Note on the number of rooted complete N-ary trees

Stephan Dominique Andres
Zentrum für angewandte Informatik Köln
Weyertal 80, 50931 Köln, Germany
andres@zpr.uni-koeln.de

May 22, 2006

Abstract

We determine a recursive formula for the number of rooted complete N ary trees with n leaves, which generalizes the formula for the sequence of Wedderburn-Etherington numbers. The diagonal sequence of our new sequences equals to the sequence of numbers of rooted trees with $N+1$ vertices.

Key words: parenthesis structure enumeration, complete N-ary rooted tree, N-ary operation, adder topology

1 Introduction

A problem occurring in hardware design is the following: Given an n-operand addition that has to be realized by a set of binary adders, how many possibilities are there to arrange the adders? [1] To be precise we do not care about commutative operations, which can be executed on the adders without changing the arrangement. In a mathematical language, we seek for the number of interpretations of x^{n} (or the number of ways to insert parentheses) when multiplication is commutative but not associative, or, from another point of view, we are looking for the number of isomorphism classes of n-leaf complete binary rooted trees (where every vertex has either 0 or 2 children). These numbers are known as Wedderburn-Etherington numbers, their sequence $\left(T_{n}\right)_{n}$ has the key A001190 in the On-Line Encyclopedia of Integer Sequences [2] and its generating function $B(x)$ satisfies the functional
equation

$$
B(x)=x+\frac{1}{2}\left(B(x)^{2}+B\left(x^{2}\right)\right)
$$

cf. [3]. So, a recursive method to calculate the sequence is given by

$$
\begin{aligned}
T_{1} & =1 \\
T_{2 n+2} & =\sum_{i=1}^{n} T_{i} \cdot T_{2 n+2-i}+\frac{T_{n+1}\left(T_{n+1}+1\right)}{2} \quad \text { for } n \geq 0 \\
T_{2 n+1} & =\sum_{i=1}^{n} T_{i} \cdot T_{2 n+1-i} \quad \text { for } n \geq 1
\end{aligned}
$$

The aim of this paper is to generalize this formula from complete binary to complete N-ary trees (or from binary adders to N-ary adders as building blocks). Thus we want to determine the number $T_{n}^{(N)}$ of isomorphism classes of rooted trees with n leaves with the property that each vertex has either N or 0 children.

2 Recursive formula

To abbreviate notation, we call such a rooted complete N-ary tree with n leaves an n-tree whenever N is fixed. Let

$$
\begin{equation*}
p_{i}^{(D)}=\#\left\{\left(h_{1}, \ldots, h_{D}\right) \mid \forall l: h_{l} \geq 1, \sum_{l=1}^{D} h_{l}=i\right\}=\binom{i-1}{D-1} \tag{1}
\end{equation*}
$$

be the number of unordered partitions of i into D pieces. Then we may formulate

Theorem 1 For $N \geq 2$ and $n \geq 2, T_{n}^{(N)}$ can be calculated recursively via

$$
\begin{aligned}
T_{1}^{(N)} & =1, \\
T_{n}^{(N)} & =\sum_{b=1}^{N} \sum_{\substack{\left(i_{1}, \ldots, i_{b}\right) \\
\sum_{\begin{subarray}{c}{b \\
j=1 \\
i_{j}=N \\
i_{j} \geq 1 \forall j} }} \sum_{\substack{\left(k_{1}, \ldots, k_{b}\right) \\
1 \leq k_{1}<k_{2}<\cdots<k_{b} \leq n \\
\sum_{j}^{b}=1 \\
j=1 \\
i_{j} k_{j}=n}}}\end{subarray}} \prod_{j=1}^{b} \sum_{D=1}^{i_{j}}\binom{i_{j}-1}{D-1}\binom{T_{k_{j}}^{(N)}}{D} .
\end{aligned}
$$

Proof. Clearly, $T_{1}^{(N)}=1$. So consider an n-tree, $n>1$. Then its root has N children that are roots of $r_{1^{-}}, r_{2^{-}, \ldots,}, r_{N}$-trees, respectively, with $r_{s} \geq 1$ for
all s, and $\sum_{s=1}^{N} r_{s}=n . r_{s}$ is called input size of the s-th child's tree. Since we do not care about permutations we may assume without loss of generality that $r_{1} \leq r_{2} \leq \ldots \leq r_{N}$. We call the set of those r_{j}-trees with the same input size a block, and denote the number of blocks by b. The block size is the number of elements of a block. So we have blocks of (positive) block sizes i_{1}, \ldots, i_{b} with respective input sizes k_{1}, \ldots, k_{b} where w.l.o.g. $1 \leq k_{1}<\cdots<k_{b} \leq n$. We state that

$$
\sum_{j=1}^{b} i_{j} k_{j}=n, \quad \sum_{j=1}^{b} i_{j}=N
$$

We will count at first the number of possibilities for a block with block size i and input size k, a number which we denote by $B(k, i)$. Then we derive the number $T\left(b,\left(i_{1}, \ldots, i_{b}\right),\left(k_{1}, \ldots, k_{b}\right)\right)$ of trees for fixed $\left(r_{1}, \ldots, r_{N}\right)$, i.e., for fixed b, block sizes i_{1}, \ldots, i_{b}, and input sizes k_{1}, \ldots, k_{b}. Note that for distinct values of the 3-tupel $\left(b,\left(i_{1}, \ldots, i_{b}\right),\left(k_{1}, \ldots, k_{b}\right)\right)$ trees cannot be isomorphic, since isomorphic trees must have the same number of blocks, corresponding block sizes, and corresponding input sizes, as we assume $k_{1}<\cdots<k_{b}$. Therefore we obtain the total number of n-trees simply by adding $T\left(b,\left(i_{1}, \ldots, i_{b}\right),\left(k_{1}, \ldots, k_{b}\right)\right)$ over all possibilities for $\left(b,\left(i_{1}, \ldots, i_{b}\right),\left(k_{1}, \ldots, k_{b}\right)\right)$, i.e.,

$$
\begin{equation*}
T_{n}^{(N)}=\sum_{b=1}^{N} \sum_{\substack{\left(i_{1}, \ldots, i_{b}\right) \\
\sum_{\begin{subarray}{c}{b \\
j=1 \\
i_{j}=N \\
i_{j} \geq 1 \forall j} }} \sum_{\substack{\left(k_{1}, \ldots, k_{b}\right) \\
1 \leq k_{1}<k_{2}<\cdots<k_{b} \leq n \\
\sum_{j=1}^{b} i_{j} k_{j}=n}}}\end{subarray}} T\left(b,\left(i_{1}, \ldots, i_{b}\right),\left(k_{1}, \ldots, k_{b}\right)\right) . \tag{2}
\end{equation*}
$$

Now we consider a block with i elements, each one having input size k. Let D be the number of distinct k-trees occurring in the block. We have

$$
\binom{T_{k}^{(N)}}{D}
$$

possibilities to choose D such structures, and $p_{i}^{(D)}$ possibilities to partition the k-trees of the block in D subblocks each one having equal k-trees as elements. These choices are independent in the sense of non-isomorphism, so in total we have

$$
p_{i}^{(D)}\binom{T_{k}^{(N)}}{D}
$$

possibilities, and

$$
\begin{equation*}
B(k, i)=\sum_{D=1}^{i} p_{i}^{(D)}\binom{T_{k}^{(N)}}{D} \tag{3}
\end{equation*}
$$

Now, what happens in different blocks is independent of each other block again, thus we conclude

$$
\begin{equation*}
T\left(b,\left(i_{1}, \ldots, i_{b}\right),\left(k_{1}, \ldots, k_{b}\right)\right)=\prod_{j=1}^{b} B\left(k_{j}, i_{j}\right) \tag{4}
\end{equation*}
$$

Combining (1), (2), (3), and (4) yields the theorem. Note that in the right-handside of the recursive formula the expression $T_{n}^{(N)}$ does not occur, since $k_{b}<n$ whenever $N \geq 2$.

3 Final remarks

A very interesting sequence is the diagonal sequence

$$
\left(T_{N^{2}}^{(N)}\right)_{N=2,3,4, \ldots}=2,4,9,20,48,115, \ldots
$$

Theorem $2 T_{N^{2}}^{(N)}$ equals to the number of rooted trees with $N+1$ vertices.

Proof. We construct an isomorphism between rooted complete N-ary trees with N^{2} leaves and rooted trees with $N+1$ vertices, $N \geq 2$, in the following way. Let T be a rooted complete N-ary tree with N^{2} leaves. Delete all leaves to obtain a rooted tree with $N+1$ vertices. (Note that there are always $N+1$ inner vertices in T.) On the other hand, let R be a rooted tree with $N+1$ vertices. So every vertex has at most N children. Construct a complete N-ary tree from R by adding children in such a way that every vertex from R has exactly N children, and every new vertex has no children. Obviously, these mappings are one-to-one.

Theorem $3 \lim _{N \rightarrow \infty} T_{(n+1)(N-1)+1}^{(N)}=T_{n^{2}}^{(n)}$

Proof. Let T be a rooted complete N-ary tree with $(n+1)(N-1)+1$ leaves, and $N>n$. This means that T has exactly $n+1$ inner vertices, hence every inner vertex has at most n children which are inner vertices. So for every inner vertex we may delete $N-n$ of its children which are leaves to obtain a rooted complete n-ary tree with $(n+1)((N-1)-(N-n))+1=n^{2}$ leaves. This construction can be reversed by adding children in an appropriate way.

References

[1] A. Kinane, "Adder topologies for Multi-Operand Addition", Centre for Digital Video Processing, Dublin City University, internet communication
[2] N.J.A. Sloane et al., On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences
[3] R.P. Stanley, "Enumerative Combinatorics", Vol. 2, Cambridge Univ. Press, 1999, p.245, Exercise 6.52

