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Abstract

A general model for cooperative games with possibly restricted and hi-
erarchically ordered coalitions is introduced and shown tohave lattice struc-
ture under quite general assumptions. Moreover, the core ofgames with
lattice structure is investigated. Within a general framework that includes
the model of classical cooperative games as a special case, it is proved al-
gorithmically that monotone convex games have a non-empty core. Finally,
the solution concept of the Shapley value is extended to the general class of
cooperative games with restricted cooperation. It is shownthat several gen-
eralizations of the Shapley value that have been proposed inthe literature
are subsumed in this model.

1 Introduction

The standard model of a cooperative game(N, v) involves a ground setN of
players that are assumed to be free to form arbitrary coalitionsS ⊆ N . The
function v represents the valuev(S) generated when players cooperate in
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the coalitionS . Often, however, cooperative games carry natural hierarchi-
cal structures which exclude certain coalitions from beingfeasible. It turns
out that solution concepts like the core are also meaningfulin the context
of games with restricted cooperation (cf. [7]). In particular, games where
the restriction on the formation of coalitions results fromsome order or per-
mission structure on the setN have recently received attention (see,e.g.,
[8, 14, 9, 10, 11]) and have been extended to so-called convexgeometries
and antimatroids (see [3, 1, 2]).

We introduce here a general model for cooperative games withdom-
inance relations on the collection of feasible coalitions,where we donot
need to start from a given relation on the set of players. We show that the
collectionF of feasible coalitions has a lattice structure (in the strict sense)
under fairly mild assumptions and we proceed to define and analyze the
core of more general lattice-structured cooperative games. There has been
some recent progress in the algorithmic solution of linear programs over
so-called lattice polyhedra ([13, 5, 12]), which were introduced by Hoff-
man and Schwartz [15] as generalizations of (poly-)matroids (cf. [21]) or,
in game-theoretic language, convex cooperative games in the sense of Shap-
ley [20]. For example, it has been realized that the ”greedy algorithm” is
actually an algorithm that depends on a ”Monge algorithm” for a prepro-
cessing phase (cf. [9, 11]). Frank [13] has generalized the latter idea to
solve the corresponding minimization problem with monotone decreasing
convex constraints. We show how this general two-phase algorithm allows
us to compute core vectors in the present context (Section 4)in a far-reaching
generalization of Shapley’s [20] classical model.

We finally argue that also the solution concept of a ”Shapley value” ad-
mits a natural extension to the general framework here. We provide an al-
gorithmic definition for a Shapley value for general cooperative games and
point out how other generalized Shapley values for extensions of classical
cooperative games to partially ordered sets and convex geometries are sub-
sumed under our model.

2 Lattices of Feasible Coalitions

We assume throughout that the setN of players under consideration is finite
and that a collectionF of feasiblecoalitionsS ⊆ N is specified. The cru-
cial aspect in our model is thatF is allowed to carry a (partial) order(F ,≤)
which might reflect a dominance relation among feasible coalitions. We as-
sume the dominance relation to becompatiblewith the natural set-theoretic

2



order onF in the following sense. For all feasible coalitionsS, T, U ∈ F ,
we assume

(C1) S ≤ U ≤ T =⇒ S ∩ T ⊆ U .

Axiom (C1) stipulates that any playerp ∈ S that is part of a dominat-
ing feasible coalitionT is also a member of every feasible coalitionU that
dominatesS and is dominated byT .

We say that(F ,≤) is aweakly submodular latticeif (C1) holds and from
among the members of any two feasible coalitionsS, T ∈ F feasible coali-
tionsU andV can be formed that dominateS andT , resp. are dominated
by S andT :

(C2) U ≤ S, T ≤ V for someU, V ∈ F(S ∪ T ),

where we have used the notationF(X) = {S ∈ F | S ⊆ X} for any subset
X ⊆ N . Directly from the definitions, we find

Lemma 2.1 Assume that(F ,≤) is a weakly submodular lattice and let
X ⊆ N be arbitrary. Then eitherF(X) = ∅ or (F(X),≤) has a unique
maximal and a unique minimal member.

Proof. Suppose the Lemma is false andF(X) contains the maximal
membersM1 6= M2, for example. Then (C2) guarantees someM ∈ F such
that

M1,M2 ≤M ⊆M1 ∪M2 ⊆ X and hence M ∈ F(X),

which contradicts the maximality ofM1 andM2.
�

The particular choiceX = N in Lemma 2.1 shows that(F ,≤) itself has
a unique maximal and a unique minimal element. We stress, however, that
the ”grand coalition”N need not be feasible or maximal in our model. For
example, the maximal elementM in (F ,≤) may very well be a coalition
that consists of just one ”dictator” that dominates all other coalitions.

Proposition 2.1 AssumeN ∈ F . ThenN is the maximal element of(F ,≤)
if and only if the order(F ,≤) coincides with the set-theoretic order(F ,⊆):

S ≤ T ⇐⇒ S ⊆ T for all S, T ∈ F .
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Proof. If (F ,≤) = (F ,⊆), thenN is obviously the maximal member of
F . Conversely, ifN is maximal then any relationS ≤ T in (F ,≤) yields,
in view of (C1):

S ≤ T ≤ N and hence S = S ∩N ⊆ T.

�

2.1 Characteristic Functions

Relative to the collectionF of feasible coalitions, a playerp ∈ N gives rise
to thecharacteristic functionχp : F → {0, 1}, where

χp(S) = 1 ⇐⇒ p ∈ S.

Let now S, T, U, V ∈ F be such thatU ≤ S, T ≤ V . Property (C1)
guarantees

p ∈ U ∩ V =⇒ p ∈ S ∩ T.

In view of U, V ⊆ S ∪ T , we obtain the so-calledsubmodular inequality

χp(U) + χp(V ) ≤ χp(S) + χp(T ). (1)

This is the reason why we refer to a coalition structure(F ,≤) with the
properties (C1) and (C2) as ”weakly submodular”.

Every vectorx ∈ R
N defines a functionx : F → R via

x(S) =
∑

p∈S

x(p) =
∑

p∈N

x(p)χp(S) for all S ∈ F .

If x ≥ 0, all coefficientsx(p) are nonnegative. Consequently, the func-
tion x : F → R+ is a nonnegative linear combination of the characteristic
functionsχp, which means that the submodular inequality is preserved:

Lemma 2.2 If F is a weakly submodular lattice andx ≥ 0, then we have
for all coalitionsS, T ∈ F andU, V ∈ F(S ∪ T ),

U ≤ S, T ≤ V =⇒ x(U) + x(V ) ≤ x(S) + x(T ).

�

REMARK . If F contains the empty set∅ as its minimal element (which
is the case in practically all of the examples below), one mayalways choose
U = ∅ in (C2). Submodularity of the characteristic functions thus becomes
equivalent with the seemingly weaker property

For allS, T ∈ F , there is someV ∈ F(S ∪ T ) such thatS, T ≤ V .
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2.2 Proper Lattices and Duality

A partially ordered set(F ,≤) is usually said to be a ”lattice” ifF has a
unique minimal element and for eachS, T ∈ F there exists asupremum, i.e.
a memberS ∨ T ∈ F such that

V ≥ S, T =⇒ V ≥ S ∨ T for all V ∈ F .

Let us call such structuresproper latticesin our context. Note that the supre-
mumS ∨T , if it exists, is unique. It is easy to see that a weakly submodular
lattice, as introduced earlier, is not necessarily a ”lattice” in this strict sense.
Lemma 2.1 yields a weak analog of the supremum property.

Example 2.1 LetN = {a, b, c, d} and consider the collection

F = {∅, {a}, {b}, {a, b}, {a, c}, {a, d}}

with dominance relation

∅ < {b}, {a, d} < {a, c}, {a, b} < {a}.

Then(F ,≤) is a weakly submodular lattice. Yet,(F ,≤) is not a proper
lattice sinceS = {a, d} andT = {b}, for example, do not have a (unique)
supremumS ∨ T relative to(F ,≤) (see Fig. 1).

{b}

{}

{a,d}

{a,c} {a,b}

{a}

Figure 1: A weakly submodular but not proper lattice.

An additional condition, which is often satisfied in practice, namely
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(C0) T > S =⇒ p ∈ T \ S for somep ∈ N ,

guarantees a weakly submodular lattice to be also a proper lattice. (C0)
stipulates that a coalitionT ∈ F can only dominate the coalitionS ∈ F if
T comprises at least one playerp that is not already part ofS.

Theorem 2.1 Assume that(F ,≤) satisfies (C0)-(C2) and letS, T, V ∈ F
be coalitions such thatS, T ≤ V ⊆ S∪T holds. ThenV is the unique mini-
mal coalition inF that dominates bothS andT (and hence the supremum
S ∨ T ).

Proof. Consider any feasible coalitionU ≥ S, T in F . We must show
that U ≥ V holds. Suppose this is not the case. So (C2) guarantees a
W ∈ F such that

S, T ≤ U < W ⊆ U ∪ V.

By (C0), we should be able to find somew ∈ W \ U . From (C1), we know
thatw lies neither inS nor in T , i.e. w /∈ S ∪ T . Because ofw ∈ U ∪ V ,
however,w /∈ U impliesw ∈ V ⊆ S ∪ T , which is a contradiction.

�

REMARK (SINGULARITY OF DICTATORS). Suppose that the coalition
structure(F ,≤) satisfies (C0) and that the maximal coalitionM represents
a dictator,i.e., M = {d}. Thend ∈ M \ S holds for all coalitionsS 6= M ,
which means thatd cannot be part of any other coalition.

Relative to(F ,≤) we define thedual order as the coalition structure
(F ,≤d), where for allS, T ∈ F ,

S ≤d T ⇐⇒ T ≤ S.

It is clear that property (C1) is preserved under (order) duality and so is
property (C2). In other words:(F ,≤) is a weakly submodular lattice if and
only if (F ,≤d) is a weakly submodular lattice.

NOTA BENE. Property (C0) is generallynot preserved under duality.
Nevertheless, it is a well-known fact that(F ,≤) is a proper lattice if and
only if (F ,≤d) is a proper lattice.

2.3 Examples

The systemF of sets is called aring family if it is intersection and union
closed:

S, T ∈ F =⇒ S ∩ T, S ∪ T ∈ F .
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If F is a ring family, then(F ,⊆) satisfies (C0)-(C2) and hence is a proper
lattice with supremum operationS∨T = S∪T . Moreover, the characteristic
functions aremodularwith respect to intersection and union,i.e., satisfy the
submodular inequality with equality:

χp(S ∩ T ) + χp(S ∪ T ) = χp(S) + χp(T ). (2)

The standard model of cooperative games takesF as the collection of all
subsets ofN , which obviously constitutes a ring family.

2.3.1 Precedence Constraints

The standard cooperative game model can be considerably extended if the
setN of players is allowed to carry a (partial) precedence ordering (N,≤)
(cf. [8, 9, 10]). Depending on the interpretation, a coalitionS ⊆ N is now
”feasible” if S is anideal in (N,≤), i.e., if

q ≤ p =⇒ q ∈ S for all p ∈ S andq ∈ N.

The collectionI of ideals of(N,≤) is easily recognized as a ring family.
(I,⊆) thus is a proper lattice with modular characteristic functions.

In a related (but different) model only those subsetsA ⊆ N are consid-
ered to form feasible coalitions in which no playerp ∈ A is dominated by
another playerq ∈ A. Those subsets are the so-calledantichainsof (N,≤).
Let A be the collection of antichains of(N,≤). A natural partial order
(A,≤) is induced by(I,⊆) as follows. Associate with anyS ⊆ N the ideal

S = {q ∈ N | q ≤ p for somep ∈ S}

and set
A ≤ B ⇐⇒ A ⊆ B for all A,B ∈ A.

It is straightforward to check that(A,≤) enjoys the properties (C0) and
(C1). Moreover, denoting bymax(S) the set of maximal elements of the set
S, the antichainsA tB = max(A ∪B) andA ∩B are contained inA ∪B
and satisfyA ∩B ≤ A,B ≤ A tB. So property (C2) holds as well, which
tells us that the characteristics of(A,≤) are submodular (cf. (1) above). In
fact, the following modular equality

χp(A uB) + χp(A tB) = χp(A) + χp(B)

holds relative to the operationA uB = max(A ∩B) in (A,≤) (see [17]).

NOTA BENE. A ∩ B ⊆ A u B ⊆ A ∪ B is true for all antichains
A,B ∈ A. However,A ∩B 6= A uB may be quite possible.
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2.3.2 Convex Geometries

As a further generalization of the coalition model for cooperative games so-
called convex geometries are suggested in [1, 2, 3]. Here aconvex geometry
is an intersection closed collectionF of subsets ofN such that

(CG0) ∅, N ∈ F .

(CG1) For all S, T ∈ F eitherS ⊆ T or there exists somep ∈ S \ T such
thatS \ {p} ∈ F .

Such structures were introduced in [6] as a discrete analog of convex sets
in Euclidean spaces. For example, the collectionI of ideals relative to a
precedence order(N,≤) satisfies (CG0) and (CG1) and thus is a convex
geometry. The model of a convex geometry is more general, however. While
(F ,⊆) is a proper lattice with supremum operation

S ∨ T =
⋂
{U ∈ F | (S ∪ T ) ⊆ U},

S∨T 6= S∪T may happen, which means that (C2) cannot hold. In fact, it is
not difficult to check the validity of the followingsupermodularinequality:

χp(S ∩ T ) + χp(S ∨ T ) ≥ χp(S) + χp(T ),

which can be strict.

Assuming(F ,⊆) to be a convex geometry, consider any feasible coali-
tion S ∈ F . Geometrically speaking, a playerp ∈ S is anextreme pointof
S if and only if S \{p} ∈ F . It is readily proved (by induction, for example)
that a feasible setS ∈ F is uniquely determined by its setext(S) of extreme
points and one finds

S =
⋂
{T ∈ F | ext(S) ⊆ T}. (3)

Generalizing the transition from ideals to antichains relative to prece-
dence orders, one could now argue thatext(S) is the set of the truly relevant
players inS. This would suggest to consider the collection

E = {ext(S) | S ∈ F}

of relevant coalitions with the induced order

ext(S) ≤ ext(T ) in (E ,≤) ⇐⇒ S ⊆ T in (F ,⊆).

Having noted that a convex geometry isnot necessarily weakly submodular,
the next result is perhaps a bit surprising.
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Proposition 2.2 If (F ,⊆) is a convex geometry, then the coalition structure
(E ,≤) has the properties (C0)-(C2) and hence is a lattice with submodular
characteristics.

Proof. (C0) is a direct consequence of (3). To see (C1), observe thatthe
extreme point property is preserved when one passes to a smaller coalition,
i.e. if S, T ∈ F are such thatS ⊆ T andp ∈ S is an extreme point ofT ,
thenp is also an extreme point ofS because

S \ {p} = S ∩ (T \ {p}) ∈ F .

HenceS ⊆ U ⊆ T impliesext(S) ∩ ext(T ) ⊆ ext(U). To verify (C2) let
S, T ∈ F be arbitrary and consider the set

V =
⋂
{W ∈ F | (ext(S) ∪ ext(T )) ⊆W} ∈ F .

Clearly, everyp ∈ ext(V ) must lie inext(S) ∪ ext(T ) as otherwise

ext(S) ∪ ext(T )) ⊆ V \ {p} ∈ F

would contradict the definition ofV . So∅ ∈ F yields the desired property

∅ ≤ ext(S), ext(T ) ≤ ext(V ) ⊆ ext(S) ∪ ext(T ).

�

3 The Core of a Cooperative Game

LetF be the collection of feasible coalitions relative to the setN of players
and assume throughout that the properties (C1) and (C2) holdrelative to
a given partial order(F ,≤). A cooperative gamein our model is a triple
(N,F , v), wherev : F → R+ is some function that takes nonnegative real
values. We interpret the parameterv(S) as thevaluethe feasible coalitionS
can generate. As usual, we assume thatv is normalizedin the sense

v(∅) = 0 if ∅ ∈ F .
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3.1 The Extended Game and the Core

While an arbitrary subsetS ⊆ N of players need not form a feasible coali-
tion in its own right (i.e., S /∈ F), it is natural to assign toS the maxi-
mal possible value, non-overlapping feasible coalitions with players fromS
could jointly achieve. So we define

v∗(S) = max{
k∑

i=1

v(Si) | Si ∈ F(S) and Si ∩ Sj = ∅ if i 6= j}.

Here we assume w.l.o.g. that the empty set is considered feasible, i.e., ∅ ∈ F
holds. Otherwise, we add∅ as the new minimal element toF . So(N, v∗)
is a classical cooperative game, wherev∗(S) is defined for all subsetsS ⊆
N . We refer to(N, v∗) as theextensionof the cooperative game(N,F , v).
Recall that the core of(N, v∗) is the following set of nonnegative allocation
vectorsx ∈ R

N :

core(v∗) = {x ≥ 0 | x(N) = v∗(N), x(S) ≥ v∗(S) for all S ⊆ N}

with the notationx(S) =
∑

p∈S x(p).

Lemma 3.1 Assumex ≥ 0. Thenx ∈ core(v∗) holds if and only if

x(N) = v∗(N) and x(F ) ≥ v(F ) for all F ∈ F .

Proof. The condition is obviously necessary forx ≥ 0 to lie in core(v∗).
It is also sufficient because the nonnegativity ofx implies for any subset
S ⊆ N and collection of pairwise disjoint feasible coalitionsSi ∈ F(S):

x(S) ≥
∑

i

x(Si) ≥
∑

i

v(Si) .

�

We refer to the parameterv∗ = v∗(N) as the(total) valueof the coop-
erative game(N,F , v) and define itscoreas

core(v) = {x ∈ R
N
+ |

∑

p∈N

x(p) = v∗,
∑

p∈S

x(p) ≥ v(S) for all S ∈ F}.

Lemma 3.1 says that core(v) is identical with core(v∗), i.e., the core of
(N,F , v) coincides with the core of the extension(N, v∗).

We now establish the appropriate generalization of Shapley’s [20] con-
struction of core vectors for convex games to the present model.
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3.2 Monotone Convex Games

The cooperative game(N,F , v) is said to bemonotone (increasing)if

S ≤ T =⇒ v(S) ≤ v(T ) for all S, T ∈ F .

REMARK . v is monotonedecreasingrelative to(F ,≤) if v is monotone
increasing relative to the order dual(F ,≤d). Without loss of generality,
we take the term ”monotone” to mean monotone increasing in the following
discussion. The analogous statements for monotone decreasing functions
are obtained by simply dualizing the model.

The cooperative game(N,F , v) is said to beconvexif

(Cv) For allS, T ∈ F with v(S) > 0 andv(T ) > 0, there exist coalitions
U, V ∈ F(S ∪ T ) such that

U ≤ S, T ≤ V and v(U) + v(V ) ≥ v(S) + v(T ).

The general form of Shapley’s theorem now becomes:

Theorem 3.1 Let (F ,≤) be a weakly submodular lattice of coalitions and
(N,F , v) a monotone convex cooperative game. Thencore(v) 6= ∅. More-
over, a core vector can be constructed with a greedy algorithm.

It turns out that Frank’s [13] greedy algorithm can be used toconstruct
core vectors for monotone convex games. We will give a simplified proof
of its correctness and of Theorem 3.1 in the next section. Shapley [20] con-
siders the situation whereF consists of all subsets ofN and is ordered by
set-theoretic containment. Convexity there is meant to satisfy the inequality

v(S ∩ T ) + v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ⊆ N.

Shapley’s convex functionv is assumed to be monotone increasing. In this
situation, one obviously has

v∗ = v(N)

and retrieves the classical results as special cases withinour model.
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3.2.1 Extensions of Monotone Convex Games

A direct consequence of the definition is the observation that the extension
(N, v∗) of an arbitrary cooperative game(N,F , v) is monotone and subad-
ditive, i.e.,

S ⊆ T =⇒ v∗(S) ≤ v∗(T )
S ∩ T = ∅ =⇒ v∗(S) + v∗(T ) ≤ v∗(S ∪ T ).

One might suspect that the extension(N, v∗) of a convex game(N,F , v)
is a convex game in the classical sense (and hence a core vector could be
constructed with Shapley’s [20] procedure). However, thisis not necessarily
the case as the next example shows.

Example 3.1 LetN = {a, b, c} andF = {∅, {a}, {b}, {c}, {a, b}, {a, c}}.
Assume the order(F ,≤) to be given by (see Fig. 2)

{a, b} < {a, c} and S ≤ T if S ⊆ T .

The functionv : F → R+ with v(∅) = v(a) = v(b) = v(c) = 0 and
v(a, b) = v(a, c) = 1 is monotone and convex. The extensionv∗ yields

v∗(N) + v∗(a) = 1 < 2 = v∗(a, b) + v∗(a, c).

So the conditionv∗(S ∪ T ) + v∗(S ∩ T ) ≥ v∗(S) + v∗(T ) is not satisfied.

{a,b} {a,c}

{a,b,c}

{}

{a} {b} {c}

{a,b}

{}

{a} {b} {c}

{b,c}

{a,c}

(N,v*)

0

(N,F,v)

Figure 2: The extension of a coalition structure
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A further problem we have not yet commented on arises from thecom-
putation of the valuesv∗(S) of the extended game. Here, we assume that
a procedure (or ”oracle”v) is available that allows us to evaluate feasible
coalitions:

S ∈ F → v → v(S) .

There is no generally efficient method known that would allowus to
evaluatev∗(S) for arbitrary subsetsS ⊆ N on the basis of an oracle forv.
The algorithms in the next section show, however, that the situation is much
better for monotone convex games. Given an oracle forv and an oracle
for finding a maximal feasible coalitionM in a subcollectionF(X) ⊆ F ,
we can efficiently evaluate the parametersv∗(S) and construct allocation
vectors in core(v) = core(v∗).

4 The Greedy Algorithm for Convex Games

We assume throughout that(F ,≤) is weakly submodular. We now compute
a heuristic value forv∗ in a straightforward fashion and then show that the
computation is exact under the hypothesis of Theorem 3.1.

4.1 The Monge Algorithm

The algorithm works with labelsw(p) ∈ {0, 1} for the playersp ∈ N . In
each iteration, labels are possibly reduced.

Assume thatv is monotone and assign initially the labelw(p) = 1 to
each of the playersp ∈ N . The algorithm works as follows:

(M0) Let M be the maximal coalition ofF and assumev(M) > 0. Choose
some playerp∗ ∈ M as a representative. Reduce the labels of all
p ∈M by w(p∗). SetΠ = {p∗} and replaceF by

F∗ = {S ∈ F | v(S) > 0, p∗ /∈ S}.

(M1) Let M be the maximal coalition ofF and choose some playerp∗ ∈M
with smallest labelw(p∗) as a representative. Reduce the labels of all
p ∈M by w(p∗) and update:
Π ← Π ∪ {p∗}, F ← F∗ = {S ∈ F | v(S) > 0, p∗ /∈ S}.

(M2) Iterate (M1) until F = ∅.

Since(F ,≤) is weakly submodular andv monotone increasing, the re-
duced setF∗ = {S ∈ F | v(S) > 0, p∗ /∈ S} admits indeed a unique
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maximal coalition (cf. Lemma 2.1). The maximal coalitions considered in
the course of the algorithm form a chain

M = {M1 < . . . < Mk} ⊆ F ,

whereMk is the maximal coalition in the original coalition structureF . We
refer toM as aMonge chain. The corresponding representativespj ∈ Mj

constitute the setΠ = {p1, . . . , pk}. The collection

P = {Mj ∈| w(pj) = 1}

of those coalitions where representativesp∗ with the labelw(p∗) = 1 were
chosen must be pairwise disjoint since the algorithm alwayschooses a rep-
resentative with a currentlyminimal possible label. Moreover, each repre-
sentativepi ∈ Π belongs to someMj ∈ P. So we find

Π ⊆
⋃

Mj∈P

Mj and v(P) =
∑

Mj∈P

v(Mj) ≤ v∗. (4)

An important (technical) observation is the following:

Lemma 4.1 If S ∈ F satisfiesS < Mj andS 6≤Mj−1, thenpj ∈ S.

Proof. Assume that the Monge algorithm has already constructed theset
Π = {pk, . . . , pj+1} of representatives andMj is the largest coalition with
Mj ∩ Π = ∅. Because of the consecutive property (C1), we know from
S < Mj < . . . < Mk thatS ∩Π = ∅must hold.

By (C2), there exists someV ∈ F(Mj−1 ∪ S) which strictly dominates
Mj−1. Now pj /∈ S would imply pj /∈ V , so that the Monge algorithm
should have chosenV instead ofMj−1 in the next iteration.

�

4.2 The Greedy Algorithm

Assume thatv is monotone increasing andM = {M1 < . . . < Mk} the
Monge chain with setΠ = {p1, . . . , pk} of representatives constructed by
the algorithm in the previous section. Given these data, thegreedy algorithm
constructs an allocation vectorx ∈ R

N by an iterative procedure:

(G0) Let x(p) = 0 for all p ∈ N and modifyx iteratively as follows.
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(G1) x(p1) = v(M1) and
x(pj) = v(Mj)−

∑
{x(pi) | i < j, pi ∈Mj} (j = 2, . . . , k).

Since no representativepi ∈ Mi with i > j belongs toMj (by the al-
gorithmic construction ofMj), we immediately find for the resulting greedy
vectorx:

x(Mj) =
∑

p∈Mj

xp = v(Mj) for all j = 1, . . . , k.

Lemma 4.2 x(p) ≥ 0 for all p ∈ N and
∑

p∈N

x(p) = v(P).

Proof. If the greedy algorithm does not modify the componentx(p),
we havex(p) = 0. Now x(p1) = v(M1) ≥ 0 follows directly from (G1)
and the nonnegativity ofv. The monotone property ofv furthermore yields
inductively:

x(pj) = v(Mj)−
∑
{x(pi) | i < j, pi ∈Mj}

≥ v(Mj)−
∑
{x(pi) | pi ∈Mj−1}

= v(Mj)− v(Mj−1) ≥ 0.

From (4) we knowΠ ⊆
⋃
P. Since the coalitions inP are pairwise disjoint,

we thus find
∑

p∈N

x(p) =
∑

Mj∈P

∑

p∈Mj

x(p) =
∑

Mj∈P

v(Mj) = v(P).

�

Lemma 4.3 If v is monotone increasing and convex, then

x(S) =
∑

p∈S

x(p) ≥ v(S) for all S ∈ F .

Proof. We already knowx(S) = v(S) if S ∈ M. Consider now an
arbitraryS ∈ F \M and suppose thatS were a minimal counterexample
to the claim of the Lemma. Sov(S) > 0 must hold (otherwisex(S) ≥ 0 =
v(S) follows trivially). If S < M1, the Monge algorithm impliesv(S) ≤ 0,
which would contradict the choice ofS as a counterexample.
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Let j ≤ k be the smallest index such thatS < Mj . If Mj−1 < S < Mj

for some indexj. Then Lemma 4.1 guaranteespj ∈ S. Moreover, (C1)
implies

pi ∈ S if i < j andpi ∈Mj .

Hence we deduce fromx ≥ 0 a contradiction to our choice ofS:

x(S) ≥ x(Mj) = v(Mj) ≥ v(S).

In the remaining caseS 6≥ Mj−1, the convexity ofv guarantees coalitions
U, V ∈ F(S ∪Mj−1) with

U < S,Mj−1 < V and v(U) + v(V ) ≥ v(S) + v(Mj−1).

(C1) impliesV ∩ {pj+1, . . . , pk} = ∅. SoMj−1 < V ≤ Mj holds, which
guaranteesx(V ) ≥ v(V ) by the preceding argument. Moreover,x(U) ≥
v(U) is implied by the choice ofS as a minimal counterexample. So the
submodularity of the nonnegative vectorx ≥ 0 yields the contradiction

x(S) ≥ x(U) + x(V )− x(Mj−1)

≥ v(U) + v(V )− v(Mj−1) ≥ v(S).

�

Recalling the valuev(P) ≤ v∗, computed in the previous section from
the Monge algorithm, we can now finish the proof of Theorem 3.1.

Lemma 4.4 Let v be convex and monotone increasing andx the greedy
vector computed from the Monge chainM with representative setΠ. Then

v∗ = v(P) and x ∈ core(v).

Proof. In view of the preceding Lemmas, it suffices to establish the in-
equalityv∗ ≤ v(P). So letP ′ = {S′

1, . . . , S
′
`} be av-optimal collection of

pairwise disjoint coalitionsS′
i. Then we find

v∗ = v(P ′) =
∑̀

i=1

v(S′
i) ≤

∑̀

i=1

x(S′
i) ≤

∑

p∈N

x(p) = v(P) ≤ v∗.

�

REMARK . Frank [13] proves that his algorithm actually solves the weighted
optimization problem

min
x≥0

∑

p∈N

w(p)x(p) s.t.
∑

p∈S x(p) ≥ v(S) for all S ∈ F

for arbitrary weightsw(p) ≥ 0 and convex decreasingv. The same can be
shown for our version of the algorithm.
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5 Cost Games

Assume that(N,F , c) is a cooperative cost game, wherec : F → R+

describes the costsc(S) feasible coalitionsS generate. In the classical situ-
ation, whereF comprises all subsetsS ⊆ N , it is well-known that each set
of vectors that occurs as the core of a cooperative cost game also occurs as
the core of a cooperative value game. So structural investigations into the
classical core do not need to distinguish between ”value games” and ”cost
games”.

In the present framework, this is no longer the case. In orderto define the
core of the cost game(N,F , c), we introduce thetotal costas the parameter

c∗ = min{
∑̀

i=1

c(Si) | N ⊆
⋃̀

i=1

Si, Si ∈ F}

and consider the corresponding nonnegative core-type allocations:

core(c) = {x ∈ R
N
+ |

∑

p∈N

x(p) = c∗,
∑

p∈S

x(s) ≤ c(S) for all S ∈ F}.

If the characteristic functions satisfy a modular equalityand the cost
functionc is submodular relative to that modular equality,i.e.,

c(U) + c(V ) ≤ c(S) + c(T )

holds for suitableU, V ∈ F(S ∪ T ), an analogue of Theorem 3.1 can be
established on the basis of the greedy algorithm of [12]. We will not go into
details here.

6 The Shapley Value

In the classical model, the Shapley value tries to assess theaverage marginal
value of a player (cf. [19], [18]). In our present model(N,F , v) of a coop-
erative game, however, the notion of the ”marginal value” ofa player needs
some further clarification.

To this end, we consider anelimination sequencefor N relative to the
coalition structure(F ,≤), which is a sequenceπ = pkpk−1 . . . p1 of players
such that

pj ∈ Sj (j = k, k − 1, . . . , 1), (5)
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whereSk is the maximal coalition ofF = F(N) andSj is the maximal
coalition of

F(N \ {pk, . . . , pj+1}) = {S ∈ F | S ∩ {pk, . . . , pj+1} = ∅}.

It is natural to assess the marginal values∂π(p) of the playersp ∈ N relative
to the elimination sequenceπ = pk . . . p1 in the following fashion:

(ES) ∂π(p1) = v(S1)
∂π(pj) = v(Sj)−

∑
{∂π(pi) | i < j, pi ∈ S} (j = 2, . . . , k)

∂π(p) = 0 otherwise.

(ES) guarantees that the value of each coalitionSj associated withπ is
the sum of the corresponding marginal values:

v(Sj) =
∑

p∈Sj

∂π(p) (j = 1, . . . , k).

As theShapley valueΦ(v) of the cooperative game(N,F , v) we pro-
pose the allocation vector that assigns to each player its average marginal
elimination value. LettingΠ be the collection of all elimination sequences,
we thus have

Φp(v) =
1

|Π|

∑

π∈Π

∂π(p) for all p ∈ N. (6)

Theorem 6.1 Assume that(F ,≤) is a weakly submodular lattice and that
the cooperative game(N,F , v) is convex and monotone. ThenΦ(v) ∈
core(v).

Proof. Under the hypotheses of the Theorem, the elimination sequences
are exactly the Monge sequences and the marginal elimination vectors are
the associated greedy vectors (see Section 4). Hence each ofthese lies in
core(v). SoΦ(v) is a convex combination of core vectors and thus a member
of the convex polyhedron core(v) as well.

�

If F consists of all subsetsS ⊆ N , an elimination sequence relative to
(F ,⊆) is just a permutationπ = pnpn−1 . . . p1 of the ground setN . In this
case, the Shapley value given by (6) coincides with classical Shapley value.
It also extends other models for the Shapley value that have been proposed
in the literature.
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6.0.1 Precedence Constraints

As in Section 2.3.1, assume that a precedence structure(N,≤) on the set of
players is given. In the hierachical model of [8] the collections of maximal
elements of the ideal of(N ≤), i.e. the antichains of(N,≤), form the
relevant coalitions. The maximal coalition in the corresponding coalition
structure(A,≤) consists of the maximal elements ofN . Letpn ∈ N be one
of them. Then the maximal coalition inA that does not containpn is the set
max(N \ {pn}) etc.Hence the elimination sequences are exactly thelinear
extensionsof (N,≤), i.e., those permutationsπ = pnpn−1 . . . p1 of N with
the property

pj is a maximal element ofN \ {pn, . . . , pj+1} (j = n, . . . , 1).

A Shapley value is introduced axiomatically in [8]) and it isshown that
its computation amounts to (6) relative to the set of linear extensions of
(N,≤). Hence (6) also generalizes the Shapley value of cooperative games
with precedence constraints on the players.

6.0.2 Convex Geometries

Marginal operators and Shapley values are studied in [2] forcooperative
games(N,F , v), whereF is a convex geometry (cf. Section 2.3.2). So
each non-empty coalitionS ∈ F contains a feasible coalitionT ⊂ S with
|S \ T | = 1. The Shapley value suggested in [1] is computed according to
the scheme (6) relative to the permutationsπ = pnpn−1 . . . , p1 of N with
the property

N \ {pn . . . pj+1} = {p1, . . . , pj} ∈ F (j = n, . . . , 1). (7)

Every such permutationπ is also an elimination sequence in the sense
of (5). However,not everyelimination sequence is of type (7). Hence our
approach will not necessarily result in the Shapley value of[2]. It turns out
that the dilemma is easily remedied by clarifying the model of games on
convex geometries.

Basing the definition of the marginal values of the players exclusively
on sequences of type (7) says implicitly that in a coalitionS ∈ F only
those players are considered relevant and valuable that correspond to ex-
treme points in the geometric interpretation. Hence it appears appropriate to
model the cooperative game in question not onF but on the collection

ext(F) = {ext(S) | S ∈ F}
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with the induced order relation(ext(F),≤) as in Section 2.3.2. It is straight-
forward to check that the sequences of type (7) arepreciselythe elimination
sequences relative to(ext(F),≤) in the sense (5).

Final Remark. Note that our approach to the Shapley value does not re-
quire (F ,≤) to be a lattice. It thus provides a solution concept for very
general cooperative games with (possibly) restricted collections of feasi-
ble coalitions. Classes of combinatorial structures with particularly ”well-
behaved” elimination sequences are,e.g., greedoids (cf. [16]), of which
matroids are special cases.
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