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Abstract

A pseudolatticel. is a poset with lattice-type binary operations. Assum-
ing that the pseudolattice permits a modular representaa family of
subsets of a séf with certain compatibility properties, we show thagac-
tually is a distributive lattice with the same supremum agien. Given a
submodular function- : . — R, we prove that the corresponding unre-
stricted linear program relative to the representing seilfacan be solved
by a greedy algorithm. This complements the Monge algorittfifdietrich
and Hoffman for the associated dual linear program. We éuntiore show
that our Monge and greedy algorithm is generally optimalnfonnegative
submodular linear programs and their duals (relativé)to

1 Introduction

The greedy algorithm is a heuristic procedure for discrpterzation prob-
lems that has long been recognized not only to solve certaiblgms op-
timally but also to be a basic subroutine in other efficiegbathms, when
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cast into the framework of linear programming (seg,, Hoffman [13]). It
can be used to provide an algorithmic characterization dfaits. More-
over, many generalizations of matroids have turned out tadosempanied
by corresponding greedy algorithms (seg,, [4, 18, 10]).

From the linear programming point of view, these greedy rtigms
can be viewed as primal solutions associated with feasdlgisns for the
dual linear program. These dual solutions can often be aartet! by an
algorithmic procedure that goes back to Monge [16] and istafrest for the
analysis of many optimization structures (se@,, [2]). For example, the
greedy algorithms of [9, 6, 7] follow this principle.

A powerful concept for the analysis of integral linear piaogs are Hoff-
man’slattice polyhedra (see g.g., [14]) that generalize matroid polyhedra by
allowing an order structure on the feasible sets that needaincide with
the "natural” set-theoretic ordering by containment. paars difficult how-
ever, to identify appropriate greedy algorithms for gehlatéice polyhedra.
Frank [9] could provide such an algorithm relative to a clafskttice poly-
hedra that arise from nonnegative and monotone decreagpegraodular
functions with a submodular set-theoretic presentatioaceRtly, Dietrich
and Hoffman [3] have established an optimal Monge algorifbina class of
lattice polyhedra relative to general sub- and supermodutetions with a
modular presentation.

In the present article, we analyze the Dietrich and Hoffmadeh and
show that the underlying orders p$eudolattices are actually distributive
lattices in the usual sense, which relates the model toictdssatroid struc-
tures. We exhibit a (primal) greedy algorithm that complataghe Monge
algorithm optimally. Furthermore, we show that these Moagd greedy
algorithms can be specified in such a way that also the camespg linear
programs under nonnegativity restrictions are optimatlyesd.

An elegant model for the analysis of Monge algorithms hasmidg been
proposed by Fujishige [11] (see also [12]). The approademifrom ours,
however, in that [11] assumes an (in terms of certain "chéiretions”)
well-defined Monge algorithm to be given. The question tlsamider which
conditions it is optimal. We, on the other hand, start fronoebinatorial
optimization problem and try to identify appropriate Morayed greedy al-
gorithms for it. Moreover, our algorithms do seem to be soied by Fu-
jishige’s model in an obvious way.



2 Latticesand Pseudolattices

Let (L, <) be a finite (partially) ordered seL is alatticeif for all a,b € L
there are unique elemenisp(a, b), inf(a, b) € L such that for alt € L

¢>ab, < c>sup(a,b)
c<a,b, < c<inf(a,b).

It is well-known that suprema always existinif and only if infima always
exist. In fact, one has forang C L,

infA=sup{ce L|c<aforallac A}.

The ordered setL, <) is a pseudolattice if for all a,b € L, there exist
elementsi A b,a V b € L such that

aNb<a,b<aVb.

Note that a pseudolattice necessarily has a unique maxinthbhaunique
minimal element. However, a pseudolattice need not beiadatVhen the
pseudolatticd. is a lattice, one has

aAb<inf(a,b) < a,b<sup(a,b) <aVb.
It is quite possible, however, that all of the inequalities strict.
Let U be a (finite) set. Aset representation of (L, <) is a map
x:L—2V
into the collection of subsets &f such that for alk, b,c € L
(CO)a#b = x(a)#x(b) (i.e xisinjective).

Cla<b<cec = x(a)Nnx(c) < x(b) (i.e,x has theconsecutive
Ones property).

(C2) x(a) Cx(b) = a<binL.
For anyu € U, we define theharacteristic function

1 ifuex(a)
X(“’“):{o ifugé;:(a).

ProvidedL is a pseudolattice, we call the representatiomodular if
forallu € U anda,b € L,

x(a Ab,u)+ x(aVbu) = x(a,u)+ x(bu) .



Theorem 2.1 Assume that L is a pseudolattice with a modular representa-
tion x. Then L isalattice with a vV b = sup(a, b) for all a,b € L.

Proof. We claim thatsup(a, b) exists and equals Vv b for all a,b € L.
So consider any > a, b. We must show that > a V b is true. Suppose this
is not the case and ldt= a Vv b. Then we have

a,b<c<cVvd.

By (C2), there exists some € x(c V d) \ x(c). Because: € x(cV d), the
modularity of y impliesu € x(d) = x(a Vv b) and hence: € x(a) U x(b).
In view of u ¢ x(c), on the other hand, the consecutive property (C1) yields
u ¢ x(a) U x(b), which is a contradiction.

<&

If L is a pseudolattice with modular representatipandu € U an
arbitrary element, we define thereduction of L to be the ordered set

L\u={aecL|ugx(a)}

It is straightforward to check thdt \ « is a pseudolattice and thatyields a
modular representation with respect to the reducedse{u}.

2.1 Distributivity

We now show, more specifically, that a pseudolattice with ntexrdrepresen-
tation such that (C0)-(C2) hold is, in fact, a distributiadtice. To see this,
we use the well-known fact that a distributive lattice isrettderized by not
admitting N5 or M3 (see Fig. 1) as a sublatticef.([1]).

Theorem 2.2 Assume that L is a pseudolattice with a modular representa-
tion x. Then L isadistributive lattice.

Proof. Suppose that the Theorem is false and there exists a soélatti
N5 = {a,b,c,d,e} suchthab < c,e =bVd=cVdanda = inf(b,d) =
inf(c, d).

By (C2), we may choose an elementc x(c) \ x(b). Property (C1)
impliesx(¢Ad,u) = 0. Hence, the modularity of impliesx(cVd,u) =1
andx(d,u) =0. So

x(d,u) + x(b,u) =0 < x(bVd,u) =x(cVdu) =1
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Figure 1: Minimal non-distributive lattices.

yields a contradiction to the modularity gf

Assume now thal contains a sublatticd/s = {a, b, ¢, d, e} such that
e=bVe=0bVd=cVdanda = inf(b,c) = inf(b,d) = inf(c, d). Choose
an element, € x(e) \ x(b). The modularity ofy implies

x(c,u) = x(d,u) = x(inf(c,d),u) = 1.

Henceinf(c,d) < a < b < e yields a contradiction to property (C1).
<

By Birkhoff’s Theorem [1], a (finite) distributive latticé admits a par-
ticular representation as a union- (and intersection-3adosystem of sets
in the following way. Callp € L irreducible if p has precisely one lower
neighbor inL, where we say that a lattice element p is alower neighbor
of p if there is noa € L with ¢ < a < p. Let P = P(L) denote the set of
all irreducibles ofL and represent eache L by the set

a={peP|p<a}CP

The equalitya = sup(a) always holds. The distributivity of, however, is
equivalent with

avb=aub foralla,be L.

and satisfieg N b = inf(a,b). So the "canonicalBirkhoff representation
X(a) = @ is modular with respect to the lattice-theoretic operatjose.,

X(inf(a, b)) +X(a Vv b) = X(a) +X(b),
and trivially has the properties (C0)-(C2).
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3 TheMongeAlgorithm

We assume in the following always that the or@er<) is a (pseudo)lattice
with modular representatioprelative to the ground séf which satisfies the
set theoretic compatibility properties (C0)-(C2). Withénss of generality,
let us also assume that eaghe U occurs in at least one representing set,

ie,
U= U x(a).

a€Ll

Given weights:,, € R on the elements df, we want to find parameters
1o € R such that the following linear inequalities are satisfied

(M) y,>0 forallae L and Z Yo >c, foralluel.
x(a)du

In view of our assumption of, it is clear that (M) has a feasible solu-
tion. TheMonge algorithm computes a particular solution in a straightfor-
ward iterative procedure. To formulate it, we denotel/by.) the set of all
lower neighbors ofn. The algorithm works as follows:

(M;) Letm € L be maximal and choose some lower neighbore ¢(m)
andu* € x(m) \ x(m*) such that

¢ = mt}(n )max {cu | u € x(m)\ x(m')} = cyx.
m/el(m

(M) Sety,, = max{0, c*} and subtracy,, from all ¢, with u € x(m).
(M3) ReplaceL by L* ={a € L |a <m*}.
(My) lterate untilL = (.

Note that (in view of our assumptions o) L* is precisely theu*-
reduction ofL:

L*=L\u" ={aeL|u" ¢x(a)}

We refer tou™ € x(m) as therepresentative of m with respect to the Monge
algorithm. The crucial point is that for the reduced weiglridtionc in the
current step of the algorithm holds:

>0 =  ym=cy andy,, > ¢, forallu e xy(m)\ x(m*).



We callm active (in the Monge algorithm) it~ > 0 holds and collect all
active elementsn; into theMonge chain

M:{m1<...<mk}gL.

Letu; € x(m;) denote the representative of the active elemeptc M.
Recall that (C1) implies:; ¢ x(m;) for all i < j. So we find for allu € U
and all representatives;:

m m
D ymx(miu) > ey and >y, x(mi,ug) =y,
=1 =1

In particular, the resulting vectgr solves (M) with componentg! given

as _
M Ya IfaGM
Yoo T 0 ifag M.

Proposition 3.1 Assume that all weights ¢, are integers. Then all compo-
nents y, of the Monge solution y are integral.
(o

Note that an iteration relative to an inactive elementc L does not
affect the weights of the remaining elementse U. It follows that an
elementy € U with nonnegative weight, must be removed at an iteration
involving an active element. Hence we find

Lemma3.1 If m; € M isan active dement such that the Monge algorithm
chooses an inactive lower neighbor m* € ¢(m), then m* isthe unique lower
neighbor of m.

Proof. Suppose that the Lemma is false ang has at least two lower
neighborsn*, m’ € £(m;). W.l.o.g., letm* be such that; € x(m)\ x(m*).

As the Monge algorithm chose* (instead ofmm’), we know that there
must be some € x(m) \ x(m’) with (reduced) weight

/
CU

/
> Cy, 2 0.

Sincem’ £ m*, wis still in the representative set for the reduced latficec
L | a < m*} and has nonnegative reduced weight. Moreover, if there exis
an active element;_, € M, the modularity ofy impliesu & x(m;—1).
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So the Monge algorithm must produce at least one more adévaent
my, such thatm, < m; and, ifm;_; € M exists,m;_1 < mp < m;. A

contradiction.
<o

Note that, in particular, the minimal active element in the Monge
algorithm has at most one lower neighbor.

3.1 Equality Constraints

Consider the linear system

(M=) y,>0 forallae L and Z Yo =, forallueU.
x(a)du

While (M) is always solvable, (M) might be infeasible. Dietrich and
Hoffman [3], however, have observed that a greedy-typerglgo finds a
feasible solution for (M), provided one exists at all:

(M1) Letm € L be maximal and choose € x(m) such that
¢=cg=min {¢, |u € x(m)}.

(M2) Sety,, = ¢ and subtracy,,, from all ¢, with v € x(m).
(M3) ReplaceL by theu-reduction = L\ 4= {a € L | @ ¢ x(a)}.
(M4) lterate untilL = 0.

We claim that, in the equality case, our Monge algorithm meyriber-
preted as a special version of the Dietrich-Hoffman altaomit

Theorem 3.1 If (M™) has a feasible solution at all, the Monge algorithm
relative to (M) computes a feasible solution y for (M=).

Proof. Assuming (M) to be feasible, we first show* = ¢. The in-
equalityc < c¢* follows from the definition. Letn be the maximal element
of L and choose some’ € ¢(m) such thatn < m’ < m.

Letw € x(m)\ x(m’) be an arbitrary element with weight. (C1)
impliesu’ ¢ x(a) for alla € L. So the feasibility of the Dietrich-Hoffman
algorithm yields

' >c¢c=yn = > c.



So we can choose = u* in the Dietrich-Hoffman algorithm. Consider any
a € L. If a € L*, then (C1) impliesu* ¢ x(a). On the other hand, if
a ¢ L*, we haven V m* = m. Hence the modularity of yieldsu* € x(a).
Consequently, we find = L*.

<o

Corollary 3.1 If (M) isfeasible and M C L the chain of active elements
in the Monge algorithm, then A is a maximal (i.e., at most trivially ex-
tendible) chainin L.

Proof. If (M <) is feasible, all elements: considered in the Monge al-
gorithm are active. Since successive elements are neighthar resulting
chain is non-extendible if no element bfis represented by the empty get
Otherwise, M can be trivially extended by the minimal elementlof

<

3.1.1 TheMongeAlgorithm and the Birkhoff Representation

In the case of the Birkhoff representatigiia) of the distributive latticel
by subsets of the ordered $ét, <) of irreducibles ofL, one wants to solve

(M) ya>0 foralacL and » y.=7 foralpeP.
X(a)>p

for a givenc : P — R. The Monge algorithm successively removes max-
imal element,,, p,_1, ... of minimal weight and thus generatesiaear
extension 7 of P, where

T =piP2...-Pn—1Pn Suchthat p; <p; = i<j.

This Monge algorithm is the basis of the generalized (potgatyoid greedy
algorithms (see,g., [6, 7, 17, 15]). It produces the solution

Ymy, = Cpi, = Cppoyr-

The solution is feasible if and only # : P — R is nonnegative with the
antitone property €f. [5]):

p<q = ¢ >¢ >0.

The classical (poly-)matroid case of Edmonds [4] (see al€d)[corre-
sponds taP being trivially ordered.



Assume thay > 0 is a feasible solution for (M), relative to the weight
functionc : U — R. The Monge algorithm produces the maximal chain
M = {m; < ... < m,}. SinceL is distributive, P can be arrranged in a
(unique) linear extensiofm = p; ... p, such that

mi; =p; and m; =m;—1Vpj (j:2,...,n).

So the Monge solution induces a weightiag P — R, via
n
Epjzzymk (jzlv"'7n)7
k=j

andy turns into a feasible solution of the corresponding sysfeihgs well.
Hence (with hindsight) the Monge algorithm relative to{Mpermits an
interpretation within the frameworR\{) of the Birkhoff representation.

4 The Greedy Algorithm

Under the same assumptions on the (pseudo)lafticee now consider a
functionr : L — R and the linear system

(P) x(a) <r(a) forallae L,

with the understanding thatis a vector with components, and
x(a) = Z xyx(a,u) = Z Zg -
uelU x(a)du

Again, it is clear that (P) always is feasible while its nogative version
may be infeasible:

(PT) x,>0forallucU and x(a) <r(a)foralaclL,

Motivated by the Monge algorithm, we consider an arbitrdrgio M/ =
{my < ... <my} C L such thatn; has at most one lower neighbor in
L. Moreover, we select a sequence- u; . .. u; Of representatives

uj € x(mj) \ x(mj—1) (G =1,....k).

Let us generally call such a pdit/, 7) aMonge pair. Thegreedy algorithm
computes a candidate solutiat for (P) from the Monge paifM, ) by
modifying the components of the zero vector= 0 iteratively as follows:
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(G1) zy, =1r(m1).
(G2) wy; = r(my) — > {wy, | i < jyui € x(my)} (G=2,...,k).

The algorithm yields immediately

Proposition 4.1 Assumethat r isinteger-valued. Then every component of
the greedy vector x™ is an integer.
<o

Sinceu; ¢ x(m;) if i > j, we observe for the greedy vectef thus
constructed:
x"(m;) =r(m;) forallj=1,... k.

With respect tax™ being a candidate solution {f, we note

Lemma4.l Assumethat r : L — R ishonnegative and monotone increas-
ing. Then the greedy vector x™ is nonnegative.

Proof. The algorithm yieldsz,, = r(m;) > 0 directly. Since each
u; € x(mj) with i < j must also lie iny(m;_1), we furthermore find
iteratively

LTy

j T(mj)_z {'IU'L |Z'<j>ui GX(mj)}
r(my) =Y {au; |ui € x(mj—1)}

r(m;) —r(mj_1) = 0.

(AVARLVS

O

Before discussing sufficient conditions for the feasipitif x™, we de-
rive further feasibility properties.

Lemma4.2 Letr : L — R be nonnegative and monotone increasing. Let
furthermore x™ be the greedy vector relative to the Monge pair (M, 7) and
consider the lattice element ¢ € L. Then

a < my = x"(a)=0<r(a)
mj—1 <a<m; = X"(a) <r(a) (J=2,...,k)
a > my, = x"(a) <r(a).

11



Proof. Assumem;_1 < a < m;. From Lemma 3.1 we knO\mj_l <
a < m* for the unique lower neighban* € ¢(m;) chosen by the Monge
algorithm.

By the consecutive property (Ch); € x(a) impliesu; € x(m;_,) for
all .. Sox™ > 0 yields

x"(a) < 2" (mj-1) = r(mj_1) <r(a).

The casex > my, is analyzed the same way. Let finally, be the lower
neighbor ofm; and assume < m;. Thena < mg andu; ¢ x(my) yields
u1 ¢ x(a). Similarly, no otherns; can lie inx(a), i.e, x(a) = 0.

<

5 Submodular Functions

Let L be a pseudolattice with modular representatigrsatisfying (CO0)-
(C2), as before and assume thatL — R is submodular, i.e.,

r(aAb)+r(aVvb) <r(a)+r() foralla,be L.

It follows that anyx € RY induces a submodular functiogn= r — x,
where
h(a) =r(a) —x(a) foralla € L.

To say thatx is a feasible solution for the linear system (P) of the previ-
ous section is equivalent to saying thas nonnegative.

Theorem 5.1 Let M = {m; < ... < my} bean arbitrary chain in L.
Assumethat 4 : L — R isa submodular function with the properties

(1) h(m;) =0forall m; € M.
(2 h(a) > 0ifm;_1 < a < m; for somej.
(3) h(a) >0ifa <myora>my.

Then h(a) > 0 holdsfor all a € L.

Proof. Suppose the Theorem is false and minimal counterexample.
Soa £ my anda 2 my. If a £ my, then

h(a) > h(a Amyg)+ h(aV my) — h(my)

= h(aAmyg)+h(aVmg) > 0,
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asa V my > my anda A my < a imply that both additive terms are non-
negative. Hence there must exist sojme 1 such that

a€mj_y and a<m;.

Noting m;_; < aV mj;—_1 < mj, we then arrive at a contradiction in a
similar way through the submodular expansion

h(a) > h(aAmj_1)+h(aVmj_1) —h(mj_1)

= h(aAmj_1)+h(aVvm;_1) > 0,

Corollary 5.1 Let (M, ) be the Monge pair obtained from the Monge al-
gorithm relative to some weight function ¢ : U — R and x™ the associated
greedy vector relative to the submodular function r : L — R. Then we have

x"(a) <r(a) foralaeclL

provided r is nonnegative and monotone increasing or the Monge algorithm
solves the equality constrained system (M~) .

Proof. Consider the submodular functidfia) = r(a) —x™(a). In either
case of the Corollary, satisfies the hypothesis of Theorem 5.1. Hence we
conclude

h(a) >0 or x"(a)<r(a).

5.1 Submodular Linear Programs

Under the same assumptions énand U as before, consider a function
r: L — R, aweightinge : U — R and the linear program

(P)  max) cuz, suchthat x(a) <r(a) forallaeL
uelU

with dual

(D) min r(a)y. suchthat Y y,=c, forallueU.
acK x(a)3u

(P) is always feasible. From linear programming duality,thharefore know
that an optimal solution exists if and only if (D) is feasiblgo the Monge
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algorithm can be used to decide whether an optimal soluiistseat all. Let
y > 0 be the feasible solution computed by the Monge algorithm(E)r
and construct the greedy vectof from the associated Monge p&i¥/, ).

Consider the matrix\ with elementsy(m,u) for m € M andu € .
Denoting byy and7 the restrictions ofy andr to M and byc andx the
restrictions ofc andx™ to =, we find

and thus conclude

Zr(a)ya = Z r(m)ym = yL Mx = Zcu:iu = Z cury. (1)

a€L meM uem uelU

Sox™ andy > 0 are optimal solutions for (P) and (D) precisely when
x™ is feasible for (P).

The same argument applies to the nonnegative version

(PT) max )  culy such that x(a) <r(a) foralla e L
*= uclU

of (P) with dual

D* i > .
(DT) min r(a)y, such that Z Yo > ¢, forallueU
acK x(a)3u

Hence we obtain our main result:

Theorem 5.2 If » : L — R is submodular, the Monge and the greedy al-
gorithm construct optimal solutions for (D) and (P) or demonstrate that no
optimal solution exists.

If » : L — R issubmodular, nonnegative and monotone increasing, the
Monge and the greedy algorithm construct optimal solutions for (D) and
(P™).

<
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6 Supermodular Functions

The functionp : L — R is said to besupermodular on the pseudolattice
L if its negativer = —p is submodular. Now the linear program (P) of the
previous section is equivalent with the linear program

(Q)  min) ez, suchthat x(a) >p(a) forallac L.
uelU

Hence the Monge and greedy algorithm also solves a linegramo of
type (Q) optimally ifp is supermodular.

A curious situation arises from the nonnegative version

n .
QM) r}gg%cuaﬁu such that x(a) > p(a) foralla € L.

Frank [9] establishes a greedy algorithm to solve @ the case where
the supermodular functiop is nonnegative and monotone decreasing. His
algorithm is quite similar in spirit to our algorithm for tlelution of (P")
with a submodular and nonnegative monotone increasirdet, we do not
see a direct way to derive Frank’s algorithm from our appnoddor does
Frank’s algorithm appear to be applicable td P
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