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Abstract

The article studies ordered semigroups and semirings with respect to
their representations in lattices. Such structures are essentially the pseu-
dolattices of Dietrich and Hoffman. It is shown that a subadditive represen-
tation implies the semigroup to be a lattice in its own right.In particular,
distributive lattices can be characterized as semirings admitting subadditive
supermodular representations. The cover problem asks for aminimal cover
of a ground set by representing sets with respect to a semiring. A greedy al-
gorithm is exhibited to solve the cover problem for the classof lattices with
weakly subadditive and supermodular representation.

1 Introduction

Pseudolattices were recently introduced by Dietrich and Hoffman [2] as very gen-
eral (finite) algebraic lattice-type structures on (partially) ordered ground sets.
Indeed, every ordered set with a unique lower bound and a unique upper bound
can be endowed with such a structure. Combinatorial interest in pseudolattices,
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however, arises not so much from their abstract structure but from their repre-
sentations in lattices in general and Boolean algebras in particular. In this note,
we study such structures under the assumption that they admit representations of
certain types.

In our discussion, we prefer the terminology of ordered semigroups and semirings,
which we define in Section 2. We introduce the characteristicof a representation
and show that ordered semigroups with a subadditive characteristic are lattices
in their own right. In particular, distributive lattices may be viewed as semir-
ings admitting a subadditive and supermodular representation in some lattice. In
Section 3, we turn to the cover problem, which assumes a givenrepresentation
of a semiring in a set system (Boolean algebra). The problem consists in iden-
tifying a minimal cover of the ground set by representing sets. This problem is
dual to the packing problem by representing sets, which is known to be solvable
by Frank’s [7] greedy algorithm if the representation is submodular. Generalizing
the approach of [4], [5] we establish an analogous greedy-type (Monge) algorithm
for the cover problem relative for a class of lattices with weakly subadditive and
supermodular representations.

2 Representations of Ordered Semigroups

Let L be a finite lattice. SoL is equipped with a partial order� so that for any
two x, y ∈ L their supremumx ∨ y exists inL. It is well-known that the existens
of suprema inL implies the existence of infima inL. Indeed, the infimum ofx
andy is

x ∧ y =
∨

{z ∈ L | z � x, y}.

Let (P,≤) be an arbitrary finite (partially) ordered set. By arepresentationof P
in L we understand a mapχ : P → L that is order-compatible in the sense that
the following two conditions are satisfied for alla, b, c ∈ P :

(C0) χ(a) � χ(b) =⇒ a ≤ b.

(C1) a ≤ b ≤ c =⇒ χ(a) ∧ χ(c) � χ(b).

Note that (C0) implies that the representationχ : P → L is injective and the
inverse mapχ−1 : χ(P ) → P is an order-homomorphism (but not necessarily
an order-isomorphism!). (C1) is the so-calledconsecutive ones property(cf. [2]).
Clearly (C0) holds, for example, wheneverχ is an order-homomorphism.
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Observe that any ordered setP always admits a representationχ in the lattice
B(P ) = (2P ,⊆) of subsets ofP with

χ(a) = {a′ ∈ P | a′ ≤ a}.

Recall that an elementu is called (join-)irreducible in the finite latticeL if u
has precisely one lower neighbor in(L,�). Denote byJ = J(L) the set of all
irreducible elements. Then eachx ∈ L is characterized by the associated subset

J(x) = {u ∈ J | u � x},

which is an order ideal in(J,�). It follows that the structure ofL is determined
by thecharacteristic functionsµu : L → {0, 1}, whereu ∈ J(L) and

µu(x) =

{

1 if u � x
0 if u 6� x.

If χ : P → L is a representation of the ordered setP in the latticeL, we thus
obtain thecharacteristic functions of the representationχu : P → {0, 1}, where
u ∈ J(L) and

χu(a) = µu(χ(a)) for all a ∈ P .

2.1 Ordered Semigroups

We call (P,≤) anordered semigroupif there is binary operation(a, b) 7→ a ⊕ b
onP such that

a, b ≤ a ⊕ b for all a, b ∈ P .

Consider the representationχ : P → L of the (ordered) semigroupP in the lattice
L. We say that (the characteristic of)χ is subadditiveif the inequality

χu(a ⊕ b) ≤ χu(a) + χu(b)

holds for all irreduciblesu ∈ J(L) and elementsa, b ∈ P . Subadditivity is
equivalent with the property

J(χ(a ⊕ b)) ⊆ J(χ(a)) ∪ J(χ(b))

and imposes a strong condition on the structure ofP .
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Theorem 2.1 Assume that the ordered semigroupP admits a subadditive repre-
sentationχ : P → L in the latticeL. Then for alla, b ∈ P , a⊕ b is the supremum
of a, b in (P,≤). In particular, (P,≤) is a lattice.

Proof. Suppose the Theorem is false andc = a ⊕ b is not the supremum ofa andb in P ,
i.e., there exists somed ∈ P with d ≥ a, b andd 6≥ c. Considerc ⊕ d and observe that
χ(c ⊕ d) 6� χ(d) must hold since otherwise (C0) would imply the contradiction

c ≤ c ⊕ d ≤ d.

So there exists an irreducibleu ∈ J(χ(c ⊕ d)) \ J(χ(d)). Sinceχ is subadditive, we
know u ∈ J(χ(c)) and henceu ∈ J(χ(a)) or u ∈ J(χ(b)). Assumeu ∈ J(χ(a)), for
example, and recall the relation

a ≤ d ≤ c ⊕ d.

Now u � χ(a) ∧ χ(c ⊕ d) holds whileu � χ(d) is not satisfied, which contradicts
property (C1) ofχ. Consequently, no counterexample to the claim of the Theorem can
exist.

�

2.2 Ordered Semirings and Pseudolattices

Let P be an ordered set as before and assume that there are two binary operations
a ⊕ b anda � b onP such that

a � b ≤ a, b ≤ a ⊕ b for all a, b ∈ P .

We then call(P,⊕,�) an ordered semiring. Note that our ”ordered semirings”
are essentially thepseudolatticesof Dietrich and Hoffman [2], whose definition
stipulates the additional property

a ⊕ b = b and a � b = a whenevera ≤ b.

Given the ordered semiringP , we extend the terminology for the characteristics
of representationsχ : P → L and callχ supermodularif

χu(a ⊕ b) + χu(a � b) ≥ χu(a) + χu(b)

holds for allu ∈ J(L) anda, b ∈ P . χ is submodularif the reverse inequality

χu(a ⊕ b) + χu(a � b) ≤ χu(a) + χu(b)
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is always true. Note that the submodularity ofχ implies in particular thatχ is
subadditive.

We say thatχ is modularif χ is both super- and submodular. The ordered semir-
ings (or pseudolattices) that admit a modular representation in a Boolean lattice
are central in the investigation [2].

It is well-known that the characteristic functionsµu of a distributive latticeL are
modular and form the basis for the vector space ofvaluationsof L. Valuations
play an important role in combinatorial analysis (cf. [11]). One might expect that
representations on a distributive lattice therefore always have a modular charac-
teristic. However, this is not the case as the following example shows.

Example 2.1 Let (N,≤) be an ordered set andA its collection of antichains.
With each antichainA ∈ A we associate the order ideal

χ(A) = {s ∈ N | s ≤ a for somea ∈ A}.

P = (A,≤) is a distributive lattice under the ordering

A ≤ B ⇐⇒ χ(A) ⊆ χ(B).

Moreover,χ yields a representation ofP in the (distributive) lattice of subsets
B(N) = (2N ,⊆). P is an ordered semiring under the operations

A ⊕ B = MAX(A ∪ B) and A � B = A ∩ B,

whereMAX(S) denotes the set of maximal elements of a setS ⊆ N . It is
straightforward to check that the representationχ : P → B is generally submod-
ular but not necessarily modular. Following [9], let us modify the multiplication
in P to

A u B = MAX(χ(A) ∩ χ(B)).

Then(P,⊕,u) is an ordered semiring with respect to which the representation χ
is modular.

2.3 Representations of Closure Systems

Let F ⊆ 2N be a closure system onN , i.e., an intersection-closed family of
subsets withN ∈ F . As usual, we denote theclosureof a setS ⊆ N by

S =
⋂

{F ∈ F | S ⊆ F}.
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Then(F ,⊆) is a lattice and an ordered semiring with respect to the operations
S ⊕ T = S ∪ T andS � T = S ∩ T . BecauseS ∪ T ⊆ S ∪ T , it is clear that the
identity mapι(S) = S yields a supermodular representation of(F ,⊕,�) in the
latticeB(N) = (2N ,⊆) of all subsets ofN :

µu(S ⊕ T ) + µu(S ∩ T ) ≥ µu(S ∪ T ) + µu(S ∩ T ) = µu(S) + µu(T ).

As indicated in Example 2.1, it is quite possible that a closure systemF admits
a submodular representation as well. Assume, for example, thatG is a family of
subsets of the groundsetN with the property that for each closed setsS ∈ F a
unique setGS ∈ G exists such that for allS, T, V ∈ F ,

(G0) GS = S.

(G1) S ⊆ T ⊆ V =⇒ GS ∩ GV ⊆ GT .

(G2) GS⊕T ⊆ GS ∪ GT andGS∩T ⊆ GS ∩ GT .

For instance, ifF is the system of order ideals of the partially ordered set(N,≤),
the collectionA of antichains satisfies (G0)-(G1).

Consider generally the mapχ : F → B(N), given byχ(S) = GS. Then (G0)
implies property (C0) and (G1) implies (C1). Moreover, (G2)says thatχ is sub-
modular:

χu(S ⊕ T ) + χu(S � T ) ≤ µu(GS ∪ GT ) + µu(GS ∩ GT ) = χu(S) + χu(T ).

Hence we have

Proposition 2.1 Assume that the closure systemF on the setN admits a family
G with property (G0)-(G2). ThenS 7→ GS yields a submodular representation of
F in the latticeB(N) of all subsets ofN .

�

Further examples of closure systemsF satisfying (G0)-(G1) arise from so-called
convex geometries(cf. [3]), where one may takeGS as the set of vertices of the
closed setS ∈ F . (Recall that a vertex ofS is a pointv ∈ S with the property
v /∈ S \ {v} and that each closed set of a convex geometry is the closure ofits set
of vertices.)

Our next example of the closure systemN5 shows that the class of closure systems
satisfying (G0)-(G2) is strictly larger than the class of convex geometries.
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Example 2.2 Let N = {a, b, c, d} andN5 = {∅, {a}, {b, d}, {b, c, d}, N}. N5 is
a closure system andG = {∅, {a}, {b, d}, {b, c}, {a, b}} satisfies (G0)-(G2). We
remark thatN5 fails to satisfy all the requirements of a convex geometry inthe
sense of [3].

2.3.1 Co-closure Systems

A family F of subsets of the setN is aco-closure systemif

∅ ∈ F and S ∪ T ∈ F for all S, T ∈ F .

F is an ordered semiring with respect to the operations

S ⊕ T = S ∪ T and S � T = ∪{A ∈ F | A ⊆ S ∩ T}.

Clearly, the identity mapχ(S) = S provides a submodular representation of
(F ,⊆) in the latticeB(N).

2.4 Distributive Lattices

We want to characterize distributive lattices in terms of their representability as
ordered semirings. Our proof is based on the well-known characterization of a
distributive lattice as a lattice that admits neither a substructure of typeN5 nor a
substructure of typeM3 (cf. [1]).

Theorem 2.2 Let (P,⊕,�) be an ordered semiring. ThenP is a distributive
lattice if and only ifP admits a subadditive and supermodular representation
χ : P → L in some latticeL.

Proof. The necessity of the condition is obvious since the identityχ(a) = a provides a
representation ofP in L = P of the desired kind ifP is a distributive lattice. We prove
that the condition is sufficient forP to be a distributive lattice.

From the subadditivity ofχ, we know thatP is a lattice withsup(a, b) = a⊕b. SupposeP
is not distributive. ThenP contains either a sublattice of typeN5 or of typeM3. Assume
first that there exists a subsetN5 = {a, b, c, d, e} ⊆ P so that

c < d, e = b ⊕ c = b ⊕ d anda = inf(b, c) = inf(b, d).
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(C0) guarantees the existence of an irreducible elementu ∈ J(χ(d)) \ J(χ(c)). Because
b� d ≤ a ≤ c ≤ d, (C1) then impliesχu(b� d) = 0 and the supermodularity ofχ yields

1 ≥ χu(b ⊕ d) + χu(b � d) ≥ χu(b) + χu(d) ≥ 1.

Hence we concludeχu(e) = 1 andχu(b) = 0, which however contradicts the subadditiv-
ity of χu:

χu(e) = χu(b ⊕ c) ≤ χu(b) + χu(c) = 0.

Therefore, we conclude thatN5 cannot occur in(P,≤).

Assume finally thatP contains a subsetM3 = {a, b, c, d, e} with the property

e = b ⊕ c = b ⊕ d = c ⊕ d and a = inf(b, c) = inf(b, d) = inf(c, d).

Choose someu ∈ J(χ(e)) \ J(χ(b)). Then the subadditivity ofχ implies

χu(c) = χu(d) = 1.

The supermodularity then guaranteesχu(c � d) = 1. Hencec � d ≤ a < b < e yields a
contradiction to the consecutive property (C1) with respect to u. It follows that alsoM3

cannot occur inP .
�

Corollary 2.1 ([?]) Every pseudolattice with modular representation is a distribu-
tive lattice.

�

3 The Covering Problem

Letχ : P → L be a representation of the ordered set in the latticeB(U) = (2U ,⊆)
of subsets of the setU . Thecovering problemwe consider here consists in the
identification of a subsetC ⊆ P of minimal cardinality such thatχ(C) covers all
of U , i.e.,

(C) min |C| such that U =
⋃

a∈C χ(a).

To avoid trivial cases, we assume throughout that the covering problem has a
solution,i.e.

U =
⋃

a∈P

χ(u).

The covering problem is dual to thepacking problem
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(C∗) max |C∗| such that χ(a) ∩ χ(b) = ∅ for all a 6= b ∈ C∗.

Thepartition problemconsists in finding a minimal cover that is also a packing.
A χ-partition of U does not necessarily exist. In the case of a pseudolatticeP
with modular representation, the greedy type algorithm of [2] provides an optimal
partition solution if one exists. It is pointed out in [6] that Frank’s [7] greedy-type
algorithm may be used to solve the packing problem if the characteristic of the
representationχ is submodular.

We treat the covering problem in the framework of linear programming. We for-
mulate the covering problem as

min
∑

a∈P

xa s.t. xa ∈ {0, 1} and
∑

χ(a)3u

xa ≥ 1 for all u ∈ U, a ∈ P (1)

and associate with it the dual problem

max
∑

u∈U

yu s.t. yu ∈ {0, 1} and
∑

u∈χ(a)

yu ≤ 1 for all u ∈ U, a ∈ P. (2)

If we can find feasible solutionsx for (1) andy for (2) such that
∑

a∈P

xa ≤
∑

u∈U

yu, (3)

it follows from the well-known duality theory of linear programming thatx andy
are optimal for the respective problems.

Note that (2) is a combinatorialmatching problem: one seeks a maximal subset
X ⊆ U that contains from eachχ(a) at most one representative. Hence it can
in principle be solved with matching algorithms from combinatorial optimization.
We want to show here that under additional assumptions a simple greedy-type al-
gorithm exists for the covering problem. We will make the following assumptions
on the ordered semiring(P,⊕,�):

(A1) (P,≤) is a lattice witha ⊕ b = sup(a, b).

(A2) If a andb are lower neighbors ofa ⊕ b, thenχ(a ⊕ b) ⊆ χ(a) ∪ χ(b).

(A3) The characteristic ofχ : P → B(U) is supermodular.

Our requirements allowP to be still a more general structure than a distributive
(pseudo)lattice. For example, the identity representation of the (generally non-
distributive) system of closed sets of a convex geometry in the sense of [3] can be
shown to satisfy (A1)-(A3).
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3.1 The Monge Algorithm

We now present the Monge algorithm with the goal to compute a feasible solution
for (1) in a straightforward manner. At every stage of the algorithm, the elements
u ∈ U will carry labelscu ∈ R. u is coveredonce its label is nonpositive (i.e.,
cu ≤ 0). The algorithm will reduce the latticeP iteratively until all elements
u ∈ U are covered.

Let m be the maximal element of the lattice(P,≤) currently under consideration.
Denote bỳ (m) its collection of lower neighbors and compute the parameter

c∗ = min
m′∈`(m)

max{cu | u ∈ χ(m) \ χ(m′)} for all m′ ∈ `(m).

A pair (u, m∗) with m∗ ∈ `(m) andu ∈ χ(m) \ χ(m∗) is a called aMonge pair
if cu = c∗. If c∗ ≥ 0, thenm is said to beactiveandu ∈ χ(m) \ χ(m∗) is the
correspondingrepresentative. With this terminology, theMonge algorithmis now
easy to describe as the following iterative procedure:

(M0) INITIALIZE : Setxa = 0 for all a ∈ P and label theu ∈ U with cu = 1.
Then modifyx iteratively as follows.

(M1) Consider the maximal memberm ∈ P and select a Monge pair(u, m∗).

(M2) Setxm = max{c∗, 0} and subtractxm from all cv with v ∈ χ(m).

(M3) ReplaceP by P ∗ = {a ∈ P | m ≤ m∗}.

(M4) IF |P | ≥ 2 THEN GO TO (M1). ELSE returnx andEND.

Proposition 3.1 Assume (A1)-(A3). Then the Monge algorithm returns a feasible
solutionx for (1).

Proof. It follows directly from the Monge algorithms thatx has only(0, 1)-components.
Sox is feasible if and only if all elementsu ∈ U are covered when the Monge algorithm
ends. Consider any currently not coveredu ∈ U (i.e. cu > 0). If u ∈ χ(a) holds for some
a ∈ P ∗, thenu will be covered at a later stage of the algorithm. Ifu ∈ χ(a) is only true
for a ∈ P \ P ∗, then supermodularity yields

χu(m) = χu(a ⊕ m∗) ≥ χu(a) + χu(m∗) − χu(a � m∗) = χu(a) = 1.
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So u occurs inχ(m), i.e., u ∈ χ(m) \ χ(m∗) holds and the Monge algorithm implies
c∗ ≥ cu > 0. Henceu will be covered in the present iteration.

�

Collect all the active elementsmj encountered in the course of the algorithm and
the corresponding representativesuj ∈ χ(mj) \ χ(m∗

j ) into theMonge chainM
andMonge sequenceπ, where

M = {m1 < . . . < mk} and π = u1 . . . uk with uj ∈ χ(mj) \ χ(m∗
j )

for j = 1 . . . k and letm0 be the minimal element ofP . Since the algorithm starts
with c ≡ 1, mk will be the maximal element of the latticeP . Considering the
intervals

[mj−1, mj ] = {a ∈ P | mj−1 ≤ a ≤ aj} (j = 1, . . . , k),

the crucial technical observation is the following.

Lemma 3.1 Consider anya ∈ [mj−1, mj]. Then eithera = mj or uj /∈ χ(a).

Proof. Suppose the Lemma is false andmj−1 ≤ a < mj exhibitsuj ∈ χ(a). Soa 6≤ m∗
j

holds and, by (C1), we may assume thata is a lower neighbor ofmj. Because the Monge
algorithm selectedm∗

j (and nota), there must be some elementv ∈ χ(mj) \ χ(a) with
cv ≥ c∗ ≥ 0.

Because ofmj−1 < a < mj, (C1) impliesv /∈ χ(mj−1). Hencev must have left the
algorithm at somemi with v ∈ χ(mi) \ χ(m∗

i ) andmj−1 < mi ≤ mj. cv ≥ 0 says that
mi is an active element. So we must havemi = mj andv /∈ χ(m∗

j ). But now we have a
contradiction to (A2):a andm∗

j are lower neighbors ofmj but v ∈ χ(mj) \ χ(a ⊕ m∗
j).

�

3.2 The Greedy Algorithm

Based on the Monge chainM and the Monge sequenceπ, the greedy algorithm
constructs agreedy vectoryπ : U → R by modifying the components of the zero
vectory = 0 iteratively as follows:

• yπ
u1

= 1.

• yπ
uj

= 1 −
∑

{yπ
ui
| i < j, ui ∈ χ(mj)} (j = 2, . . . , k).
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Obviously, all components ofyπ are integer-valued. Moreover, sinceui 6∈ χ(mj)
if i > j, we observe

yπ(mj) =
∑

{yπ
ui
| ui ∈ χ(mj)} = 1 for all j = 1, . . . , k.

To prove thatyπ is a feasible solution for (2), we first show thatyπ is a binary
vector.

Lemma 3.2 yπ ∈ {0, 1}|U |.

Proof. It remains to show that no component ofyπ is negative. The algorithm yields
yπ

u1
= 1 by construction. Since eachui ∈ χ(mj) with i < j must also lie inχ(mj−1),

we furthermore find iteratively

yπ
uj

= 1 −
∑

{yπ
ui

| i < j, ui ∈ χ(mj)}

≥ 1 −
∑

{yπ
ui

| ui ∈ χ(mj−1)}

= 1 − yπ(mj−1) = 0 .

�

As the characteristic ofχ : P → B(U) is supermodular, it follows that the non-
negative vectoryπ gives rise to a supermodular function onP via

yπ(a) =
∑

{yπ
u | u ∈ χ(a)}.

Recalling thatyπ is constructed from the Monge chainM = {m1 < . . . < mk},
we next observe

Lemma 3.3 For all mj ∈ M anda ∈ P ,

mj−1 ≤ a ≤ mj =⇒ yπ(a) ≤ 1 (j = 1, . . . , k)
a ≥ mk =⇒ yπ(a) ≤ 1.

Proof. Assumemj−1 ≤ a ≤ mj. In the casea = mj, we already knowyπ(a) = 1. If
a < mj, thenuj 6∈ χ(a) by Lemma 3.1. By the consecutive property (C1),ui ∈ χ(a)
impliesui ∈ χ(mj−1) for all i. Soyπ ≥ 0 yields

yπ(a) ≤ yπ(mj−1) = 1.

The casea ≥ mk is analyzed the same way.
�

Observe that the greedy vectoryπ is feasible if and only if the submodular function
h(a) = 1 − yπ(a) is nonnegative for eacha ∈ P .
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Proposition 3.2 Assume (A1)-(A3) and letM = {m1 < . . . < mk} be a Monge
chain with Monge sequenceπ = u1 . . . uk. Then the greedy vectoryπ is a feasible
solution for (2).

Proof. Suppose the Proposition is false anda is a minimal counterexample. Soa 6≤ m1

anda 6≥ mk. Observe thath(mi) = 0 holds for eachmi ∈ M. If a 6≤ mk, then

h(a) ≥ h(a � mk) + h(a ⊕ mk) − h(mk)

= h(a � mk) + h(a ⊕ mk) ≥ 0 ,

asa⊕ mk ≥ mk anda �mk < a imply that both additive terms are nonnegative. Hence
there must exist somej > 1 such that

a 6≤ mj−1 and a ≤ mj.

Noting mj−1 ≤ a ⊕ mj−1 ≤ mj , we then arrive at a contradiction in a similar way
through the submodular expansion

h(a) ≥ h(a � mj−1) + h(a ⊕ mj−1) − h(mj−1)

= h(a � mj−1) + h(a ⊕ mj−1) ≥ 0 ,

�

Theorem 3.1 Assume (A1)-(A3). Letx : P → {0, 1} be the solution returned
by the Monge algorithm,M = {m1 < . . . < mk} be the Monge chain with
Monge sequenceπ = u1 . . . uk, andyπ : U → {0, 1} be the corresponding greedy
solution. Thenx andyπ are optimal solutions to (1) and (2), respectively.

Proof.As x andy
π are feasible solutions, by duality theory, it remains to show that

∑

a∈P

xa ≤
∑

u∈U

yπ
u .

Consider the coverC = {a ∈ P | xa = 1}. SinceC ⊆ M, the construction ofyπ

guarantees for eachmi ∈ C at least oneu ∈ U with u ∈ χ(mi) andyπ
u = 1. In particular,

u ∈ π.

On the other hand, if there exists someu ∈ U with u ∈ χ(a)∩χ(b) for two cover elements
a 6= b, the weightcu becomes negative at some iteration of the Monge algorithm. Hence
u 6∈ π andyπ

u = 0.

It follows that for eacha ∈ C there exists exactly oneu ∈ U with yπ
u = 1. Therefore,

|C| =
∑

a∈P

xa =
∑

u∈U

yπ
u .

�
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