMSs [24] and quantum random walks (QRWs) [1],
[5] as has recently been proven [6].

II. PRELIMINARIES

As usual,Σ∗ = ∪t≥0Σ
t is the set of all words (strings

of finite length) over the finite alphabetΣ together with the
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concatenation operation

ā ∈ Σt, b̄ ∈ Σs ⇒ āb̄ ∈ Σt+s.

For formal convenience, we have anempty word� such that
Σ0 = {�}.

Throughout this paper we will writeΩ = ΣN =
⊗∞

t=0 Σ
for the set of sequences overΣ and B for the σ-algebra
generated by the cylinder sets. We identify cylinder sets
B with sets of wordsAB ∈ Σt such thatB is the set of
sequences which start with the words inAB .

As usual, we identify stochastic processes(Xt)t∈N with
values inΣ with probability measuresPX on the measurable
space(Ω,B) and vice versa via the relationship (as discussed
above,ā = a0...at−1 ∈ Σt corresponds to the cylinder set of
sequences starting with the wordā)

PX(ā) = P ({X0 = a0, X1 = a1, ..., Xt−1 = at−1}),

where the term on the right hand side is the probability that
the random source emits the symbolsa0, ..., at−1 at periods
0, ..., t−1. As a consequence of the extension theorem ( [12],
p. 54, th. A), a stochastic process(Xt) is uniquely determined
by the valuesPX(ā) for all ā ∈ Σ∗.

A. Finite signed measures

Let
P(Σ) ⊂ {P : B(Σ) → R}

be the set of finite, signed measures on(Ω,B(Σ)), that is, the
set ofσ-additive but not necesarily positive, finite set functions
on B(Σ). We write P instead ofP(Σ), if the alphabet is
understood. By eventwise addition and scalar multiplication,
P(Σ) becomes a vector space. The most important relevant
properties of finite signed measures are summarized in the
following theorem (see [12], ch. VI for proofs).

Theorem 2.1:

1) The Jordan decompositiontheorem tells that for every
P ∈ P there are finite measuresP+, P− such that

P = P+ − P−

and for every other decompositionP = P1 − P2 with
measuresP1, P2 it holds thatP1 = P+ +δ, P2 = P−+δ
for another measureδ. In this sense,P+ and P− are
unique and calledpositiveresp.negative variation. The
measure|P | := P+ + P− is calledtotal variation.

2) In parallel to the Jordan decomposition we have the
Hahn decompositionof Ω into two disjoint events
Ω+, Ω−

Ω = Ω+ ∪̇ Ω−
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such thatP−(Ω+) = 0 and P+(Ω−) = 0. Ω+, Ω− are
uniquely determined up to|P |-null-sets.

3) Thenorm of total variation||.||TV on P is given by

||P ||TV := |P |(Ω) = P+(Ω) + P−(Ω)

= P+(Ω+) + P−(Ω−).

Obviously || |P | ||TV = ||P ||TV .

As the norm of total variation seems to be the most natural
choice for a norm, it is omnipresent in both related theoretical
and practical work. Computation of the norm of total variation,
however, is not always easy. The following lemma shows a
practicable way.

Lemma 2.1:

||P ||TV = sup
t∈N

∑

ā∈Σt

|P (ā)| = lim
t→∞

∑

ā∈Σt

|P (ā)|.

Again, P (ā) denotes the value of the finite signed measureP
on the cylinder set of sequences having prefixā.

Proof: As the proof is of purely measure theoretical
nature, we have deferred it to appendix A.

Lemma 2.2:Let P ; Q ∈ P(Σ) be two finite, signed mea-
sures. Then it holds that

sup
B∈B

|P (B) − Q(B)| ≤ ||P − Q||TV

≤ 2 sup
B∈B

|P (B) − Q(B)|.

Hence the topology induced by the norm of total variation is
that of the metric

d(P, Q) := sup
B∈B

|P (B) − Q(B)|.

Proof: We have deferred the measure theoretical proof to
appendix B..

Note further, as one can see from the proof of lemma 2.2,
that for two probability measuresP1, P2 it holds that

||P1 − P2||TV = 2 · sup
B∈B

|P1(B) − P2(B)|.

B. Entropy Rates

We write P+ ⊂ P for the subset of measures, which is a
convex cone inP and view the entropy rates as a functional
on it:

H : P+(Σ) −→ R

P 7→ lim supt∈N

1
t

∑

ā∈Σt P (ā) log 1
P (ā)

.

Note that we define entropy rates, in a slightly more general
fashion, not only for probability measures.

III. A NALYTIC PROPERTIES OF ENTROPY RATES

A. Lipschitz continuity

Our main result is the following theorem, which tells that the
entropy rates are Lipschitz continuous on the cone of measures
with respect to the topology induced by the norm of total
variation.

Theorem 3.1:The real valued functionalH is Lipschitzian
with Lip(H) = log |Σ|, i.e.

|H(P1) − H(P2)| ≤ (log |Σ|) ||P1 − P2||TV ,

whereP1, P2 ∈ P+(Σ).

Note that this makes the entropy rates a Lipschitzian func-
tional on the (convex) subset of probability measures ofP ,
which one usually is interested in.

To be prepared for the proof we present two lemmata, which
incorporate the essential ideas. We write

||P ||TV,t :=
∑

ā∈Σt

|P (ā)|

for a signed measureP ∈ P and

Ht(P ) := −
1

t

∑

ā∈Σt

P (ā) log P (ā),

for a measureP ∈ P+. Note that for a probability measure,
P (ā) coincides with the probability that a sequence emitted
by the random source relative toP starts with the word̄a, as
discussed above. Lemma 2.1 tells that

lim
t→∞

||P ||TV,t = ||P ||TV .

Note that||.||TV,t is not a norm onP .

Lemma 3.1:Let P, Q ∈ P+ be two measures such that
||P − Q||TV ≤ 1

e
. Then it holds that

|Ht(P ) − Ht(Q)|

≤ (log |Σ| +
1

t
log

1

||P − Q||TV,t

) · ||P − Q||TV,t,

where0 · log ∞ := 0 in case of||P − Q||TV,t = 0.

For the proof of this lemma we will need two sublemmata.

Sublemma1: Let

h : [0, 1] −→ R

x 7→ x log 1
x
.

Then it holds forx, y ∈ [0, 1]:

|x − y| ≤
1

e
=⇒ |h(x) − h(y)| ≤ h(|x − y|). (1)

Proof: The proof is a technical, analytic exercise. Note
first that h′(x) = log 1

x
− 1 and h′′(x) = − 1

x
. Henceh is

concave, has a global maximum at1
e

and h(1
e
) = 1

e
. We

therefore note that

x ≤ h(x) ⇐⇒ x ≤
1

e
. (2)
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Because of

|h(x) − h(y)| = ||h(x) − h(
1

e
)| − |h(

1

e
) − h(y)||

≤ max{|h(x) − h(
1

e
)|, |h(

1

e
) − h(y)|}

(3)

and the fact thath is monotically increasing on[0, 1
e
] we can,

without loss of generality, assume that eitherx, y ≥ 1
e

or
x, y ≤ 1

e
.

As

∀x ∈ [
1

e
, 1] : |h′(x)| ≤ 1, (4)

and because of the mean value theorem, it holds that

1

e
≤ x, y ≤ 1 =⇒ |h(x) − h(y)| ≤ |x − y|. (5)

Because of equation (2) we obtain the statement for the case
1
e
≤ x, y ≤ 1.

It remains the case (w.l.o.g.x < y) x < y ≤ 1
e
. Here it

holds that|h(x) − h(y)| = h(y) − h(x). We note that the
function log 1

t
− 1 is positive and monotonically decreasing

on [0, 1
e
] ((∗)). We obtain the claim from the calculation

|h(x) − h(y)| =

∫ y

x

(log
1

t
− 1)dt

(∗)

≤

∫ y

x

(log
1

t − x
− 1)dt

s=t−x
=

∫ y−x

0

(log
1

s
− 1)ds

=

[

s log
1

s

]y−x

0

= h(y − x).

(6)

Let now

∆n−1 := {x = (x1, ..., xn) ∈ R
n |xi ≥ 0,

∑

i

xi = 1},

be the usual regularn − 1-dimensional simplex inRn.

Sublemma2: Let 0 < K ∈ R, 2 ≤ n ∈ N and

∆n−1
K := K · ∆n−1 := {x ∈ R

n | (1/K)x ∈ ∆n−1},

The function

hK,n : ∆K,n−1 −→ R

x = (x1, ...., xn) 7→
∑n

i=1 xi log 1
xi

(7)

attains a global maximum at̄x := (K/n, ..., K/n).
Proof: This is a straightforward generalization of the case

K = 1, for which the claim is a well known result (e.g. [13]).

We are now able to prove lemma 3.1.

Proof: Obviously Ht(P ) = Ht(Q) in case of ||P −
Q||TV,t = 0. In case of||P − Q||TV,t > 0 we have

|Ht(P ) − Ht(Q)|

=
1

t
|
∑

ā∈Σt

P (ā) log
1

P (ā)
− Q(ā) log

1

Q(ā)
|

≤
1

t

∑

ā∈Σt

|P (ā) log
1

P (ā)
− Q(ā) log

1

Q(ā)
|

Subl. 1
≤

1

t

∑

ā∈Σt

|P (ā) − Q(ā)| log
1

|P (ā) − Q(ā)|

Subl. 2
≤

1

t

∑

ā∈Σt

||P − Q||TV,t

|Σ|t
log

|Σ|t

||P − Q||TV,t

=
1

t
||P − Q||TV,t(

∑

ā∈Σt

1

|Σ|t
t log |Σ|

+
∑

ā∈Σt

1

|Σ|t
1

||P − Q||TV,t

)

=
1

t
||P − Q||TV,t(t log |Σ| +

1

||P − Q||TV,t

).

To get control of the limes superior involved in the definition
of entropy rates we will further need

Lemma 3.2:Let (at) and(bt) two non-negative real valued
sequences such that

|at − bt| ≤ ct and lim
t→∞

ct = c.

Then it holds that

| lim sup
t→∞

at − lim sup
t→∞

bt| ≤ c.

Proof: Without loss of generality assumea :=
lim sup at ≥ lim sup bt =: b. Choose a subsequencek(t) such
that limt→∞ ak(t) = a. We obtain

a − b ≤ a − lim sup
t→∞

bk(t) = lim sup
t→∞

ak(t) − lim sup
t→∞

bk(t)

≤ lim sup
t→∞

|ak(t) − bk(t)| ≤ c.

We are now in position to prove theorem 3.1.

Proof: As Lipschitz continuity is a local property, we
can, without loss of generality, assume that||P − Q||TV ≤
1
e
. Putting at := Ht(P ) and bt := Ht(Q) one obtains by

lemma 3.1 that

|at − bt| ≤ ||P − Q||TV,t(log |Σ| +
1

t
||P − Q||TV,t) =: ct.

One further observes that, because of the definition of||.||TV,t

and lemma 2.1, that

lim
t→∞

ct = lim
t→∞

||P − Q||TV,t(log |Σ| +
1

t
||P − Q||TV,t)

= ||P − Q||TV · log |Σ|.

Plugging (at), (bt) and (ct) into lemma 3.2 then yields the
desired result.
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We conclusively remark that the idea of the proof depends to
a certain extent on the choice of the norm. To demonstrate this
we rephrase lemma 3.1 in a more general fashion, without the
“soul” of an entropy. Therefore letRn

+ := {x = (x1, ..., xn) ∈
R

n | xi ≥ 0} and

hn : R
n
+ −→ R

x = (x1, ..., xn) 7→ 1
log n

∑n

i=1 xi log 1
xi

,

wheren ≥ 2 and 0 log ∞ := 0. A more prosaic version of
lemma 3.1 then reads

|hn(x) − hn(y)| ≤ ||x − y||1 · (1 +
1

log n
log

1

||x − y||1
),

where ||x||1 =
∑

i |xi| as usual. An straightforward conse-
quence of the lemma now is that

∀ǫ ∈ R+ ∃δ ∈ R+ ∀n ≥ 2 ∀x, y ∈ ∆n−1 :

||x − y||1 < δ =⇒ |hn(x) − hn(y)| < ǫ, (8)

which, when translated back to entropies, tells that the entropy
rates are uniformly continuous onP+. We now note that the
statement of the generalized lemma need not be true relative
to norms||.||p different from ||.||1. More formally:

Lemma 3.3:Let 2 ≤ p < ∞ and ||x||p = p
√∑

i |xi|p the
usualp-norm onR

n. Then it holds that

∃ǫ ∈ R+ ∀δ ∈ R+ ∃n ≥ 2 ∃x, y ∈ ∆n−1 :

||x − y||p < δ, |hn(x) − hn(y)| > ǫ

which is just the negation of (8).
Proof: Indeed, letǫ = 1/2 andδ ∈ R

+ arbitrary. Choose
anm ∈ N, such thatm > 1

δ
. Then find anN0 > m, such that

for everyN ≥ N0 on ∆N−1

||(
1

N
, ...,

1

N
)||2 =

√

1

N
< δ.

It follows that

||(
1

m
, ...,

1

m
︸ ︷︷ ︸

mtimes

, 0, ..., 0) − (
1

N
, ...,

1

N
)||p ≤ ||(

1

N
, ...,

1

N
)||p

=
p

√

1

Np−1
= N− p−1

p = N
1
p
−1

≤ N− 1
2 = ||(

1

N
, ...,

1

N
)||2 < δ,

but

|hN (
1

m
, ...,

1

m
︸ ︷︷ ︸

m times

, 0, ..., 0)− hN (
1

N
, ...,

1

N
)|

=
1

log N
| log m − log N | −→

N→∞
1.

We therefore find anN ∈ N and suitablex, y ∈ ∆N−1 which
support the statement of the lemma.

One could thus intuitively be led to the assumption that
entropy rates need not be continuous with respect to other
natural norms as, say, the norms given through the spaces
Lp(Ω,B, P ) (definition see below). See, however, the discus-
sion in section IV-A.

B. Differentiability

Some corollaries of the theorem above will now shed light
on the issue of differentiability of entropy rates.

Corollary 3.1: Let V ⊂ P be a finite-dimensional linear
subspace ofP . Let B(V ) be the Borel-σ-algebra onV andλ
the Lebesgue measure on(V,B(V )). Then the functional

H : V −→ R

is differentiable almost everwhere (w.r.t.λ) on V .
Proof: Identify V with an R

n. Rademacher’s theorem (
[7]) tells that Lipschitzian functionals on anRn are differen-
tiable λ-a.e. This is precisely what yields the corollary.

Finally, one sees that the entropy rates of a finite-
dimensional set of probability measures can be approximated
by polynomials.

Corollary 3.2: Let K ⊂ P a finite-dimensional compact
subset (e.g. the subset of probability measures of a finite-
dimensional subspace ofP). Then

H : K −→ R

can be uniformly approximated by polynomials.
Proof: Identify K with a compact subset ofRn. The

theorem of Stone-Weierstrass ( [23]) tells exactly what yields
the result.

REMARK. We conjecture that the differentiability of the entropy
rates can be proved for the whole spaceP although the proof scheme
from above cannot be exploited. However, we have not succeeded in
constructing a process at which the entropy rate is not differentiable.

IV. ENTROPY RATES OF SIGNED MEASURES AND OF

DYNAMICAL SYSTEMS

In this section we would like to analyze analytic properties
of more general definitions of entropy rates. Before it comes
to the details we would like to describe how to uncouple
the entropy rates’ definition from the definition of a random
source and to extend it to the whole spaceP of finite, signed
measures.

Definition 4.1: Let P ∈ P be a finite, signed measure. Let
P+ resp.P− be its positive resp. negative variation. Then we
define the entropy rateH(P ) of P to be

H(P ) := H(P+) − H(P−).

We straightforwardly obtain

Corollary 4.1: Entropy rate viewed as a functional on the
whole linear spaceP(Σ) is Lipschitzian with Lip(H) =
2 log |Σ|.

Proof: Let P, Q ∈ P(Σ) be two finite signed measures.
By the properties of the Jordan decomposition one obtains

||P+ − Q+||TV , ||P− − Q−||TV ≤ ||P − Q||TV .
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Thus we have

|H(P ) − H(Q)| = |H(P+) − H(P−) − H(Q+) + H(Q−)|

≤ |H(P+) − H(Q+)| + |H(Q−) − H(P−)|

≤ log |Σ|(||P+ − Q+||TV + ||Q− − P−||TV )

≤ 2 log |Σ| · ||P − Q||TV .

We will exploit this in the following subsections.

A. Entropy rates of signed measures and onLp(Ω,B, P )

Let P be a measure on(Ω,B) andL1(Ω,B, P ) be the space
of P -integrable functionsf (uniquely determined up toP -
nullsets) equipped with the norm

||f ||1 :=

∫

|f | dP.

If Q is a finite, signed measure, letQ = Q+ −Q− its Jordan
decomposition and|Q| = Q+ + Q− its total variation (see
section II). We writeP1 << P2 if

P2(B) = 0 =⇒ P1(B) = 0

for B ∈ B and say thatP1 is absolutely continuous w.r.t.P2 as
usual. The theorem of Radon-Nikodym tells us that the vector
space ofP -integrable functions is isomorphic to the subspace

PP := {Q ∈ P | |Q| << P}

that is to the subspace of signed measures whose total vari-
ation is absolutely continuous w.r.t.P . More concretely, the
isomorphismΦ : L1(Ω,B, P ) → PP is described by the rule

Φ(f)(B) =

∫

B

f dP

for B ∈ B, and the inverse ofΦ is given by

PP −→ L1

Q 7→ dQ+

dP
− dQ−

dP
,

wheredP∗

dP
is the Radon-Nikodym derivative of a measureP ∗,

for which P ∗ << P . Observe further that

||Φ(f)||TV = ||f ||1,

which makesΦ an isometry of normed spaces. Thus, the
entropy ratesH, viewed as a functional onL1 by the law

H(f) := H(Φ(f))

are, by theorem 3.1 Lipschitz continuous onL1(Ω,B, P ) for
all measuresP .

It is now an interesting question to ask whether the entropy
rates are also continuous considered as a functional on the
normed spacesLp(Ω,B, P ) for arbitraryp ∈]1,∞[, where the
norms are given by

||f ||p :=

∫

|f |p dP.

This proves indeed to be true, which is quickly seen by a look
at the subsequent lemma.

Lemma 4.1 ( [23]):Let 1 ≤ p < q < ∞ and P ∈ P+ a
measure. Then it holds that

||f ||p ≤ P (Ω)
1
p
− 1

q ||f ||q.

Note first that this makesLp(Ω,B, P ) a subspace (as a
vector space only) ofL1(Ω,B, P ) for all p > 1. We can
therefore consider the entropy rate to be a functional on
Lp(Ω,B, P ) as described above forL1. Thus we obtain the
following corollary.

Corollary 4.2: Let P ∈ P+ a measure. The entropy rate
functionalH on Lp(Ω,B, P ) is Lipschitzian with

Lip(H) = 2 · P (Ω)1−
1
p · log |Σ|.

Proof:

|H(f) − H(g)|
C. 4.1
≤ 2 · log |Σ| · ||f − g||1

L. 4.1
≤ 2 · log |Σ| · P (Ω)1−

1
p ||f − g||p.

B. General dynamical systems

Let (Ω,B, P, T ) be a dynamical system, that is, in the
most general definition a measure space(Ω,B, P ) with a
measurable functionT : Ω → Ω. Note that, in this section,
(Ω,B) is an arbitrary measurable space. The entropy rates
of dynamical systems are defined in three steps [2]. We first
define the entropy of a finite subfieldA of B by

H(A, P ) := −
∑

A∈A

P (A) log P (A).

Now let T−nA := {T−nA | A ∈ A} and further
∨n−1

i=0 T−iA
be the finite subfield ofB, which consists of all intersections
of elements of theT−iA, i = 0, ..., n − 1. The entropy of a
finite field A relative toT is then given by

H(A, P, T ) := lim sup
n→∞

1

n
H(

n−1∨

i=0

T−iA).

Finally the entropy of the dynamical system is

H(P, T ) := sup
A

H(A, T ).

where the supremum ranges over all finite subfieldsA of
B. We moreover introduce thek-th order entropy rateof a
dynamical system

H(P, T, k) := sup
|A|=k

H(A, T )

where here the supremum ranges only over the finite subfields
A with k elements. As entropy increases by splitting up events
we have

H(P, T, k) ≤ H(P, T, k + 1)

for all k ∈ N. Consider nowH(P, T, k) as a functional of
the probability measure ofP . It is then a byproduct of the
investigations from above that this functional is continuous
with respect to the norm of total variation.
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Theorem 4.1:Let (Ω,B) be a measurable space andT :
Ω → Ω be a measurable function. The k-th order entropy rate

H(., T, k) : P+(Ω,B) −→ R

P 7→ H(P, T, k)

is continuous relative to the topology induced by the norm of
total variation.

Proof: Let (Pn) a sequence of probability measures,
which converges to a probability measurēP . We have from
the above theorem 3.1 thatH(A, P, T ) is Lipschitzian with
a Lipschitz constantlog |A| where |A| is the number of
elements ofA. Letk ∈ N andǫ ∈ R+. There is a finite subfield
F with |F| = k such thatH(P̄ , T, k)−H(F , P̄ , T ) ≤ ǫ. We
obtain

lim inf
n→∞

H(Pn, T, k) ≥ lim inf
n→∞

H(F , Pn, T )

= lim
n→∞

H(F , Pn, T )

(∗)
= H(F , P̄ , T ) ≥ H(P̄ , T )− ǫ.

where (∗) follows from the continuity ofH(F , P, T ). As ǫ
was arbitrary we obtain

lim inf
n→∞

H(Pn, T, k) ≥ H(P̄ , T, k).

It remains to show

lim sup
n→∞

H(Pn, T, k) ≤ H(P̄ , T, k)

to finish the proof. We assume the contrary and let

δ := lim sup
n→∞

H(Pn, T, k) − H(P̄ , T, k) > 0.

We first find a subsequence l(n) such that
limn→∞ H(Pl(n), T, k) equals the limit superior of
H(Pn, T, k). With it we find a N0 ∈ N such that for
all n ≥ N0

H(Pl(n), T, k) > H(P̄ , T, k) +
2δ

3
. (9)

Second we find aN1 ∈ N, which, without loss of generality,
can be assumed to be greater thanN0 such that

||Pl(n) − P̄ ||TV <
δ

3 log k

and hence, by theorem 3.1

|H(A, Pl(n), T ) − H(A, P̄ , T )| <
δ

3
(10)

for all finite subfieldsA with |A| = k. Last we find a finite
subfieldF with |F| = k such that

H(F , Pl(N1), T ) > H(Pl(N1), T, k) −
δ

3
. (11)

In sum we obtain

H(F , P̄ , T )
(10)
> H(F , Pl(N1), T ) −

δ

3
(11)
> H(Pl(N1), T, k) −

2δ

3

(9)
> H(P̄ , T, k),

which is a contradiction to the definition ofH(P̄ , T, k).

As a corollary we can tell something about the behaviour
of the entropy rates of dynamical systems themselves.

Corollary 4.3: Let (Ω,B) be a measurable space andT :
Ω → Ω be a measurable function. The entropy rate

H(., T ) : P+(Ω,B) −→ R

P 7→ H(P, T )

is lower semicontinuous relative to the topology induced by
the norm of total variation.

Proof: Let Pn be a sequence of probability measures that
converges in norm of total variation to a measureP̄ . We have
to show that

lim inf
n→∞

H(Pn, T ) ≥ H(P̄ , T ).

Assume the contrary so that we find a subsequencel(n) with

lim
n→∞

H(Pl(n), T ) = H(P̄ , T ) − δ (12)

with δ > 0. Because oflimk→∞ H(P̄ , T, k) = H(P̄ , T ) we
find a K0 ∈ N such that for allk ≥ K0 we have

H(P̄ , T, k) > H(P̄ , T ) −
δ

3
. (13)

Because of (12) we also find aN0 ∈ N such that for all
n ≥ N0

H(Pl(n), T ) < H(P̄ , T )−
2

3
δ. (14)

Because of theorem 4.1 we find aN1 ∈ N, which, without
loss of generality can be chosen greater thanN0 such that for
all n ≥ N1

H(Pl(n), T, K0) > H(P̄ , T, K0) −
δ

3
. (15)

Taken altogether we find that

H(Pl(N1), T ) ≥ H(Pl(N1), T, K0)
(15)
> H(P̄ , T, K0) −

δ

3
(13)
> H(P̄ , T ) −

2

3
δ

where the first inequality follows from the monotonicity of
H(P, T, k) in k. The resulting inequality, however, is a con-
tradiction to (14).

V. ENTROPY RATES AND ASYMPTOTIC MEAN

STATIONARITY

Let (Ω,B, P, T ) be a dynamical system as explained above,
that is, (Ω,B, P ) is a probability space andT : Ω → Ω
is a measurable function. The dynamical system is called
stationary, if

∀B ∈ B : P (B) = P (T−1B)

and asymptotically mean stationary (AMS), if there is a
measureP̄ on (Ω,B) such that

∀B ∈ B : lim
n→∞

1

n

n−1∑

i=0

P (T−iB) = P̄ (B).

It is easily seen that the resulting dynamical system
(Ω,B, P̄ , T ) is stationary.P̄ is therefore called thestationary
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meanof the system. Asymptotically mean stationary systems
were an area of active research mostly in the late 80’s [9], [18],
[11]. With the help of Birkhoff’s famous ergodic theorem [17],
[19], [26] it can be shown that asymptotic mean stationarityis
equivalent to the existence of ergodic properties with respect
to bounded measurements [11].

In this section we consider the dynamical systems
(Ω,B, P, T ), which are (canonically) associated to discrete
random sources(Xt), that is, (Ω,B) is the sequence space
from the introduction,P is the probability measure relative
to (Xt) and T : Ω → Ω is the shift operator, that is,
(Tω)t = ωt+1. Consequently, we call a random source
(asymptotically mean) stationary if its dynamical system is.

In the following we will show how one can obtain a direct
proof for the existence of entropy rates for AMS random
sources by means of theorem 3.1. Note that it is a corollary of
the famous theorem of Shannon-McMillan-Breiman in its most
general form, that the entropy rates of this class of random
sources exist. However, the proof given here is much more
elementary. See the final remarks of this section for a more
detailed comparison of the two proofs.

A. Proof for the existence of entropy rates of AMS sources

Let (Xt) be a discrete random source with values inΣ and
(Ω,B, PX , T ) the associated dynamical system as described
above. We will again write

Ht(PX) := Ht(X) := H(X1...Xt)

:=
∑

ā∈Σt

PX(ā) log
1

PX(ā)
.

Remember thatH(X) was defined to belim supt
1
t
Ht(X).

The following lemma will show that the entropy rates ofPX

andPX ◦T−k coincide for allk, which is a well known result.

Lemma 5.1:Let (Xt) be a discrete random source and
(Ω,B, PX , T ) be the associated dynamical system. Then it
holds that

lim
t→∞

1

t
(Ht(PX) − Ht(PX ◦ T−k)) = 0.

Proof: Using the notation (̄ab̄ ∈ Σt+k is the concatenation
of the wordsā ∈ Σk, b̄ ∈ Σt)

Ik
t (X) := Ik

t (PX) :=
∑

ā∈Σk

∑

b̄∈Σt

PX({āb̄}) log
PX(T−k{b̄})

PX({āb̄})

and

Jk
t (X) := Jk

t (PX) :=
1

t

∑

ā∈Σk

∑

b̄∈Σt

PX({āb̄}) log
PX({ā})

PX({āb̄})

one obtains

1

t
(Ht(PX) + Jk

t (X))
(∗)
=

1

t
Hk+t(X)

=
1

t
(Ik

n(X) + Ht(PX ◦ T−k))

where(∗) follows from a well known and elementary theorem
(e.g. [13], p.22, theorem 2.1) and the second equation is
obvious. Because of

0 ≤
1

t
Jk

t (X) ≤
1

t
Hk(PX ◦ T−t)

≤
1

t
log card(Σ)k −→t→∞ 0

and

0 ≤
1

t
Ik
t (X) ≤

1

t
Hk(X) ≤

1

t
log card(Σ)k −→t→∞ 0,

the assertion follows from an application of the sandwich
theorem.

In the following we will write

Pn :=
1

n

n−1∑

i=0

PX ◦ T−i.

Corollary 5.1: Let (Xt) be a random source and
(Ω,B, PX , T ) be the associated dynamical system. Then it
holds that

∀n ∈ N : lim
t→∞

1

t
(Ht(PX) − Ht(Pn)) = 0.

Proof: This follows from the equation

1

n

n−1∑

i=0

Ht(PX ◦ T−i) ≤ Ht(Pn)

≤
1

n

n−1∑

i=0

Ht(PX ◦ T−i) + log n,

which can be seen from [10], Lemma 2.3.4 and induction on
n.

We now define

H : P+(Σ) −→ R

P 7→ lim inf t∈N
1
t

∑

ā∈Σt P (ā) log 1
P (ā)

.

One obtains the same analytic properties forH by rephrasing
lemma 3.2 withlim inf instead oflim sup.

As a corollary we now obtain thatH as well asH of PX

and thePn coincide.

Corollary 5.2: Let (Xt) be a discrete random source and
(Ω,B, PX , T ) be the associated dynamical system. Then it
holds that

H(PX) = H(Pn),

H(PX) = H(Pn)

for all n ∈ N.
Proof: Use corollary 5.1 in order to apply lemma 3.2 to

the sequences(at := 1
t
Ht(PX)), (bt := 1

t
Ht(PX ◦ T−k)) for

the first equation. For the second one rephrase lemma 3.2 with
lim inf instead oflim sup.

The key to the proof for the existence of the entropy
rates is now that the convergence involved in the definition
of asymptotic mean stationarity respects the norm of total
variation.
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Theorem 5.1:Let (Ω,B, P, T ) be an AMS dynamical sys-
tem andP̄ the stationary mean. WritePn := 1

n

∑n−1
i=0 P ◦T−i.

Then it holds that

lim
k→∞

||Pn − P̄ ||TV = 0.

We will not prove the theorem here, but rather tell that
the theorem is a consequence of the theorems developed in
[9]. Alternatively, in a more direct fashion, one can prove
the theorem by means of Krengel’s ergodic theorem, see
[27]. We finally remark that the convergence on the sets
of the underlyingσ-algebra involved in the definition of
asymptotic mean stationarity is usually referred to asstrong
convergence whereas convergence in norm of total variationis
also referred to asSkorokhod weakconvergence. Skorokhod
weak convergence implies strong convergence as it can be
translated to uniform convergence on the sets of the underlying
σ-algebra, see lemma 2.2. For the above theorem however, we
need the inverse direction.

Now we can prove the existence of entropy rates for AMS
sources.

Theorem 5.2:Let (Xt) be a discrete AMS random source
and(Ω,B, PX , T ) be the associated dynamical system. LetP̄
be the stationary mean of the system. Then it holds that

H(P̄ ) = H(PX) = lim
t→∞

1

t
Ht(PX),

that is the entropy rate ofPX exists and is equal to that of the
stationary mean̄P .

Proof: As thePn converge in TV-norm tōP (theorem 5.1)
we obtain, because of the continuity ofH,H (theorem 3.1),
that

lim
n→∞

H(Pn) = H(P̄ ) and lim
n→∞

H(Pn) = H(P̄ ).

It follows, asH(Pn) andH(Pn) are constant with respect to
n (corollary 5.2) andH(P̄ ) = H(P̄ ) (as the entropy rates of
stationary sources exist) thatH(PX) = H(PX) = H(P̄ ).

FINAL REMARK : As mentioned above, the result is usually
obtained as a corollary of the theorem of Shannon-McMillan-Breiman
[28], [22], [3], [4], which was iteratively extended [2], [14], [15]
to finally hold for AMS sources in 1980 [9], [10]. The final result,
however, is centered around a difficult proof for the class ofstationary
random sources. This proof is split up into two parts. One first
shows the result for the class of ergodic, stationary sources, which,
in turn, requires involved ergodic theorems. The extensionto general
stationary sources then needs the brilliant, but sophisticated concept
of the ergodic decomposition of stationary random sources [8]. The
proof given here is thus simpler from a range of aspects as it is based
on the comparatively tiny proof for the existence of entropyrates of
stationary sources only. Note that this way we do not even need
the concept of ergodicity. It is also more elementary as the involved
theorem 3.1 can be obtained by means of basic calculus alone.Only
theorem 5.1 seems to require an ergodic theorem. Finally note that in
[5] it was shown that the class of finite-dimensional random sources,
which includes the hidden Markov sources, is AMS. We therefore
would like to point out that the entropy rates for the whole class of
hidden Markov sources exist, which seems to be widely unknown.

VI. CONCLUSION

The analyses presented in this article helped get a more
general grip of the analytic properties of the entropy rates
of discrete random sources. This may serve as an orientation
when dealing with entropy rates of more special classes of
random sources. We also have given rise to a range of open
problems. For example, it would be interesting to know to
what extent our arguments can be strengthened. To put it more
concrete we raise two exemplary questions. First, do entropy
rates have stronger analytic properties than Lipschitz continu-
ity, say, differentiability? Second, do entropy rates alsohave
nice analytic properties when considering coarser topologies
than that of total variation? It is known that the subclass of
stationary random sources is upper semicontinuous relative to
the weak topology [10]. We believe that analogous results can
be obtained on the weak topology for the subclass of “finite-
dimensional” random sources [5], a class encompassing the
hidden Markov models. As an additional benefit, this would,
highly probably, yield new existence proofs in the style of that
of section V.

APPENDIX A
PROOF OF LEMMA 2.1

For the proof, we identify, as usual, cylinder setsB ∈ B
with sets of wordsAB ∈ Σt (B is the set of sequences which
are the continuations of the words inAB). In our notation, we
correspondingly obtain

P (B) =
∑

ā∈AB

P (ā) (16)

for a measureP resp.

P (B) =
∑

ā∈AB

P+(ā) − P−(ā) (17)

for a signed measureP with Jordan decomposition
P = P+ − P−.

The approximation theorem (see Halmos [12], p. 56, Th. D)
tells that, given a measureP , an eventB ∈ B and ǫ ∈ R+,
we will find a cylinder setF such that

P (B △ F ) < ǫ,

where B△F = (B \ F ) ∪ (F \ B) is the symmetric set
difference. A straightforward consequence of this is that
|P (B) − P (F )| < ǫ.

Proof: The second equation follows immediately from
∑

ā∈Σt

|P (ā)| =
∑

ā∈Σt

|
∑

a∈Σ

P (āa)|

︸ ︷︷ ︸

=|P (ā)|

≤
∑

ā∈Σt

∑

a∈Σ

|P (āa)| =
∑

ā∈Σt+1

|P (ā)|

which shows that(
∑

ā∈Σt |P (ā)|)t∈N is a monotonically in-
creasing sequence. It remains to show that it converges to
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||P ||TV . In the given situation, this translates to demonstrate
that, givenǫ ∈ R+, there isT0 ∈ N with

∑

ā∈ΣT0

|P (ā)| > ||P ||TV − ǫ.

Therefore letP+, P− be the Jordan decomposition ofP and,
correspondingly,Ω = Ω+∪̇Ω− be the Hahn decomposition. As
a consequence of the approximation theorem (see above) we
find T0 ∈ N and a cylinder set corresponding toA ⊂ ΣT0

with
|P |(Ω+ △ A) <

ǫ

4
(18)

a straightforward (|P | = P+ + P−) consequence of which is
that both

P+(Ω+ △ A) <
ǫ

4
and P−(Ω+ △ A) <

ǫ

4
(19)

Now note that the general∁A △ ∁B = A △ B in combination
with Ω− = ∁Ω+ and (19) yields

P−(Ω− △ ∁A) = P (Ω+ △ A) <
ǫ

4
. (20)

(19) and (20) then yield the inequalities

P+(∁A)
P+(Ω−)=0

= P+(Ω+ \ A) ≤ P+(Ω+ △ A) <
ǫ

4
(21)

and

P−(A)
P−(Ω+)=0

= P−(Ω−\∁A) ≤ P−(Ω− △ ∁A) <
ǫ

4
. (22)

Moreover, it is straightforward from (19) and (20) that

P+(A) > P+(Ω+) −
ǫ

4
(23)

as well as
P−(∁A) > P−(Ω−) −

ǫ

4
. (24)

We finally compute
∑

ā∈ΣT0

|P (ā)| =
∑

ā∈A

|P (ā)| +
∑

ā∈∁A

|P (ā)|

≥ |
∑

ā∈A

P (ā)| + |
∑

ā∈∁A

P (ā)|

= |P (A)| + |P (∁A)|

= |P+(A) − P−(A)| + |P+(∁A) − P−(∁A)|

≥ P+(A) − P−(A) + P−(∁A) − P+(∁A)

(21),(22)
>

(23),(24)
(P+(Ω+) −

ǫ

4
) −

ǫ

4
+ (P−(Ω−) −

ǫ

4
) −

ǫ

4

= P+(Ω+) + P−(Ω−) − ǫ = ||P ||TV − ǫ.

APPENDIX B
PROOF OF LEMMA 2.2

Proof: We first show the first inequality. Therefore letB
be a cylinder set, that is,B ⊂ Σt for a t. It follows that

|P (B) − Q(B)| = |
∑

ā∈B

P (ā) −
∑

ā∈B

Q(ā)|

≤
∑

ā∈B

|P (ā) − Q(ā)|

≤
∑

ā∈Σt

|P (ā) − Q(ā)| ≤ ||P − Q||TV .

(25)

Let now B ∈ B be an arbitrary event. Because of the
approximation theorem (see beginning of appendix A) there
is a sequence of cylinder sets(Bk)k∈N with

lim
k→∞

|P − Q|(Bk △ B) = 0.

A straightforward consequence islimk→∞ |P − Q|(Bk) =
(P − Q)(B) and therefore

lim
k→∞

|P (Bk) − Q(Bk)| = |P (B) − Q(B)|.

As |P (Bk) − Q(Bk)| ≤ ||P − Q||TV , also
|P (B) − Q(B)| ≤ ||P − Q||TV .

Let now ǫ ∈ R
+. For the second inequality we have to

prove the existence of a setB ∈ B, such that

|P (B) − Q(B)| >
1

2
||P − Q||TV − ǫ.

First, because of lemma 2.1, we findt ∈ N such that
∑

ā∈Σt

|P (ā) − Q(ā)| > ||P − Q||TV − 2ǫ.

We put

A1 := {ā ∈ Σt | P (ā) > Q(ā)},

A2 := {ā ∈ Σt | Q(ā) > P (ā)}

and obtain

(P (A1) − Q(A1)) + (P (A2) − Q(A2))

=
∑

ā∈A1

(P (ā) − Q(ā)) +
∑

ā∈A2

(Q(ā) − P (ā))

=
∑

ā∈Σt

|P (ā) − Q(ā)| > ||P − Q||TV − 2ǫ.

(26)

Hence, for at least onei ∈ {1, 2},

|P (Ai) − Q(Ai)| >
1

2
||P − Q||TV − ǫ. (27)
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