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Abstract

The article studies ordered semigroups and semirings wipect to
their representations in lattices. Such structures arentafly the pseu-
dolattices of Dietrich and Hoffman. It is shown that a subtaekl represen-
tation implies the semigroup to be a lattice in its own right.particular,
distributive lattices can be characterized as semiringsittidg subadditive
supermodular representations. The cover problem asksrfonianal cover
of a ground set by representing sets with respect to a sgniigreedy al-
gorithm is exhibited to solve the cover problem for the clafsisittices with
weakly subadditive and supermodular representation.

1 Introduction

Pseudolattices were recently introduced by Dietrich anffirien [2] as very gen-
eral (finite) algebraic lattice-type structures on (pdistjaordered ground sets.
Indeed, every ordered set with a unique lower bound and auanigper bound
can be endowed with such a structure. Combinatorial inténgsseudolattices,
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however, arises not so much from their abstract structutdrbm their repre-
sentations in lattices in general and Boolean algebrasriicpkar. In this note,
we study such structures under the assumption that theyt aglonesentations of
certain types.

In our discussion, we prefer the terminology of ordered ggeouips and semirings,
which we define in Section 2. We introduce the charactergdtec representation
and show that ordered semigroups with a subadditive claarsiit are lattices
in their own right. In particular, distributive lattices mée viewed as semir-
ings admitting a subadditive and supermodular representat some lattice. In
Section 3, we turn to the cover problem, which assumes a geresentation
of a semiring in a set system (Boolean algebra). The problemsists in iden-
tifying a minimal cover of the ground set by representing séthis problem is
dual to the packing problem by representing sets, which asvknto be solvable
by Frank’s [7] greedy algorithm if the representation ismmollular. Generalizing
the approach of [4], [5] we establish an analogous greegg-tilonge) algorithm
for the cover problem relative for a class of lattices withaklg subadditive and
supermodular representations.

2 Representationsof Ordered Semigroups

Let L be a finite lattice. Sd. is equipped with a partial ordet so that for any
two x,y € L their supremunx V y exists inL. It is well-known that the existens
of suprema inL implies the existence of infima ih. Indeed, the infimum of
andy is

:c/\y:\/{zEL\zj:c,y}.

Let (P, <) be an arbitrary finite (partially) ordered set. Byepresentatiorof P
in L we understand a map : P — L that is order-compatible in the sense that
the following two conditions are satisfied for allb, c € P:

(CO) x(a) < x(b) = a<hb.
(Cl)a<b<c = x(a)Ax(c) = x(b).

Note that (CO) implies that the representatipn P — L is injective and the
inverse mapy~! : x(P) — P is an order-homomorphism (but not necessarily
an order-isomorphism!). (C1) is the so-callsmhsecutive ones propertyf. [2]).
Clearly (C0) holds, for example, whenewvers an order-hnomomorphism.
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Observe that any ordered sBtalways admits a representatignin the lattice
B(P) = (27, C) of subsets of” with

x(a)={d € P|d <a}.
Recall that an element is called (join-)irreducible in the finite latticeL if «

has precisely one lower neighbor (i, <). Denote byJ = J(L) the set of all
irreducible elements. Then eache L is characterized by the associated subset

J(x)={ueJ|u=z},

which is an order ideal if.J, <). It follows that the structure of is determined
by thecharacteristic functiong,, : L — {0,1}, whereu € J(L) and

(z) = 1 ifu=<z
HalP= 0 ifu £ 2.

If x : P — L is a representation of the ordered g&tn the lattice, we thus
obtain thecharacteristic functions of the representatign : P — {0, 1}, where
u € J(L)and

Xu(a) = pu(x(a)) foralla € P.

2.1 Ordered Semigroups

We call (P, <) anordered semigrouff there is binary operatiofa,b) — a ® b
on P such that
a,b<a®b foralla,bec P.

Consider the representatign P — L of the (ordered) semigroup in the lattice
L. We say that (the characteristic gf)s subadditivef the inequality

Xu(a ®b) < xula) + xu(b)

holds for all irreducibles: € J(L) and elements,b € P. Subadditivity is
equivalent with the property

Jx(a®b)) © J(x(a)) U J(x(b))

and imposes a strong condition on the structur® of



Theorem 2.1 Assume that the ordered semigroBpadmits a subadditive repre-
sentationy : P — L inthe latticeL. Then for alla,b € P, a ® b is the supremum
ofa,bin (P, <). In particular, (P, <) is a lattice.

Proof. Suppose the Theorem is false ang a & b is not the supremum af andb in P,
i.e. there exists somé € P with d > a,b andd # c¢. Considerc ® d and observe that
x(c @ d) A x(d) must hold since otherwise (C0) would imply the contradittio

c<cdd<d.

So there exists an irreducibte € J(x(c ® d)) \ J(x(d)). Sincey is subadditive, we
knowu € J(x(c)) and hence: € J(x(a)) oru € J(x(b)). Assumeu € J(x(a)), for
example, and recall the relation

a<d<cdd.

Now u =< x(a) A x(c & d) holds whileu < x(d) is not satisfied, which contradicts
property (C1) ofy. Consequently, no counterexample to the claim of the Thmearan
exist.

2.2 Ordered Semirings and Pseudolattices

Let P be an ordered set as before and assume that there are twy dyeaations
a @ banda ® bon P such that

a®b < a,b < a®b foralla,be P.

We then call(P, @, ®) anordered semiring Note that our "ordered semirings”
are essentially thpseudolattice®f Dietrich and Hoffman [2], whose definition
stipulates the additional property

a®b=>b and a®b=a whenevera <b.

Given the ordered semiring, we extend the terminology for the characteristics
of representationg : P — L and cally supermodulaif

Xula ® ) + xula © b) > xula) + xu(b)

holds for allu € J(L) anda, b € P. x is submodulaif the reverse inequality
Xul(a ® ) + xula ©b) < xula) + xu(b)
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is always true. Note that the submodularityyoimplies in particular thaly is
subadditive.

We say thaty is modularif y is both super- and submodular. The ordered semir-
ings (or pseudolattices) that admit a modular represemati a Boolean lattice
are central in the investigation [2].

It is well-known that the characteristic functiong of a distributive latticel. are
modular and form the basis for the vector spacealtiationsof L. Valuations
play an important role in combinatorial analysté. (11]). One might expect that
representations on a distributive lattice therefore atvagve a modular charac-
teristic. However, this is not the case as the following epl@nshows.

Example 2.1 Let (N, <) be an ordered set and! its collection of antichains.
With each antichaim € A we associate the order ideal
X(A) ={s € N|s<aforsome: € A}.
P = (A, <) is a distributive lattice under the ordering
A<B < x(4) CSx(B)

Moreover, y yields a representation aP in the (distributive) lattice of subsets
B(N) = (2, C). Pis an ordered semiring under the operations

A®B=MAX(AUB) and A®B=ANB,

where M AX (S) denotes the set of maximal elements of a%set N. Itis
straightforward to check that the representatipn P — B is generally submod-
ular but not necessarily modular. Following [9], let us mbdihe multiplication
in P to

AN B=MAX(x(A) Nx(B)).

Then(P, @, M) is an ordered semiring with respect to which the represéomat
is modular.

2.3 Representations of Closure Systems

Let # C 2" be a closure system oN, i.e., an intersection-closed family of
subsets withV € F. As usual, we denote thdosureof a setS C N by

S=({FeF|SCF}.

5



Then (F,C) is a lattice and an ordered semiring with respect to the tipesa
SeT=SUTandS®T =SNT.Becausés UT C SUT,itis clear that the
identity map.(S) = S yields a supermodular representation(#f, &, @) in the
lattice B(N) = (2%, C) of all subsets ofV:

pu(SOT) + p(SNT) = pu(SUT) + pu(SNT) = p(S) + pu(T)-

As indicated in Example 2.1, it is quite possible that a dlessystemF admits
a submodular representation as well. Assume, for exantpegtis a family of
subsets of the groundsat with the property that for each closed séts= F a
unique setzg € G exists such that foralb, 7. V € F,

(GO) Gs = S.
(G2) Gser € GsUGrandGgqar € Gg N Gr.

For instance, ifF is the system of order ideals of the partially ordered 8&t<),
the collectionA of antichains satisfies (G0)-(G1).

Consider generally the map : 7 — B(N), given byx(S) = Gs. Then (GO0)
implies property (C0O) and (G1) implies (C1). Moreover, (Gays thaty is sub-
modular:

Hence we have

Proposition 2.1 Assume that the closure systénon the setV admits a family
G with property (G0)-(G2). TheS — Gy yields a submodular representation of
F in the latticeB(N) of all subsets ofV.

<

Further examples of closure systeffisatisfying (G0)-(G1) arise from so-called
convex geometrig&f. [3]), where one may také&'s as the set of vertices of the
closed setS € F. (Recall that a vertex of is a pointv € S with the property
v ¢ S\ {v} and that each closed set of a convex geometry is the clositsesaft
of vertices.)

Our next example of the closure systdmshows that the class of closure systems
satisfying (G0)-(G2) is strictly larger than the class ofieex geometries.



Example2.2 Let N = {a,b,c,d} and N5 = {0, {a},{b,d},{b,c,d}, N}. Ny is
a closure system and = {0, {a}, {b,d},{b, c}, {a, b}} satisfies (G0)-(G2). We
remark that\; fails to satisfy all the requirements of a convex geometrghan
sense of [3].

2.3.1 Co-closure Systems

A family F of subsets of the séY is aco-closure systerh
peF and SUT € F forall S,T € F.
F is an ordered semiring with respect to the operations
SeT=SUT and SOT=U{AcF|ACSNT}.

Clearly, the identity mapy(S) = S provides a submodular representation of
(F, Q) in the latticeB(N).

2.4 Distributive Lattices

We want to characterize distributive lattices in terms @ithepresentability as
ordered semirings. Our proof is based on the well-knownasttarization of a
distributive lattice as a lattice that admits neither a sulgsure of type/N5 nor a
substructure of typé/; (cf. [1]).

Theorem 2.2 Let (P,®,®) be an ordered semiring. TheR is a distributive
lattice if and only if P admits a subadditive and supermodular representation
X : P — Lin some latticel.

Proof. The necessity of the condition is obvious since the identity) = a provides a
representation of in L = P of the desired kind ifP is a distributive lattice. We prove
that the condition is sufficient faP to be a distributive lattice.

From the subadditivity of, we know thatP is a lattice withsup(a, b) = a®b. Suppose’
is not distributive. TherP contains either a sublattice of typé, or of type Ms3. Assume
first that there exists a subs®¥t = {a, b, c,d,e} C P so that

c<d, e=b@®c=bddanda = inf(b,c) = inf(b, d).



(CO0) guarantees the existence of an irreducible element/(x(d)) \ J(x(c)). Because
bod<a<c<d, (Cl)thenimpliesy, (b ® d) = 0 and the supermodularity af yields

1> xu(b®d) + xu (b O d) > xu(b) + xu(d) > 1.

Hence we concludg,,(e) = 1 andyx,(b) = 0, which however contradicts the subadditiv-
ity of xy:
Xu(€) = Xu(b @ ) < xu(b) + Xulc) = 0.

Therefore, we conclude thaf; cannot occur if{ P, <).
Assume finally thaf contains a subsét/s = {a, b, ¢, d, e} with the property
e=b®dc=bdd=cdd and a=inf(b,c) = inf(b,d) = inf(c, d).
Choose some € J(x(e)) \ J(x(b)). Then the subadditivity of implies
Xu(€) = Xu(d) = 1.

The supermodularity then guaranteggc ©® d) = 1. Hencec ©d < a < b < eyields a
contradiction to the consecutive property (C1) with respea. It follows that alsolM3
cannot occur inP.

Corollary 2.1 ([?]) Every pseudolattice with modular representation is a st
tive lattice.
&

3 TheCovering Problem

Letx : P — L be arepresentation of the ordered setin the laffi¢é) = (2V, C)

of subsets of the séf. The covering problenwe consider here consists in the
identification of a subset’ C P of minimal cardinality such that(C') covers alll
of U, i.e,

(C) min|C| suchthat U =J .. x(a).

To avoid trivial cases, we assume throughout that the cogegsroblem has a

solution,i.e.
U= U x(u).

aceP
The covering problem is dual to tipacking problem
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(C*) max|C*| suchthat x(a) N x(b) =0foralla #0be C*.

The partition problemconsists in finding a minimal cover that is also a packing.
A x-partition of U does not necessarily exist. In the case of a pseudolattice
with modular representation, the greedy type algorithn2ppfovides an optimal
partition solution if one exists. It is pointed out in [6] tHarank’s [7] greedy-type
algorithm may be used to solve the packing problem if the aittaristic of the
representatiory is submodular.

We treat the covering problem in the framework of linear pamgming. We for-
mulate the covering problem as

min» "z, st oz, €{0,1} and > z,>1forallucUac P (1)

acP x(a)2u

and associate with it the dual problem

max » y, Stoy, €{0,1} and Yy, <lforalucUacP. (2)

uelU u€x(a)

If we can find feasible solutionsfor (1) andy for (2) such that

D wa < v 3)

aeP uelU

it follows from the well-known duality theory of linear pregmming that: andy
are optimal for the respective problems.

Note that (2) is a combinatoriahatching problemone seeks a maximal subset
X C U that contains from eack(a) at most one representative. Hence it can
in principle be solved with matching algorithms from comddrial optimization.
We want to show here that under additional assumptions deignpedy-type al-
gorithm exists for the covering problem. We will make thddwling assumptions
on the ordered semiring, &, ®):

(Al) (P,<)is alattice witha @ b = sup(a, b).
(A2) If a andb are lower neighbors af & b, theny(a & b) C x(a) U x(b).
(A3) The characteristic of : P — B(U) is supermodular.

Our requirements allow? to be still a more general structure than a distributive
(pseudo)lattice. For example, the identity represematiothe (generally non-
distributive) system of closed sets of a convex geometriiérsense of [3] can be
shown to satisfy (A1)-(A3).



3.1 TheMongeAlgorithm

We now present the Monge algorithm with the goal to compusaaible solution
for (1) in a straightforward manner. At every stage of theoathm, the elements
u € U will carry labelsc, € R. u is coveredonce its label is nonpositive.¢.,
cu. < 0). The algorithm will reduce the lattic® iteratively until all elements
u € U are covered.

Letm be the maximal element of the lattic®, <) currently under consideration.
Denote by/(m) its collection of lower neighbors and compute the parameter

¢ = ml}(n )max{cu |u e x(m)\ x(m)} foralm’ € l(m).
m/el(m

A pair (u, m*) with m* € ¢(m) andu € x(m) \ x(m*) is a called aMonge pair
if ¢, = c*. If ¢* > 0, thenm is said to beactiveandu € x(m) \ x(m*) is the
correspondingepresentativeWith this terminology, thélonge algorithmis now
easy to describe as the following iterative procedure:

(My) INITIALIZE : Setz, = 0 for all a € P and label the, € U with ¢, = 1.
Then modifyz iteratively as follows.

(M;) Consider the maximal member € P and select a Monge pa(t, m*).

(My) Setz,, = max{c*, 0} and subtract,, from all ¢, with v € x(m).

(M3) ReplaceP by P* ={a € P | m <m*}.

(My) IF |P| > 2 THEN GO TO(M,). ELSE returnz andEND.

Proposition 3.1 Assume (Al1)-(A3). Then the Monge algorithm returns a féasib
solutionz for (1).

Proof. It follows directly from the Monge algorithms thathas only(0, 1)-components.
Soz is feasible if and only if all elements € U are covered when the Monge algorithm
ends. Consider any currently not coveted U (i.e. ¢, > 0). If u € x(a) holds for some
a € P*, thenu will be covered at a later stage of the algorithmulE x(a) is only true
for a € P\ P*, then supermodularity yields

Xu(m) = Xu(a ®m*) = xu(a) + xu(m") — xula ©m") = xu(a) = 1.
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Sow occurs iny(m), i.e, u € x(m) \ x(m*) holds and the Monge algorithm implies
c* > ¢, > 0. Henceu will be covered in the present iteration.
<o

Collect all the active elements; encountered in the course of the algorithm and
the corresponding representativgsc x(m;) \ x(m;) into theMonge chainM
andMonge sequence, where

M={m <...<my} and 7=wu...u Withu; € x(my) \ x(m])

for j = 1...k and letm, be the minimal element @?. Since the algorithm starts
with ¢ = 1, m;, will be the maximal element of the latticB. Considering the
intervals

mj,mjl={a€P|mj1<a<a} (j=1,...,k),

the crucial technical observation is the following.
Lemma3.1 Consider any: € [m;_;, m;]. Then either = m; or u; ¢ x(a).

Proof. Suppose the Lemmais false amd_; < a < m; exhibitsu; € x(a). Soa £ m]
holds and, by (C1), we may assume thas a lower neighbor ofn;. Because the Monge
algorithm selectedr (and nota), there must be some element x(m;) \ x(a) with
cy > > 0.

Because ofn;j_; < a < m;, (C1) impliesv ¢ x(m;_1). Hencev must have left the
algorithm at somen; with v € x(m;) \ x(m}) andm;_; < m; < m;. ¢, > 0 says that
m; is an active element. So we must hang = m; andv ¢ x(mj). But now we have a
contradiction to (A2)a andm] are lower neighbors ofi; butv € x(m;) \ x(a & mj).

o

3.2 TheGreedy Algorithm

Based on the Monge chaim and the Monge sequenae the greedy algorithm
constructs @reedy vectoy”™ : U — R by modifying the components of the zero
vectory = 0 iteratively as follows:

b yglzl
o yr =13 {yi li<juwex(m)} (G=2..k).
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Obviously, all components af* are integer-valued. Moreover, singe¢ x(m;)
if i > j, we observe

y"(my) = {yl | w € x(my)} =1 forallj=1,... k
To prove thaty™ is a feasible solution for (2), we first show thgt is a binary
vector.

Lemma3.2 y™ € {0,1}Y].

Proof. It remains to show that no component @f is negative. The algorithm yields
ys, = 1 by construction. Since eaah € x(m;) with i < j must also lie iny(m;_1),
we furthermore find iteratively

va, = 1= {yl |i<ju€x(m;)}

1= {y, | wi € x(mj—1)}
1 —yﬂ—(mjfl) =0.

Y

o

As the characteristic of : P — B(U) is supermodular, it follows that the non-
negative vectoy™ gives rise to a supermodular function frvia

ya@) =5 {7 lu e x(a)}

Recalling that™ is constructed from the Monge chaM = {m; < ... < m;},
we next observe

Lemma3.3 Forall m; € M anda € P,

mij—1 <a<m; = y"(a)

1 G=1,....k)
a>m, = y*(a) <L

VARVAN

Proof. Assumem;_; < a < m;. In the caser = m;, we already know,™(a) = 1. If
a < mj, thenu; ¢ x(a) by Lemma 3.1. By the consecutive property (Cdl),c x(a)
impliesu; € x(m;—1) for all i. Soy™ > 0 yields
y"(a) <y"(mj-1) = 1.
The case: > my, is analyzed the same way.
<o

Observe that the greedy vecigris feasible if and only if the submodular function
h(a) =1 —y™(a) is nonnegative for each € P.
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Proposition 3.2 Assume (Al1)-(A3) and le¥t = {m; < ... < my} be a Monge
chain with Monge sequenee= u; . .. u;. Then the greedy vectogr is a feasible
solution for (2).

Proof. Suppose the Proposition is false angs a minimal counterexample. So0< m;
anda # my. Observe thak(m;) = 0 holds for eachn; € M. If a £ my, then
h(a) > h(a®my) + hia & my) — h(mg)
= h(a@mk)—i-h(a@mk) >0,
asa ® my > my anda © my < a imply that both additive terms are nonnegative. Hence
there must exist somg> 1 such that
aZm;j_y and a<m;.
Noting m;—1 < a ® m;—; < m;, we then arrive at a contradiction in a similar way
through the submodular expansion
ha) > hla©mj1)+hla®mj_1)— h(m;-1)
= h(a®mj_1)+h(a®mj_1) > 0,

O

Theorem 3.1 Assume (A1)-(A3). Let : P — {0,1} be the solution returned
by the Monge algorithmM = {m; < ... < m;} be the Monge chain with
Monge sequence = u; ... ug, andy”™ : U — {0, 1} be the corresponding greedy
solution. Thenr andy™ are optimal solutions to (1) and (2), respectively.

Proof. As x andy™ are feasible solutions, by duality theory, it remains tovsliioat
PIEED A
acP uelU

Consider the cove€ = {a € P | z, = 1}. SinceC C M, the construction of/™
guarantees for each; € C atleastone, € U with u € x(m;) andy], = 1. In particular,
u e .

On the other hand, if there exists some U with u € x(a)Nx(b) for two cover elements
a # b, the weightc, becomes negative at some iteration of the Monge algorithenckl
u ¢ mandy] = 0.

It follows that for eachu € C' there exists exactly one € U with y; = 1. Therefore,

|C|:Zxazzyg'

acP uelU
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