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Abstract. Given a point set K of terminals in the plane, the octilinear Steiner
tree problem is to find a shortest tree that interconnects all terminals and edges
run either in horizontal, vertical, or ±45◦ diagonal direction. This problem is
fundamental for the novel octilinear routing paradigm in VLSI design, the so-
called X-architecture.
As the related rectilinear and the Euclidian Steiner tree problem are well-known
to be NP-hard, the same was widely believed for the octilinear Steiner tree
problem but left open for quite some time. In this paper, we prove the NP-
completeness of the decision version of the octilinear Steiner tree problem.
We also show how to reduce the octilinear Steiner tree problem to the Steiner
tree problem in graphs of polynomial size with the following approximation guar-

antee. We construct a graph of size O( n
2

ε2 ) which contains a (1+ε)–approximation
of a minimum octilinear Steiner tree for every ε > 0 and n = |K|. Hence, we can
apply any α-approximation algorithm for the Steiner tree problem in graphs (the
currently best known bound is α ≈ 1.55) and achieve an (α+ε)- approximation
bound for the octilinear Steiner tree problem. This approximation guarantee
also holds for the more difficult case where the Steiner tree has to avoid block-
ages (obstacles bounded by octilinear polygons).

Keywords: octilinear Steiner trees, NP-completeness, VLSI design, approxi-
mation algorithms, blockages

1 Introduction

Background and motivation. In recent years there has been strong and growing
interest in a new routing paradigm in VLSI design: octilinear routing, the so-called X-
architecture [X]. In addition to vertical and horizontal wires, octilinear routing allows
wiring in 45- and 135-degree directions. Compared to traditional and state-of-the-art
rectilinear (Manhattan) routing, such a technology promises clear advantages in wire
length and via reduction. As a consequence a significant chip performance improvement
and power reduction can be obtained (with estimations being in the range of 10% to
20% improvement) [Tei02,PWZ04]. To enable such a technology, novel algorithmic
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approaches for the construction of octilinear Steiner trees are needed. An octilinear
Steiner tree is a tree that interconnects a set of points (terminals) in the plane with
minimum length such that every line segment uses one of the four given orientations.

Even more general routing architectures are obtained if a fixed set of uniformly
oriented directions is allowed. For an integral parameter λ ≥ 2, consecutive orientations
are separated by a fixed angle of π/λ. A λ-geometry is a routing environment in which
every line segment uses one of the given orientations. Manhattan routing can then be
seen as the special case λ = 2 and the X-architecture as the case λ = 4. A Steiner
minimum tree in a λ-geometry is called λ-SMT.

In this paper we focus on the octilinear case (although most of our results can be
generalized to arbitrary λ ≥ 2). We study approximation algorithms for the octilinear
Steiner tree problem with and without obstacles. The rectilinear and the Euclidean
Steiner tree problem have been shown to be NP-hard in [GJ77] and [GGJ77], respec-
tively. It is widely believed that the Steiner tree problem is NP-hard for every fixed λ
(although this question seems to be open [Cou03]). Here, we present the proof that the
octilinear Steiner tree problem is indeed NP-hard.

Blockages. In VLSI design routing is often restricted by the presence of blockages (or
obstacles) which exclude certain areas for possible interconnections. Throughout this
paper, an obstacle is a connected region in the plane bounded by a simple polygon. For
a given set of obstacles O we require that the obstacles be disjoint, except for possibly a
finite number of common points. If all boundary edges of an obstacle are rectilinear, we
call such an obstacle a rectilinear obstacle. Analogously, if all obstacle edges lie within
the 4-geometry, such an obstacle is called octilinear obstacle. In practice, obstacles are
caused by preplaced macros or other circuits and can be assumed to be rectilinear.

Previous work. It is fairly easy to see that the approximation schemes of Arora [Aro98]
and Mitchell [Mit99] are also applicable to the octilinear Steiner tree problem (with-
out obstacles). Rao and Smith [RS98] even improved the running time of a (1 + ε)–
approximation to O(n log n). Unfortunately, the hidden constants of the asymptotic
running time grow exponentially depending on ε. Hence, in spite of its theoretical im-
portance, the practical value of these approximation schemes might be limited. Heuris-
tics have been proposed by Kahng et al. [KMZ03] and Zhu et al. [ZZJ+04].

Exact approaches to the octilinear Steiner tree problem have been developed by
Nielsen, Winter and Zachariasen [NWZ02] and Coulston [Cou03]. Nielsen et al. report
the exact solution to a large instance with 10000 terminals within two days of compu-
tation time. However, we are not aware of exact approaches or approximations in the
presences of obstacles.

Transformation to Steiner tree problem in graphs. For rectilinear Steiner tree
problems for point sets in the plane the most successful approaches are based on trans-
formations to the related Steiner tree problem in graphs. Given a connected graph
G = (V, E), a length function `, and a set of terminals S ⊆ V , a Steiner tree is a tree
of G containing all vertices of S. A Steiner tree T is a Steiner minimum tree of G if
the length of T is minimum among all Steiner trees. The best available approximation
guarantee for the Steiner problem in general graphs is α = 1 + ln 3

2 ≈ 1.55, obtained by
Robins and Zelikovsky [RZ00].

Given a finite point set K in the plane, the so-called Hanan grid [Han66] is obtained
by constructing a vertical and a horizontal line through each point of K. The impor-
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tance of the Hanan grid lies in the fact that it contains a rectilinear Steiner minimum
tree. An implementation by Althaus, Polzin and Daneshmand [APD03] is the currently
strongest available exact approach for both the Steiner tree problem in graphs and the
rectilinear Steiner tree problem.

Du and Hwang [DH92] generalized the Hanan grid construction to λ-geometries.
They define grids Gk(K) recursively in the following way. For an instance with point
set K, G0(K) = K. The grid G1(K) is constructed by taking λ (infinite) lines with
orientations π/λ, 2π/λ, . . . , (λ − 1)π/λ, π for each point of K. The k-th grid Gk(K)
for k > 1 is constructed from the (k − 1)-th grid by adding for each intersection point
x of lines in Gk−1(K) additional lines through x with orientations π/λ, 2π/λ, . . . , (λ−
1)π/λ, π. Lee and Shen [LS96] showed that for every instance of the Steiner tree problem
in a λ-geometry with λ ∈ N≥2, there is a minimum λ-Steiner tree which is contained
in Gn−2(K). This result has been strengthened for octilinear Steiner trees by Lin and
Xue [LX00]. They showed that a minimum octilinear Steiner tree is already contained

in the grid G(d2n/3e−1)(K). Unfortunately, the graph Gk(K) has O(n2k

) vertices and
edges. Hence, in general an optimal solution requires an exponentially large graph.

It is therefore an interesting open question which approximation guarantee for the
octilinear (or λ–) Steiner tree problem can be achieved if one works with a graph Gk(K)
for some fixed constant k.

Some partial answers to this question are obvious. Since G1(K) contains a shortest
path between any pair of terminals it also contains the solution obtained from the
minimum spanning tree heuristic to approximate the Steiner minimum tree. Therefore,
its performance guarantee cannot be worse than the Steiner ratio. The Steiner ratio is
the smallest upper bound on the ratio between the length of a minimum spanning tree
and the length of a Steiner minimum tree. The Steiner ratio in the octilinear case is

4
2+

√
2

[Koh95,She97]. This implies that G1(K) contains a solution which is not more

than about 17.15% above the minimum. In this paper, we show how to modify G1(K)
so that we can derive stronger approximation guarantees. For any k ∈ N we construct
a graph of size O(k2n2), which contains a (1 + 1

k )–approximation.

Our contribution. We summarize the main results of this paper:

– We establish the NP-completeness of the decision version of the octilinear Steiner
tree problem.

– For a given set of n terminals in the plane and for every ε > 0 we construct a graph

of size O(n2

ε2 ) which contains a (1 + ε)–approximation of a minimum octilinear
Steiner tree.

– If α denotes the approximation guarantee of an algorithm for the Steiner tree
problem in graphs, then we achieve an (α + ε)–approximation guarantee for the
octilinear Steiner tree problem with or without blockages.

Overview. The remaining part of the paper is organized as follows. In Section 2 we
state some basic definitions and facts about octilinear Steiner trees. Afterwards, we
present our NP-completeness proof. Then, in Section 4, we derive our approximation
for the case without blockages. Finally, we briefly point out why the same method also
works in the presence of blockages.
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2 Basic Definitions and Facts for Octilinear Steiner Trees

In this section we recall some basic definitions and known facts about optimal octilinear
Steiner trees which will be used in the later analysis of our approach, see for example
[LS96].

Property 1. The number of Steiner points for a Steiner tree on n terminals is at most
n − 2.

Property 2. The degree of any Steiner point is either three or four. There exists a
Steiner minimum tree such that every degree-4 Steiner point is adjacent to four termi-
nals which form a cross.

Property 3. There exists an octilinear Steiner minimum tree Topt such that the three
angles around a degree-3 Steiner point are π

2 , 3π
4 , 3π

4 (in some order).

A Steiner tree is a full Steiner tree if all its terminals are leaves. Any Steiner tree
can be decomposed into its full components.

Property 4 ([BTW00]). Given a set of terminals K such that every octilinear Steiner
minimum tree is a full Steiner tree, there is an octilinear Steiner minimum tree Topt

such that all but at most one edge are straight edges. The latter one may bend once.

Property 5 ([BTW00]). A non-straight edge bends at its corner point by an angle of
3π
4 . Let ps be a non-straight edge in an octilinear Steiner minimum tree such that s is a

Steiner point. Let c be the corner point of ps, and let q and r be the other two vertices
adjacent to s. If c lies on the same side of the line through ps as q, then ∠csq = π

2 and
∠csr = 3π

4 .

3 NP-Completeness of the Octilinear Steiner Tree Problem

In this section we prove that the decision version of the octilinear Steiner tree problem
is NP-complete. We have the following decision problem:

Problem: Octilinear Steiner tree decision problem
Instance: A set K of terminals with integral coordinates in the plane and a number
L ∈ N.
Task: Is there an octilinear Steiner tree T with l(T ) ≤ L?

At a first glance, it might not even be clear whether the decision version of the
octilinear Steiner tree problem belongs to the class NP, since the distance between
terminals and/or Steiner points may be irrational. In sharp contrast to the Euclidian
version where this question is still open, we can prove membership in NP for the
octilinear case.

Lemma 1. The decision version of the octilinear Steiner tree problem belongs to the
class NP.
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Proof. To show membership in NP, we need a certificate which a nondeterministic
algorithm can guess and we can verify in polynomial time. In this case, an appropriate
certificate is the topology of an optimal tree T . (In this context, topology means a
graph which includes the terminals and Steiner points as vertices and specifies the
connections between these vertices as edges.)

From the topology of a tree, one can compute an optimal realization in the plane
in linear time [BTWZ02]. Using our assumption that all terminals have integral co-
ordinates, it is easy to see that all Steiner points have rational coordinates (namely
by traversing the tree from its leaves). Moreover, the encoding length of each Steiner
point does not become too large. If s denotes the maximum number of bits to store
the coordinates of some input terminal, then the encoding length of each Steiner point
is upper bounded by O(s + |K|). This follows from the fact that all line segments are
either horizontal, vertical or have slopes ±1. Hence, we can express the length of each
tree edge e by `(e) = ae + be ·

√
2, where ae and be are rational numbers of polyno-

mial size with respect to the input. The length of the Steiner tree can be evaluated as
`(T ) = a + b

√
2, where a =

∑

e∈T ae and b =
∑

e∈T be. Hence, `(T ) ≤ L if and only

if 2 ≤
(

L−a
b

)2
. 2

Theorem 1. The decision version of the octilinear Steiner tree problem is NP-complete.

To prove this theorem, we basically use the same idea of a reduction as Garey, Gra-
ham and Johnson [GGJ77] provided in their hardness proof for the Euclidean Steiner
tree problem. The main difference lies in the proof that this reduction is correct.

Before we go into the details, we briefly sketch the construction and point out the
technical differences to the Euclidean case in the proof of its correctness. The problem
we reduce to the octilinear Steiner tree decision problem is that of EXACT COVER
BY 3-SETS:

Problem: Exact cover by 3-sets
Instance: A family F = {F1, F2, . . . , Ft} of 3-element subsets of a set F of 3n ele-
ments. Without loss of generality let F = {1, 2, . . . , 3n}.
Task: Is there a subfamily F ′ ⊆ F such that distinct elements of F ′ are disjoint and
⋃

Fi∈F ′ Fi = F ?

The 3-dimensional matching problem shown to be NP-complete in [Kar72] is a special
case of the problem EXACT COVER BY 3-SETS. Therefore, EXACT COVER BY
3-SETS is also NP-complete.

The main difficulty in the NP-completeness proof is due to the problem that it
is hard to argue about the optimality of some Steiner tree unless we have very few
terminals or very restricted locations for them. Hence, a reduction requires gadgets of
very small size. As gadgets have to be combined with each other, we would like to have
that the possible configurations of optimal Steiner trees can easily be enumerated for
each subset of terminals contained in the gadget. The overall configuration is composed
by gadgets of rows of terminals which meet in “triangles” or “squares”, see Fig. 1.
Gadgets of these types are connected by long rows of terminals. Hence, they are placed
far enough from each other, so that they do not directly mutually interact. In contrast,
adjacent terminals of the same row are relatively near to each other, they have a
distance of at most 1/10. This has the important effect that there is a spanning tree
such that each edge has length at most 1. For a tree T denote by m(T ) the maximum
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Fig. 1. Basic gadgets: terminals are dots;
possible locations of Steiner points which
are not excluded by probes are displayed
with dashed lines.

tip p 90°
109

1.207

1.207

Fig. 2. The region of a probe P with tip
p is the shaded area.

length of some edge in T . From this property, we can conclude that also every edge
in an optimum Steiner tree Topt cannot be longer than 1, that is m(Topt) ≤ 1. The
composition of gadgets is the same as in the proof for the Euclidian case [GGJ77].

A fundamental idea in the proof is to restrict the possible locations of Steiner points
to certain so-called active regions. To exclude other regions for Steiner points, we use
a discrete version of the concept of so-called probes which are regions with a geometric
shape as in Fig. 2. The central node of a probe is called the tip of the probe. We say
that a probe P is valid if it is rotated by an integral multiple of π/4 around its tip. In
the Euclidean case, probes can be rotated by any angle and have a slightly different
shape. The proof of the following lemma requires some preparation and will appear in
Subsection 3.3.

Lemma 2. If p is a Steiner point of an octilinear Steiner minimum tree with m(Topt) ≤
1, then there must be at least one terminal located inside every valid probe P with tip p.

These properties will enable us to conclude that any two terminals which are at
most 1/10 apart from each other must be connected by an edge in any minimum Steiner
tree. Hence, the whole combinatorial difficulty lies in the problem how to connect these
components to a tree for the overall configuration of terminals.

Given a configuration of terminals which encode an instance F of EXACT COVER
BY 3-SETS, one has to show that an optimal Steiner tree for this configuration does not
exceed a value L = L(F) if and only if there is an exact cover. The value of L depends
only on parameters t and n of F . Again one can argue along the lines of the proof
in [GGJ77]. However, compared to the Euclidian case, optimal subtrees inside active
regions have different lengths. Therefore, it is crucial to note that certain inequalities
about the relative lengths of such subtrees remain valid.

The formal proof of Theorem 1 is structured as follows. In Section 3.1 we first intro-
duce the gadgets used in the reduction from EXACT COVER BY 3-SETS. Afterwards,
in Sections 3.2 and 3.3 we obtain several auxiliary and geometrical results which lead
to the “probing lemma” (Lemma 2). From the probing lemma we can deduce several
properties of the structure of optimal Steiner trees for configurations of terminals as
they appear in our reduction (Section 3.4). Finally, the proof is completed by showing
that the configuration of an instance of EXACT COVER BY 3-SETS has an opti-
mal Steiner tree of a certain length if we have a YES-instance and is strictly larger
otherwise.

3.1 Formal Definition of Gadgets

In this section we describe a configuration K = K(F) of terminals in the plane which
transforms an instance of EXACT COVER BY 3-SETS into an instance of the oc-
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Fig. 6. A square Q(ε).

tilinear Steiner tree problem. We assume both n and t exceed 1, since otherwise the
problem EXACT COVER BY 3-SETS would be trivial.

The set K is constructed by different components. A standard row, shown in Fig. 3,
consists of 100 equally spaced terminals lying in a straight line with adjacent terminals
separated by a distance of 1/10. The terminals a and ā are called the endpoints of the
row. We denote a standard row schematically as in Fig. 3(b).

Next we combine standard rows to define other components. An angle A consists of
two standard rows with a common endpoint. The two rows are embedded on lines which
meet at an angle of 135◦. See Fig. 4(a) and Fig. 4(b) for the schematic representation.
A junction J consists of three normal rows with a common endpoint. One of the three
rows meets the other two at 135◦. The other two meet at 90◦. See Fig. 4(c) and Fig. 4(d)
for the schematic representation.

In Fig. 5(a), we show a configuration R(ε) composed of three standard rows. The
endpoints a, b and c, called the active terminals of R(ε), are the vertices of an isosceles
triangle. The length of each side is 1 − ε in the octilinear metric for some ε, 0 ≤ ε <
1/200, to be specified later. The three standard rows radiate out from the three vertices
and lie outside the triangle. The row beginning at the common endpoint of the two
sides of the same length lies on a vertical line. The extensions of the two other rows
meet the vertical row each at 135◦. When ε > 0, R(ε) is called a small triangle and
is denoted schematically as in Fig. 5(b). When ε = 0, R(0) = R is called a standard
triangle and is denoted schematically as in Fig. 5(c).

In Fig. 6(a), we show a configuration Q(ε) composed of four standard rows. The
endpoints a, b, c, and d are the active terminals of Q(ε) and form the vertices of a
square of side length 1 − ε, 0 ≤ ε < 1/200. The standard rows lie on the extended
diagonals of the square. We call Q(ε) a square and denote it schematically as in Fig.
6(c). We call the regions lying inside a triangle D(ε) or inside a square Q(ε) active
regions.

Finally, we form a fundamental configuration, called crossover C, shown in Fig. 7,
by combining some of the previous configurations. A crossover C consists of two normal
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Fig. 7. A crossover C.
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Fig. 8. A typical connection.
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Fig. 9. A terminator Ω.

triangles R, two junctions J and a number of rows of terminals, denoted by ρ̄ used to
interconnect these components. Each row ρ̄ is called long row and consists of at least
1000 terminals lying on a straight line with distances between consecutive terminals
ranging between 1/11 and 1/10. Both endpoints of a long row are endpoints of standard
rows of components which are interconnected by the long row. Two rows with the same
endpoint are collinear, see Fig. 8 for a typical connection.

The exact positions of terminals in each row ρ̄ are chosen so that the component
C shown in Fig. 7(a) is geometrically realizable. For the schematic representation see
Fig. 7(b). If C is constructed using a small triangle R(ε) in place of the upper standard
triangle, we call the crossover small crossover C(ε) and represent it schematically as
in Fig. 7(c).

Two angles A, a junction J and five long rows ρ̄ are connected to a terminator,
shown in Fig. 9(a). A terminator is denoted as downward terminator or as upward
terminator respectively, depending on whether the terminal a lies under or upper the
other terminals of the terminator. The schematic representation is shown in Fig. 9(b)
and (c).

With these components we construct the set K(F) of terminals for the octilinear
Steiner tree problem. It will be formed by connecting junctions, squares and terminators
by long rows ρ̄. K(F) contains a chain of t + 1 upward terminators Ωk, 0 ≤ k ≤ t,
connected by long rows. Each upward terminator Ωi, 1 ≤ k ≤ t, is connected with a
square Qk that again is connected with two upward terminators Ω ′

k and Ω′′
k .

We associate with each square Qk the subset Fk = {ak, bk, ck} ∈ F . From each
square Qk, a chain of crossovers Ck(i) for 0 ≤ i < ak connected by long rows emanates
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Fig. 10. Example for the overall construction of K(F0).

in upward direction. The crossover Ck(ak − 1) is a small crossover C(ε). The other
crossovers Ck(i) are standard crossovers. A downward terminator Ω̄k lies above Ck(ak−
1). Similarly, above Ω′

k and Ω′′
k there are chains of crossovers C ′

k(i), 0 ≤ i < bk, and
C ′′

k (j), 0 ≤ j < ck, respectively, with C ′
k(bk − 1) and C ′′

k (ck − 1) being small crossovers
each of the two connected to a downward terminator Ω̄′

k and Ω̄′′
k . All the Ck(i), C ′

k(i)
and C ′′

k (i) lie at the same horizontal level, called the ith level, for 1 ≤ k ≤ t. Therefore,
Ω̄k lies at the akth level, Ω̄′

k and Ω̄′′
k at the bkth and ckth level, respectively. A downward

terminator Ω′
0 at level zero is connected with the upward terminator Ω0 below it.

Finally, all components at the same level are connected by a chain of long rows.
As an example, we show in Fig. 10 a schematically representation of K(F) for

the family F0 = {{1, 2, 4}, {2, 3, 6}, {3, 5, 6}}. The interconnecting lines represent long
rows, chosen geometrically possible. The square on the left in Fig. 10 represents the
set {1, 2, 4}, the middle the set {2, 3, 6} and the square on the right the set {3, 5, 6}.

In general, K(F) contains 6t + 2 terminators, t squares, 3t small crossovers and at
most 9nt − 3t standard crossovers. The various components can be placed so that the
encoding length of K(F) is bounded by a polynomial in n and t.

3.2 Auxiliary Results

Throughout this section, let K be a set of terminals in the plane. In a spanning or a
Steiner tree T for K the unique path between two terminals s, t ∈ K will be denoted
by PT (s, t). The maximum length of an edge in a tree T or in a path PT (s, t) will be
denoted by m(T ) and m(PT (s, t)), respectively. We denote by T span a spanning tree for
K, by T an octilinear Steiner tree for K, and by T span

opt and Topt a minimum spanning
tree and an octilinear Steiner minimum tree for K, respectively. The following result
appears in [GGJ77].

Lemma 3. For any set K and terminals s, t ∈ K,

m(PT span(s, t)) ≥ m(PT span
opt

(s, t)) ≥ m(PTopt
(s, t)). (1)

Proof. Suppose there exists a spanning tree T span of K and s, t ∈ K with m(PT span(s, t))
< m(PT span

opt
(s, t)). This implies that there exists an edge e with l(e) = m(PT span

opt
(s, t))
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W

y

x
45° 45°

Fig. 11. The semi-infinite strip W .

L0

L2

L1 L7

L6

L3 L4 L5

Fig. 12. Possible directions of edges in a
Steiner minimum tree.

in PT span
opt

(s, t) which is longer than every edge of PT span(s, t). If we delete this edge

e from T span
opt , the resulting graph consists of exactly two connected components. The

addition of some edge e′ of PT span(s, t) must rejoin these two components, forming a
spanning tree T

′span for K with

l(T
′span) = l(T span

opt ) − l(e) + l(e′)

≤ l(T span
opt ) − m(PT span

opt
(s, t)) + m(PT span(s, t))

< l(T span
opt )

which contradicts the definition of a minimal spanning tree T span
opt for K. This proves

the first inequality in (1). The second inequality follows similarly. ut

3.3 Geometrical Results

In this section we prove some geometrical results of octilinear Steiner minimum trees.
We restrict our attention to full components. By Property 4, we may assume that a
full component of an octilinear Steiner minimum tree Topt has at most one bending
edge. Define the semi-infinite strip W , shown in Fig. 11 by

W = {(x, y) | |x| ≤ 1 +
√

2

2
, y ≥ |x|}.

Lemma 4. Let Topt a octilinear Steiner minimum tree for K with m(Topt) ≤ 1 and
suppose s0 = (0, 0) is a Steiner point of Topt. Then for some terminal x of K, the whole
path from s0 to x in Topt will be contained in W , i.e.,

PTopt
(s0, x) ⊆ W.

Proof. We denote the possible directions of edges incident to s0 by L0, L1, . . . , L7 in
counter-clockwise order. Lines in direction L0 meet the positive x-axis at 90◦. See also
Fig. 12.

We partition W into three sets. W1 is the set of points in W which would be moved
out of W if they were translated in the direction of L1 by 1 unit. W2 is the set of points
in W which would be moved out of W if they were translated in the direction of L7 by
1 unit. W3 is the set of point in W which would remain in W if translated by 1 unit in
the direction of either L1 or L7. See Fig. 13 for an illustration.
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Therefore, the three sets are defined as follows:

W1 = {(x, y) ∈ W | x < −1/2}
W2 = {(x, y) ∈ W | x > 1/2}
W3 = W − (W1 ∪ W2).

Observe for considerations to be done later that the width of W3 is 1.
We show how to choose a path ({s0, s1}, {s1, s2}, . . . , {st−1, st}) of Topt within W

that ends in a terminal st. The first point of the path is the Steiner point s0 = (0, 0).
Suppose the last point of the path we have chosen is the point si which is not a terminal.
We use the following rules for choosing the next Steiner point si+1 6= si−1 and the edge
{si, si+1} of the path:
If si ∈ W1, choose {si, si+1} so that {si, si+1} is an edge of Topt with the direction L0,
L6 or L7.
If si ∈ W2, choose {si, si+1} so that {si, si+1} is an edge of Topt with the direction L0,
L1 or L2.
If si ∈ W3, choose {si, si+1} so that {si, si+1} is an edge of Topt with the direction L0,
L1 or L7. If the edge {si, si+1} has direction L1 or L7 and bends so that the other part
of the edge has direction L2 or L6 respectively (by Property 5), choose {si, si+1} so
that it has direction L7 or L1, respectively.

By Property 3, it can easily be seen that such an edge must exist. It remains to be
shown that si+1 is in W . By the given rules and the definition of W1, W2 and W3, the
only way si+1 could be outside W would be if si+1 = (si+1x

, si+1y
) with |si+1x

| ≤ 1
and si+1y

< |si+1x
|. If si+1x

> 0, this would imply that si ∈ W1 and that {si, si+1}
has direction L6. Consider the unit length line segment in the direction of L6 from c
to d where c = (−1/2, 1/2). Since this segment is parallel to {si, si+1}, is at least as
long, and since c is below and to the right of every point in W1, d must be below and
to the right of si+1. Hence the coordinates of d = (dx, dy) must also satisfy dy < dx.
But in contradiction we have dx = 1/2 and dy = 1/2. So it holds si+1 ∈ W . The same
holds if si+1x

< 0.
Therefore, {si, si+1} is a new edge of Topt in W . We continue adding new edges to

the path until a terminal is reached. Since we have at most |K| − 2 Steiner points, the
path must terminate with a terminal. ut

Let α ≥ 0 be arbitrary. We define W (α) by W (α) = {(x, y) ∈ W | y ≤ α}. By the
preceding arguments, we have the following result.

Corollary 1. Let Topt be a Steiner minimum tree for K with m(Topt) ≤ 1 and suppose
s0 = (0, 0) is a Steiner point of Topt. Then for any α ≥ 0 either W (α + 1) contains a
terminal of K or W (α + 1) − W (α) contains a Steiner point of Topt.

If s is a Steiner point of a Steiner minimum tree Topt for K and {s, t} is an edge
of Topt, let O(s, t) denote the closed regular octagonal region of side length 2 which is
bisected by the line through s and t and which intersects {s, t} in the single point s.
See Fig. 14.

Lemma 5. Let Topt be a Steiner minimum tree for K with m(Topt) ≤ 1. If s is a
Steiner point of Topt and {s, t} is an edge of Topt, then O(s, t) contains a terminal
of Topt.
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Fig. 13. Partitioning the strip W .

s 2

1
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1
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Fig. 14. The region O(s, t)

Proof. Suppose O(s, t) contains no terminal of Topt. Then Topt contains two edges
{s, s1} and {s, s2} which lie inside or on the boundary of O(s, t), since no edge is
longer than 1. Without loss of generality s1 lies to the left of s and s2 to the right.
Since O(s, t) contains no terminal, s1 and s2 must be Steiner points. We choose two
paths P1 and P2 beginning at s1 and s2, respectively. For the path P1 we choose the
edges with smallest angles between the two edges on the right of them. For the path P2

we choose edges with smallest angles between the two edges on the left of them. The
paths P1 and P2 respectively ends if the last chosen edge is horizontal or has slope 1.
Since every edge is not longer than 1 the so chosen paths lay completely within O(s, t).
See Fig. 14. Let s′1 and s′2 be the two other endpoints of the paths P1 and P2.

Without loss of generality let s′1y
≥ s′2y

. We apply Lemma 4 to the point s′1. We
can place the strip W so that the point s′1 plays the role of s0 = (0, 0). The strip can be
rotated by angles of 45◦ so that the last edge except the point s′1 of P1 is not inside the
strip. By Lemma 4, there must exist a terminal t′ ∈ K such that the path PTopt

(s′1, t
′)

lies entirely in W . Since the last edge of P1 is not in W , no edge of PTopt
(s′1, t

′) can
intersect P1 ∪ {s, s1} or P2 ∪ {s, s2}, since otherwise Topt would contain a cycle. Thus
PTopt

(s′1, t
′) ⊆ O(s, t) which implies t′ ∈ O(s, t). This contradicts the assumption that

no terminal lies in O(s, t). ut

For a point x in the plane, let Dx denote the disc of all points at a distance of at most
3. Then we have the following Corollary of Lemma 5.

Corollary 2. Let s be a Steiner point of a Steiner minimal tree Topt for K with
m(Topt) ≤ 1. Then Ds contains a terminal of K.

A probe P consists of a copy of W (10) together with the set of all points at a distance
of at most 3 from some point of W (10) − W (9). The point p at the angle 90◦ of the
probe is called the tip of the probe. See Fig. 2.

Lemma 2. If p is a Steiner point of an octilinear Steiner minimum tree with m(Topt) ≤
1, then there must be at least one terminal located inside every valid probe P with tip p.

Proof. Suppose p is a Steiner point of Topt and P contains no terminal. Since the strip
W (10) contains no terminal, by Corollary 1, W (10) − W (9) must contain a Steiner
point s of Topt. By Corollary 2, some terminal t must be within distance 3 from s,
so that t ∈ P . This contradicts the assumption that no terminal is contained in the
probe P . ut
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1−ε

1−ε

a1

ab

Fig. 15. Edge {a1, b} is longer than 1.

3.4 Properties of Topt(K(F))

Let F = {F1, F2, . . . , Ft} be a family of 3-sets Fk ⊆ {1, 2, . . . , 3n} and Topt a minimum
4-Steiner tree for K(F). In this section we prove properties of Topt.

By the construction of the set of terminals K it is easy to see, that the longest edge
in a minimum spanning tree for K has length 1. Hence by Lemma 3,

m(Topt) ≤ 1. (2)

Thus, Lemma 2 can be applied to delimit the possible locations of Steiner points in
Topt. For almost every point p of the plane not belonging to K(F), the probe can be
placed with p at the probe tip and no point of K which lies inside the probe. It follows
that there are just two types of possibilities for a Steiner point s of Topt:

(i) s is the Steiner point in the shortest connection of the three active points of a
triangle R or R(ε).

(ii) s is the Steiner point along the shortest connection of the four active points of a
square Q(ε).

Lemma 6. If s, t ∈ K and the distance between s and t does not exceed 1/10, then
{s, t} is an edge of Topt.

Proof. Obviously, there is a spanning tree containing the edge {s, t}. By Lemma 3, it
follows m(PTopt

(s, t)) ≤ 1/10. Suppose {s, t} is not contained in Topt. The terminals
s and t are connected by a path not containing an edge longer than 1/10 and not
containing the edge {s, t}. By the construction of K no such path can only contain
edges of pairs of active terminals. Therefore PTopt

(s, t) contains a Steiner point. Due to
the very restricted possible positions of Steiner points, the length of at least one of the
two edges of PTopt

(s, t) incident to the Steiner point must be longer than 1/10 which
contradicts m(PTopt

(s, t)) ≤ 1/10. ut

Lemma 7. Every edge of Topt longer than 1/10 that connects two terminals of K
connects two active terminals of the same square or triangle.

Proof. The edges known to be in Topt by Lemma 6 form disjoint subtrees of Topt

that contain all terminals of K. No two terminals of K in the same subtree can be
connected by an additional edge (longer than 1/10) since that would form a cycle. By
the construction of K, since ε < 1/200, the only pairs of terminals in different subtrees,
which are separated with distance 1 or less, are active terminals of the same square or
triangle. See also Figure 15. Since m(Topt) ≤ 1, the Lemma follows. ut
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1)(α (α2)

(β 2)

or

or

(γ 1)

(γ 3)

(γ 2)

(γ 4)
1)(β

R(ε)

R(0)

Q(ε)

Fig. 16. Possible configurations in active regions.

Lemma 8. The only terminals in K adjacent to a Steiner point are the active termi-
nals of the squares and triangles.

Proof. Since m(Topt) ≤ 1, any point t adjacent to a Steiner point s must be within
distance 1 of one of the locations where a Steiner point can occur. If t is not an active
point, then there must be a point t′ ∈ K in the same standard row at distance 1/10
from t and closer to the corresponding active point than t. By Lemma 6, Topt contains
the edge {t, t′}. But then, in either case, Topt contains two edges {t, t′} and {t, s}, that
meet at a common point t at an angle less than 90◦. But then Topt is not minimum.
So t must be an active point. ut

Therefore, the Steiner tree Topt consists of all edges connecting two terminals of K
which have distance 1/10 or less to each other and of edges connecting active terminals
of the same square or triangle. We catalog the possible topologies of edges joining
active terminals and (possibly) Steiner points within each type of active region in Fig.
16. Only one representative is given for symmetric configurations. Since every edge in
Topt has length 1 or less, only configurations of edges with this property are shown. In
Table 1, we list the total length of the edges in each configuration shown in Fig. 16.

Configuration Total Length

α1 l(α1) =
√

2+2

2
(1 − ε)

β1 l(β1) =
√

2+2

2

γ1 l(γ1) = 2
√

2(1 − ε)
α2 l(α2) = (1 − ε)
β2 l(β2) = 1
γ2 l(γ2) = 2(1 − ε)
γ3 l(γ3) = 2(1 − ε)
γ4 l(γ4) = 1 − ε

Table 1. Lengths of configurations in Fig. 16.
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3.5 The value of l(Topt)

Before estimates on the length of Topt can be given, we must specify a value for ε. Let

Ĉ = Ĉ(K) the number of crossovers in K = K(F). As noted above, Ĉ ≤ 9nt. We
choose ε as follows:

ε =
1

200nt
.

The choice of ε satisfies the inequality ε < 1/200 required by the construction of R(ε)
and Q(ε).

Lemma 9. For ε = 1/(200nt) we have

(l(β1) − l(α1))Û ≤ 2/3l(γ1) − l(α1).

Proof. We have (l(β1)− l(α1))Û + l(α1) ≤ (1 + 1√
2
)9ntε + (1 + 1√

2
)(1− ε) and l(γ1) =

2
√

2(1− ε). To prove the Lemma, it is therefore sufficient to show that (1 + 1√
2
)9ntε +

(1 + 1√
2
)(1 − ε) ≤ 4

√
2

3 (1 − ε) holds. The choice of ε implies this inequality. ut

By Lemma 6, Topt contains all edges which connect adjacent terminals of the same
standard or long row. Let L0 be the length of all such edges and G the graph composed
of all these edges. By the construction of K, a connected component of G lies to the
left of each level. Since 3n + 1 levels exist, these are 3n + 1 connected components.
The connected component containing the upward terminators Ω0, Ω1, . . . , Ωt which is
connected to the downward terminator Ω′

0, is contained in one of the 3n+1 connected
components. Furthermore, for every crossover there exists a connected component be-
low the crossover and one connected component to the right of the crossover. Therefore,
we have N = 2Ĉ + 3n + 1 connected components in G.

All N connected components must be joined in Topt. This is done by connections
between active terminals, shown in Fig. 16. Let L1 denote the total length of all these
connections, so that l(Topt) = L0 + L1. The following theorem finishes our proof that
the octilinear Steiner tree decision problem is NP-complete.

Theorem 2. If F has an exact cover, then:

l(Topt) ≤ 3nl(α1) + (Ĉ − 3n)l(β1) + nl(γ1) + L0. (3)

If F does not contain an exact cover, then:

l(Topt) ≥ 3nl(α1) + (Ĉ − 3n)l(β1) + nl(γ1) + L0 + ε. (4)

Proof. Suppose there exists an exact cover F ′ = {Fi1 , Fi2 , . . . , Fin
} for F . We construct

a Steiner tree T for K satisfying the inequality (3). Therefore, (3) holds also for Topt.
First we add all edges to T which connect adjacent terminals of the same standard

or long row. These edges have the total length L0. The remaining edges are constructed
as follows:

(i) In each square Qik
, 1 ≤ k ≤ n, form a γ1-configuration.

(ii) In each crossover, that belongs to one of the three vertical chains of crossovers
going out from a square Qik

, 1 ≤ k ≤ n, form an α1- or β1-configuration in the
upper triangle of every crossover.
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(iii) In each crossover, not considered in (ii), form a β1-configuration in the lower tri-
angle.

Since each vertical chain of crossovers contains exactly one small crossover and F ′ is
an exact cover of F , by (ii) and (iii) exactly 3n α1-configurations are formed. The total
length of the edges in T is 3nl(α1) + (Ĉ − 3n)l(β1) + nl(γ1) + L0, as desired.

The component composed of the terminators Ω′
0, Ω0, Ω1, . . . , Ωt and the long rows

connecting these, is called base. To see that we have constructed a Steiner tree for K,
it is sufficient to show, that every of the N components is connected to the base by a
path.

Since each crossover contains either an α1- or β1-configuration in one of its trian-
gles, all components at the ith level, 0 ≤ i ≤ 3n, are joined together in an ith level
component. The 0th level component is connected with the base by the downward ter-
minator Ω′

0. If Fk = {ak, bk, ck} ∈ F ′, then by (ii) the downward terminators Ω̄k, Ω̄′
k

and Ω̄′′
k are connected with the crossovers Uk(ak − 1), U ′

k(bk − 1) and U ′′
k (ck − 1) by

α1-configurations in the upper triangles of the crossovers. Therefore, the akth level com-
ponents are connected with the (ak −1)th level components, the bkth level components
with the (bk −1)th level components and the ckth level components with the (ck −1)th
level components. Since each integer i, 1 ≤ i ≤ 3n, belongs to some Fk ∈ F ′, it follows
by induction that all level components are connected with the base. We denote the con-
nected component containing the base and all level components as skeleton. The only
components remaining to be accounted for are those lying between successive levels.
These are the long rows between the crossovers Uk(i) and Uk(i+ 1) and those between
the squares Qk and the 0th level. In every vertical chain of crossovers, all crossovers
contain an α1- or β1-configuration either exclusively in the upper triangles or exclu-
sively in the lower triangles. By this it follows that each long row between the crossovers
Uk(i) and Uk(i + 1) is connected with an crossover. If Fk = {ak, bk, ck} ∈ F ′ then by
(i) all rows adjacent to Qk are contained with Qk in the same connected component.
Therefore Qk is in the same connected component as the base. If Fk = {ak, bk, ck} /∈ F ′

then by (iii) the long rows on the left, on the right and above Qk are connected with
the 0th level. The long row below Qk is connected with the base. Since F ′ is an exact
cover, for each i = 1, . . . , n exactly one downward terminator Ω̄k, Ω̄′

k or Ω̄′′
k , 1 ≤ k ≤ t,

is connected by a long row with the preceding level. Therefore the terminators does
not form a cycle. By the construction it follows that the remaining graph also does not
contain a cycle and therefore is a Steiner tree for K.

Thus we have shown that (3) holds if F contains an exact cover. We shall now show
that F contains an exact cover if (4) does not hold. If (4) does not hold, we must have:

L1 < 3nl(α1) + (Ĉ − 3n)l(β1) + nl(γ1) + ε. (5)

For each configuration in Figure 16, let N(ω) the number of active regions containing
a configuration ω. Then we have:

L1 =
∑

w

N(w)l(w). (6)

If we consider only the part of Topt containing edges of length 1/10 or less, then we

have, as noted earlier, N = 2Ĉ + 3n + 1 connected components. These N components
are connected in Topt by configurations from Figure 16 which are contained in active
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regions. Considering the number of connected components joined by each configuration,
we have:

N − 1 = 2N(α1) + 2N(β1) + 3N(γ1) + N(α2)

+N(β2) + 2N(γ2) + 2N(γ3) + N(γ4).
(7)

The integer multiplier in (7) for each configuration is the reduction of the number of
connected components obtained by a configuration. The multiplier is therefore one less
than the number of connected components joined by this configuration. The following
chain of inequalities holds for the lengths of the different types of configurations:

1

2
l(α1) <

1

2
l(β1) <

1

3
l(γ1) <

1

2
l(γ2) = l(α2) = l(γ4) =

1

2
l(γ3) < l(β2). (8)

There are Ĉ crossovers in K and thus 2Ĉ triangles. Each crossover contains at most
one α1- or β1-configuration, since otherwise Topt contains a cycle. Thus there can be

at most Ĉ many α1- and β1-configurations. Therefore, we obtain

N(α1) + N(β1) ≤ Ĉ. (9)

Claim: we must have equality in (9), to hold (5). Thus suppose N(α1) + N(β1) ≤
Ĉ − 1. Then we have by (7) and the equality N = 2Ĉ + 3n + 1:

2Ĉ + 3n − 2N(α1) − 2N(β1) = 3N(γ1) + N(α2) + N(β2)

+2N(γ2) + 2N(γ3) + N(γ4).
(10)

Together with (6) and (8) we obtain

L1 = N(α1)l(α1) + N(β1)l(β1) + N(γ1)l(γ1) + N(α2)l(α2)

+N(β2)l(β2) + N(γ2)l(γ2) + N(γ3)l(γ3) + N(γ4)l(γ4)

= N(α1)l(α1) + N(β1)l(β1) +
3

3
N(γ1)l(γ1) + N(α2)l(α2)

+N(β2)l(β2) +
2

2
N(γ2)l(γ2) +

2

2
N(γ3)l(γ3) + N(γ4)l(γ4)

(8)
> N(α1)l(α1) + N(β1)l(β1) + (3N(γ1) + N(α2)

+N(β2) + 2N(γ2) + 2N(γ3) + N(γ4))
1

3
l(γ1)

(10)
= N(α1)l(α1) + N(β1)l(β1) + (2Ĉ − 2 − 2N(α1)

−2N(β1))
1

3
l(γ1) +

3n + 2

3
l(γ1)

(8)

N(α1) + N(β1) ≤ Ĉ − 1
> (Ĉ − 1)l(α1) +

3n + 2

3
l(γ1).
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However, by Lemma 9 the choice of ε insures (l(β1) − l(α1))Ĉ < 2
3 l(γ1) − l(α1). This

implies:

L1 > (Ĉ − 1)l(α1) +
3n + 2

3
l(γ1)

> Ĉl(β1) + nl(γ1)

= 3nl(β1) + (Ĉ − 3n)l(β1) + nl(γ1)

l(α1)=l(β1)−
√

2+2
2 ε

= 3nl(α1) + (Ĉ − 3n)l(β1) + nl(γ1) + 3n

√
2 + 2

2
ε.

This contradicts (5). Thus if (5) holds, then we have:

N(α1) + N(β1) = Ĉ. (11)

Because of (11), each crossover in Topt contains exactly one α1- or β1-configuration.
Therefore, all components at the same level are connected to each other. In every level
there exists at most one α1-configuration, since two of this configurations at the same
level would form a cycle with the edges at the next level. (α1-configurations can exist
only in small upper triangles of crossovers. These small triangles are connected with a
downward terminator at the next level above. Two of these connections would form a
cycle.) Therefore, it holds N(α1) ≤ 3n, since there exist 3n+1 levels and the 3nth level
does not contain crossovers. In a similar way as before it can be shown, that equality
holds. Since suppose N(α1) ≤ 3n− 1. Then it holds by (6), (8), (10) and (11):

L1 > (3n − 1)l(α1) + (Ĉ − 3n + 1)l(β1) + nl(γ1)

l(α1)=l(β1)−
√

2+2
2 ε

= 3nl(α1) + (Ĉ − 3n)l(β1) + nl(γ1) +

√
2 + 2

2
ε.

This contradicts (5). Thus if (5) holds, then we have:

N(α1) = 3n. (12)

By this equality and by (5), (8) and 1
2 l(γ2) > 1

3 l(γ1) + ε, it follows:

N(β1) = Ĉ − 3n, N(γ1) = n,

N(α2) = N(β2) = N(γ2) = N(γ3) = N(γ4) = 0.
(13)

If Ck(i), i > 0, is a crossover, which contains the Steiner point in the upper triangle,
then Ck(i − 1) must contain the Steiner point in the upper triangle as well, since
otherwise the horizontal long row between the two crossovers is not joined to the rest of
the tree, since by (13) N(β2) = 0 and N(α2) = 0. By induction it follows that the active
terminals of the square Qk are joined together. Thus Qk contains a γ1-configuration,
since by (13) N(γ2) = N(γ3) = N(γ4) = 0. By (12) for each k, 1 ≤ k ≤ 3n, the
(k− 1)th level contains an α1-configuration, i.e., a small crossover with a Steiner point
in the upper small triangle. As noted earlier, this means, that the square Qi below the
crossover contains a γ1-configuration. By the construction of K, k must be an element
of the 3-set Fij

corresponding to the square Qij
. n squares Qij

contain joined active
terminals. The sets corresponding to these squares must be disjoint, since otherwise
Topt must contain a cycle. Thus the sets Fij

cover {1, 2, . . . , 3n}. Thus (5) implies that
an exact cover of F exists. ut
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Fig. 17. Example of the graph G1 for a set
of three terminals (left) and its refinement
Gk

1 with k = 2 (right).

Fig. 18. Example of the covering of an
octilinear Steiner tree by rectangles with
edges in Gk

1 .

4 Error Bounds for Graph-Based Approximations

In this section we show how to improve upon the approximation guarantee obtained
for G1(K) for octilinear Steiner trees. To this end we construct a graph Gk

1(K) which
is parameterized by some constant k.

Recall from the Introduction that the graph G1 is the graph induced by four lines
(vertical, horizontal, and both main diagonals) through each terminal. The idea is to
refine G1 by superimposing O(k) additional lines. This is done as follows. Given a set of
terminals K with |K| = n, let BB(K) denote the bounding box of this point set, that is,
the smallest axis-parallel rectangle which includes all terminals. We subdivide each side
of BB(K) equidistantly with k points into k+1 segments and add for each subdivision
point additional lines in all four feasible orientations of the octilinear geometry. See
Fig. 17 for a small example. Since we have O(n + k) lines in each feasible direction,
we get O((n + k)2) intersection points of these lines. Hence, the induced graph Gk

1 has
O((n + k)2) many vertices and edges. For the bounding box BB(K) with side lengths
bbx and bby, denote by bb := max{bbx, bby} its maximum side length.

We next define how to cover a Steiner tree T by a set of axis-parallel rectangles as
follows (the rectangles may overlap). For each Steiner point s of T , the set R contains
a smallest rectangle including s with horizontal and vertical edges from Gk

1 . In the
degenerate case that s lies on a vertex or an edge of Gk

1 we add no rectangle. We
also add a smallest enclosing rectangle for each point p where an edge of T bends.
Degenerate cases are handled as with Steiner points. For each straight-line segment of
T not covered by previous rectangles we independently add to R a smallest enclosing
rectangle bounded by vertical and horizontal edges from Gk

1 . Thus, we finally have the
following partition of the Steiner tree: T = ∪R∈R(T ∩ R). See Fig. 18 for an example.

For a given tree T , we construct an approximating Steiner tree Tapp with edges in
Gk

1 as follows. For each rectangle R ∈ R let SR be the set of intersection points of
Topt with the boundary of R. We connect the point set SR in the shortest possible way
by (portions of) edges in Gk

1 , yielding a tree TR. From the union of all these trees TR

we eliminate in a postprocessing step the longest edge of each cycle which may occur
and all leaves and incident edges of the resulting tree which are not terminals. We
thereby obtain our approximation Tapp. The following technical lemma shows that we
can bound for each rectangle R included in R the length `(Tapp ∩ R) of Tapp ∩ R in
terms of the length `(T ∩ R) of T ∩ R.
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Fig. 19. Case 1 (i),(ii): T ∩ R does not contain a Steiner point and consists of exactly one
straight edge.

Lemma 10. For each R ∈ R, the following bound holds:

`(Tapp ∩ R) − `(T ∩ R) ≤ (4 −
√

2)
bb

k + 1
.

Proof. We consider an arbitrary rectangle R ∈ R.
Case 1: T ∩ R does not contain a Steiner point.
We must distinguish four subcases:
(i) T ∩ R consists exactly of one horizontal or vertical edge e.
Without loss of generality let e be a vertical edge. The endpoints of the edge e can be
connected as in Fig. 19(a). We denote by ∆ the smallest distance from e to a vertical
edge of Gk

1 . We have ∆ ≤ bb/(2(k + 1)) by the choice of R and the construction of Gk
1 .

Then it holds:

l(Tapp ∩ R) − l(T ∩ R) ≤ l(e) + 2∆ − l(e)
∆≤ bb

2(k+1)

≤ bb

k + 1
.

(ii) T ∩ R consists of exactly one diagonal edge e.
If l(e) =

√
2l(b) then the endpoints of e can be connected in Gk

1 as in Fig. 19(b).
We denote by ∆ the smallest distance from e to a parallel edge of Gk

1 . We have ∆ ≤
bb/(2(k + 1)). Then it holds:

l(Tapp ∩ R) − l(T ∩ R) ≤ l(e) + 2∆ − l(e)
∆≤ bb

2(k+1)

≤ bb

k + 1
.

If l(e) <
√

2l(b) then the endpoints of e can be connected in Gk
1 as in Fig. 19(c). We

denote by ∆ the smallest distance from e to a parallel edge of Gk
1 with the same length

or less than e. We have ∆ ≤ bb/(k + 1). Then it holds:

l(Tapp ∩ R) − l(T ∩ R) ≤ l(e) + (2 −
√

2)∆ − l(e)
∆≤ bb

k+1

≤ (2 −
√

2)
bb

k + 1
.

(iii) T ∩ R consists of exactly one bending edge e shown in Fig. 20(a).
Suppose the connection of the endpoints of e in Gk

1 along the pointed edges in Fig. 20(b)
is not longer than the connection along the pointed edges in Fig. 20(c). This is equiv-
alent to ∆ ≤ ∆′. Since R is chosen as small as possible, we have l(c) ≤ bb/(k + 1) and
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l(b)

l(a)

(a)

e
l(c)

l(b)

l(a)

e
l(c)

∆

(b)

l(b)

l(a)

(c)

e
l(c)

∆’

Fig. 20. Case 1 (iii): T ∩R consists of exactly one bending edge between opposite sides of R.

l(c)
l(b)

l(a)

(a)

e
∆

l(c)
l(b)

l(a)

e
∆

(b)

Fig. 21. Case 1 (iii): T ∩R consists of exactly one bending edge between adjacent sides of R.

∆ ≤ bb/(2(k + 1)). Then it holds:

l(Tapp ∩ R) − l(T ∩ R) ≤ l(b) + l(c) + 2∆ − (l(b) + (
√

2 − 1)l(c))

l(c) ≤ bb
k+1

∆ ≤ bb
2(k+1)

≤ (3 −
√

2)
bb

k + 1
.

Suppose the connection of the endpoints of e in Gk
1 along the pointed edges in Fig. 20(c)

is shorter as the connection along the pointed edges in Fig. 20(b). This is equivalent
to ∆′ < ∆. Since R is chosen as small as possible, we have l(c) ≤ bb/(k + 1) and
∆′ ≤ bb/(2(k + 1)). Then it holds:

l(Tapp ∩ R) − l(T ∩ R) ≤ l(b) + l(c) + 2∆′ − (l(b) + (
√

2 − 1)l(c))

l(c) ≤ bb
k+1

∆′ ≤ bb
2(k+1)

≤ (3 −
√

2)
bb

k + 1
.

(iv) T ∩R consists exactly of one bending edge shown in Fig. 21(a). The endpoints of e
can be connected in Gk

1 by the pointed edges in Fig. 21(b). Since R is chosen as small
as possible, we have l(c) ≤ bb/(k + 1). Then it holds:

l(Tapp ∩ R) − l(T ∩ R) ≤ 2l(c) + ∆ − (
√

2l(c) + ∆)
l(c)≤ bb

k+1

≤ (2 −
√

2)
bb

k + 1
.

Case 2: T ∩ R contains at least one Steiner point.
We consider different subcases, depending on the number of sides by which T intersects
the boundary of R.
(i) T intersects the boundary of R at two different sides a and b of R.
Suppose the sides a and b are adjacent. We denote by l(c) the maximum distance of
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l(d)

l(c)

(a) .

p1 p2

p3 p4
l(i) l(j)

l(e)l(g) l(h)

l(f)

(b)

l(c)

p1 p2

p3 p4
l(i) l(j)

l(e)l(g) l(h)

l(f)

(c)

l(c)

Fig. 22. Case 2: T ∩ R contains at least one Steiner point.

an intersection point of T on side a to the side b and by l(d) the maximum distance of
an intersection point of T on the side b to the side a. Without loss of generality we let
l(c) ≥ l(d). Then we have l(T ∩R) ≥ l(c) + (

√
2− 1)l(d) and l(Tapp ∩R) ≤ l(c) + l(d).

See also Fig. 22(a). Then it holds:

l(Tapp ∩ R) − l(T ∩ R) ≤ l(c) + l(d) − (l(c) + (
√

2 − 1)l(d))

= (2 −
√

2)l(d)

≤ (2 −
√

2)
bb

k + 1
.

Suppose next that side a lies opposite to b. Let c and d denote the remaining sides of
R. We denote by p1 and p2 the two intersection points of T with the side a which have
the maximum distance l(e) between each other and by p3 and p4 we denote the two
intersection points of T with the side b which have the maximum distance l(f) between
each other. We denote the other distances of the points to the adjacent edges as in Fig.
22(b). Without loss of generality let l(g) + l(i) ≤ l(h) + l(j).
Suppose we have l(e) + l(f) ≤ 2l(c). Then we have l(T ∩R) ≥ l(c) + (

√
2− 1/2)l(e) +

(
√

2 − 1/2)l(f) and l(Tapp ∩ R) ≤ l(c) + l(e) + l(f) + l(g) + l(i). See Fig. 22(b). Then
it holds:

l(Tapp ∩ R) − l(T ∩ R) ≤ l(c) + l(e) + l(f) + l(g) + l(i)

−(l(c) + (
√

2 − 1/2)l(e)

+(
√

2 − 1/2)l(f))

= (3/2−
√

2)l(e) + (3/2−
√

2)l(f)

+l(g) + l(i)

l(e) + l(g) ≤ bb
k+1

l(f) + l(i) ≤ bb
k+1

≤ (3 − 2
√

2)
bb

k + 1
+ (

√
2 − 1/2)l(g)

+(
√

2 − 1/2)l(i) ≤ 2
bb

k + 1
.

Suppose we have l(e) + l(f) > 2l(c). Then we have l(T ∩R) ≥ 2l(c) and l(Tapp ∩R) ≤
l(c) + l(e) + l(f) + l(g) + l(i). See Fig. 22(c). Then it holds:

l(Tapp ∩ R) − l(T ∩ R) ≤ l(c) + l(e) + l(f) + l(g) + l(i) − 2l(c)

= l(e) + l(f) + l(g) + l(i) − l(c)

< 2
bb

k + 1
.
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(a)

l(c)

l(b)

p
l(d)

l(b)

l(c)l(d)

p

(b)

Fig. 23. Case 2 (ii): T intersects the boundary of R at three different sides.

l(a)

l(b)

Fig. 24. Case 2 (iii): T intersects the boundary of R at all four sides.

(ii) T intersects the boundary of R at three different sides a, b and c.
Without loss of generality, side a lies opposite to c. Let l(d) be the maximum distance
of an intersection point p of T with side a or c to the side b. Without loss of generality
p lies on the side a.
Suppose it holds l(a) ≤ l(b). Then we have l(T ∩R) ≥ l(b) + (

√
2− 1)l(d) and l(Tapp ∩

R) ≤ l(b) + 2l(d). See Fig. 23(a).
Then we obtain

l(Tapp ∩ R) − l(T ∩ R) ≤ l(b) + 2l(d) − (l(b) + (
√

2 − 1)l(d))

= (3 −
√

2)l(d)

≤ (3 −
√

2)
bb

k + 1
.

Suppose it holds l(a) > l(b). Then we have l(T ∩R) ≥ (
√

2− 1)l(b) + l(d) and l(Tapp ∩
R) ≤ l(b) + 2l(d). See Fig. 23(b). Then it holds:

l(Tapp ∩ R) − l(T ∩ R) ≤ l(b) + 2l(d) − ((
√

2 − 1)l(b) + l(d))

= (2 −
√

2)l(b) + l(d)

≤ (3 −
√

2)
bb

k + 1
.

(iii) T intersects the boundary of R at all four sides. Let l(a) and l(b) the lengths
of the sides of R. Without loss of generality l(a) ≤ l(b). Then we have l(T ∩ R) ≥
(
√

2 − 1)l(a) + l(b) and l(Tapp ∩ R) ≤ 2l(a) + 2l(b). See Fig 24. Then it holds:

l(Tapp ∩ R) − l(T ∩ R) ≤ 2l(a) + 2l(b) − ((
√

2 − 1)l(a) + l(b))

= (3 −
√

2)l(a) + l(b)

≤ (4 −
√

2)
bb

k + 1
.

This completes our case analysis. ut
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Lemma 11. The graph Gk
1 contains an octilinear Steiner tree which is at most a factor

of

1 +
(2n − 3)(4 −

√
2)

k + 1

longer than the optimal one.

Proof. Let K be a set of points in the plane with |K| = n and Topt be some octilinear
Steiner minimum tree for K. We have to show that there is some octilinear Steiner tree
Tapp within Gk

1 which approximates Topt sufficiently well.
We cover Topt by a set R of axis-parallel rectangles as described above. Let us assume

that Topt is composed of k ≥ 1 full Steiner trees with n1, n2, . . . , nk ≥ 2 vertices each.

Then
∑k

i=1 ni = n + k− 1. Each full component may have at most si ≤ ni − 2 Steiner

points. Hence, the total number of Steiner points satisfies
∑k

i=1 si ≤ n − k − 1. If mi

denotes the number of edges in the i-th full component, we have mi = ni + si − 1 for
a total of m =

∑k
i=1 mi ≤ 2n − 2 − k edges in Topt.

The cover R of Topt by rectangles contains at most one rectangle per Steiner point,
one rectangle for each edge and at most two additional rectangles per bending edge
(one for the bending point and one for the second part of the edge). By Property 4,
we may assume that each full component has at most one bending edge. Thus |R| ≤
∑k

i=1 si +
∑k

i=1 mi + 2k ≤ 3n − 3.
Next we analyze the length `(Tapp) of Tapp in comparison to the optimal length

`(Topt). All edges of Topt which are incident to a terminal are represented in Gk
1 . Hence,

for all corresponding rectangles `(Topt ∩R) = `(Tapp ∩R). Clearly, there are at least n
edges incident to terminals. This implies, that for at most 2n− 3 rectangles of R there
will be a difference between `(Tapp ∩ R) and `(Topt ∩ R). Thus, we have

`(Tapp)

`(Topt)
=

`(Topt) +
∑

R∈R(`(Tapp ∩ R) − `(Topt ∩ R))

`(Topt)

≤ `(Topt) + (2n − 3) · maxR∈R{`(Tapp ∩ R) − `(Topt ∩ R)}
`(Topt)

.

Hence, it suffices to show that

max
R∈R

{`(Tapp ∩ R) − `(Topt ∩ R)} ≤ (4 −
√

2) · `(Topt)

k + 1
.

This relation follows from Lemma 10 and the observation that `(Topt) ≥ bb, since every
Steiner tree must connect the terminals which define the bounding box BB(K). 2

Theorem 3. For a given set of n terminals in the plane and for every ε > 0 there is

a graph of size O(n2

ε2 ) which contains a (1+ ε)–approximation of a minimum octilinear
Steiner tree.

Proof. The approximation guarantee follows directly from Lemma 11 if we choose k :=
(4−

√
2)2n

ε . With such a choice of k, the graph has the claimed size. 2

Blockages. Let us now sketch the necessary modifications in the presence of obstacles.
Let K be a set of points (terminals) in the plane and O be a set of octilinear (or
rectilinear) obstacles. Denote by VO the set of obstacle vertices. Let n = |K| + |VO |.
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Analogously to the definition of G1(K), we now define a graph G(K, O) which is
induced by the set L of lines in all feasible directions in 4-geometry going through
terminals or obstacle vertices.

For a given parameter k, we refine G(K, O) by adding lines. For any two parallel lines
in L which are neighbored (i.e., no third line with the same orientation lies between
them) we add k additional lines with the same orientation between them and place
them equidistantly. In total, we have O(nk) lines.

From the resulting induced graph, we erase all vertices and their incident edges
which lie strictly inside some obstacle. The latter guarantees that every Steiner tree in
this graph corresponds to a tree in the plane which avoids all obstacles.

Theorem 4. Let α denote the approximation guarantee for an algorithm solving the
Steiner tree problem in graphs. Given a terminal set K, a set of octilinear obstacles
O, and some ε > 0, there is an (α + ε)-approximation of the octilinear Steiner tree
problem with obstacles which have to be avoided.

The proof of this theorem follows basically the same ideas as that for the case
without obstacles. There is one essential difference, however. In the presence of ob-
stacles, edges between terminals and/or Steiner points may be forced to bend several
times. But if such an edge bends, then all but at most two of its straight segments will
lie on G(K, O). Since we have at most 2n − 3 edges (each contributing two segments
and possibly one corner point), but n edges incident to terminals and n − 2 Steiner
points, a cover by rectangles of an octilinear Steiner minimum tree requires at most
3 · (2n− 3)−n+n−2 = 6n− 11 rectangles on which we have to find an approximative
solution. This upper bound of 6n− 11 rectangles (instead of 2n− 3 without obstacles)
suffices for an analogous result as in Lemma 11.
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