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Abstract
A pseudolatticeL is a poset with lattice-type binary operations. Assum-

ing that the pseudolattice permits a modular representation as a family of
subsets of a setU with certain compatibility properties, we show thatL ac-
tually is a distributive lattice with the same supremum operation. Given a
submodular functionr : L → R, we prove that the corresponding unre-
stricted linear program relative to the representing set family can be solved
by a greedy algorithm. This complements the Monge algorithmof Dietrich
and Hoffman for the associated dual linear program. We furthermore show
that our Monge and greedy algorithm is generally optimal fornonnegative
submodular linear programs and their duals (relative toL).

1 Introduction

The greedy algorithm is a heuristic procedure for discrete optimization prob-
lems that has long been recognized not only to solve certain problems op-
timally but also to be a basic subroutine in other efficient algorithms, when
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cast into the framework of linear programming (see,e.g., Hoffman [13]). It
can be used to provide an algorithmic characterization of matroids. More-
over, many generalizations of matroids have turned out to beaccompanied
by corresponding greedy algorithms (see,e.g., [4, 18, 10]).

From the linear programming point of view, these greedy algorithms
can be viewed as primal solutions associated with feasible solutions for the
dual linear program. These dual solutions can often be constructed by an
algorithmic procedure that goes back to Monge [16] and is of interest for the
analysis of many optimization structures (see,e.g., [2]). For example, the
greedy algorithms of [9, 6, 7] follow this principle.

A powerful concept for the analysis of integral linear programs are Hoff-
man’slattice polyhedra (see,e.g., [14]) that generalize matroid polyhedra by
allowing an order structure on the feasible sets that need not coincide with
the ”natural” set-theoretic ordering by containment. It appears difficult how-
ever, to identify appropriate greedy algorithms for general lattice polyhedra.
Frank [9] could provide such an algorithm relative to a classof lattice poly-
hedra that arise from nonnegative and monotone decreasing supermodular
functions with a submodular set-theoretic presentation. Recently, Dietrich
and Hoffman [3] have established an optimal Monge algorithmfor a class of
lattice polyhedra relative to general sub- and supermodular functions with a
modular presentation.

In the present article, we analyze the Dietrich and Hoffman model and
show that the underlying orders ofpseudolattices are actually distributive
lattices in the usual sense, which relates the model to classical matroid struc-
tures. We exhibit a (primal) greedy algorithm that complements the Monge
algorithm optimally. Furthermore, we show that these Mongeand greedy
algorithms can be specified in such a way that also the corresponding linear
programs under nonnegativity restrictions are optimally solved.

An elegant model for the analysis of Monge algorithms has recently been
proposed by Fujishige [11] (see also [12]). The approach differs from ours,
however, in that [11] assumes an (in terms of certain ”choicefunctions”)
well-defined Monge algorithm to be given. The question then is under which
conditions it is optimal. We, on the other hand, start from a combinatorial
optimization problem and try to identify appropriate Mongeand greedy al-
gorithms for it. Moreover, our algorithms do seem to be subsumed by Fu-
jishige’s model in an obvious way.

2



2 Lattices and Pseudolattices

Let (L,≤) be a finite (partially) ordered set.L is a lattice if for all a, b ∈ L
there are unique elementssup(a, b), inf(a, b) ∈ L such that for allc ∈ L

c ≥ a, b, ⇐⇒ c ≥ sup(a, b)

c ≤ a, b, ⇐⇒ c ≤ inf(a, b).

It is well-known that suprema always exist inL if and only if infima always
exist. In fact, one has for anyA ⊆ L,

inf A = sup{c ∈ L | c ≤ a for all a ∈ A}.

The ordered set(L,≤) is a pseudolattice if for all a, b ∈ L, there exist
elementsa ∧ b, a ∨ b ∈ L such that

a ∧ b ≤ a, b ≤ a ∨ b .

Note that a pseudolattice necessarily has a unique maximal and a unique
minimal element. However, a pseudolattice need not be a lattice. When the
pseudolatticeL is a lattice, one has

a ∧ b ≤ inf(a, b) ≤ a, b ≤ sup(a, b) ≤ a ∨ b .

It is quite possible, however, that all of the inequalities are strict.

Let U be a (finite) set. Aset representation of (L,≤) is a map

χ : L → 2U

into the collection of subsets ofU such that for alla, b, c ∈ L

(C0) a 6= b =⇒ χ(a) 6= χ(b) (i.e. χ is injective).

(C1) a ≤ b ≤ c =⇒ χ(a)∩χ(c) ⊆ χ(b) (i.e., χ has theconsecutive
ones property).

(C2) χ(a) ⊆ χ(b) =⇒ a ≤ b in L.

For anyu ∈ U , we define thecharacteristic function

χ(a, u) =

{

1 if u ∈ χ(a)
0 if u /∈ χ(a).

ProvidedL is a pseudolattice, we call the representationχ modular if
for all u ∈ U anda, b ∈ L,

χ(a ∧ b, u) + χ(a ∨ b, u) = χ(a, u) + χ(b, u) .
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Theorem 2.1 Assume that L is a pseudolattice with a modular representa-
tion χ. Then L is a lattice with a ∨ b = sup(a, b) for all a, b ∈ L.

Proof. We claim thatsup(a, b) exists and equalsa ∨ b for all a, b ∈ L.
So consider anyc ≥ a, b. We must show thatc ≥ a∨ b is true. Suppose this
is not the case and letd = a ∨ b. Then we have

a, b ≤ c < c ∨ d .

By (C2), there exists someu ∈ χ(c ∨ d) \ χ(c). Becauseu ∈ χ(c ∨ d), the
modularity ofχ impliesu ∈ χ(d) = χ(a ∨ b) and henceu ∈ χ(a) ∪ χ(b).
In view of u /∈ χ(c), on the other hand, the consecutive property (C1) yields
u /∈ χ(a) ∪ χ(b), which is a contradiction.

�

If L is a pseudolattice with modular representationχ and u ∈ U an
arbitrary element, we define theu-reduction of L to be the ordered set

L \ u = {a ∈ L | u /∈ χ(a)}.

It is straightforward to check thatL \ u is a pseudolattice and thatχ yields a
modular representation with respect to the reduced setU \ {u}.

2.1 Distributivity

We now show, more specifically, that a pseudolattice with modular represen-
tation such that (C0)-(C2) hold is, in fact, a distributive lattice. To see this,
we use the well-known fact that a distributive lattice is characterized by not
admittingN5 or M3 (see Fig. 1) as a sublattice (cf. [1]).

Theorem 2.2 Assume that L is a pseudolattice with a modular representa-
tion χ. Then L is a distributive lattice.

Proof. Suppose that the Theorem is false and there exists a sublattice
N5 = {a, b, c, d, e} such thatb < c, e = b ∨ d = c ∨ d anda = inf(b, d) =
inf(c, d).

By (C2), we may choose an elementu ∈ χ(c) \ χ(b). Property (C1)
impliesχ(c∧d, u) = 0. Hence, the modularity ofχ impliesχ(c∨d, u) = 1
andχ(d, u) = 0. So

χ(d, u) + χ(b, u) = 0 < χ(b ∨ d, u) = χ(c ∨ d, u) = 1
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Figure 1: Minimal non-distributive lattices.

yields a contradiction to the modularity ofχ.

Assume now thatL contains a sublatticeM3 = {a, b, c, d, e} such that
e = b∨ c = b∨ d = c∨ d anda = inf(b, c) = inf(b, d) = inf(c, d). Choose
an elementu ∈ χ(e) \ χ(b). The modularity ofχ implies

χ(c, u) = χ(d, u) = χ(inf(c, d), u) = 1.

Henceinf(c, d) ≤ a < b < e yields a contradiction to property (C1).
�

By Birkhoff’s Theorem [1], a (finite) distributive latticeL admits a par-
ticular representation as a union- (and intersection-) closed system of sets
in the following way. Callp ∈ L irreducible if p has precisely one lower
neighbor inL, where we say that a lattice elementq < p is alower neighbor
of p if there is noa ∈ L with q < a < p. Let P = P (L) denote the set of
all irreducibles ofL and represent eacha ∈ L by the set

a = {p ∈ P | p ≤ a} ⊆ P.

The equalitya = sup(a) always holds. The distributivity ofL, however, is
equivalent with

a ∨ b = a ∪ b for all a, b ∈ L.

and satisfiesa ∩ b = inf(a, b). So the ”canonical”Birkhoff representation
χ(a) = a is modular with respect to the lattice-theoretic operations, i.e.,

χ(inf(a, b)) + χ(a ∨ b) = χ(a) + χ(b),

and trivially has the properties (C0)-(C2).
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3 The Monge Algorithm

We assume in the following always that the order(L ≤) is a (pseudo)lattice
with modular representationχ relative to the ground setU which satisfies the
set theoretic compatibility properties (C0)-(C2). Without loss of generality,
let us also assume that eachu ∈ U occurs in at least one representing set,
i.e.,

U =
⋃

a∈L

χ(a).

Given weightscu ∈ R on the elements ofU , we want to find parameters
ya ∈ R such that the following linear inequalities are satisfied

(M) ya ≥ 0 for all a ∈ L and
∑

χ(a)3u

ya ≥ cu for all u ∈ U.

In view of our assumption onU , it is clear that (M) has a feasible solu-
tion. TheMonge algorithm computes a particular solution in a straightfor-
ward iterative procedure. To formulate it, we denote by`(m) the set of all
lower neighbors ofm. The algorithm works as follows:

(M1) Let m ∈ L be maximal and choose some lower neighborm∗ ∈ `(m)
andu∗ ∈ χ(m) \ χ(m∗) such that

c∗ = min
m′∈`(m)

max {cu | u ∈ χ(m) \ χ(m′)} = cu∗ .

(M2) Setym = max{0, c∗} and subtractym from all cu with u ∈ χ(m).

(M3) ReplaceL by L∗ = {a ∈ L | a ≤ m∗}.

(M4) Iterate untilL = ∅.

Note that (in view of our assumptions onχ) L∗ is precisely theu∗-
reduction ofL:

L∗ = L \ u∗ = {a ∈ L | u∗ /∈ χ(a)}.

We refer tou∗ ∈ χ(m) as therepresentative of m with respect to the Monge
algorithm. The crucial point is that for the reduced weight functionc in the
current step of the algorithm holds:

c∗ ≥ 0 =⇒ ym = cu∗ andym ≥ cu for all u ∈ χ(m) \ χ(m∗).
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We callm active (in the Monge algorithm) ifcu∗ ≥ 0 holds and collect all
active elementsmj into theMonge chain

M = {m1 < . . . < mk} ⊆ L.

Let uj ∈ χ(mj) denote the representative of the active elementmj ∈ M .
Recall that (C1) impliesui /∈ χ(mj) for all i < j. So we find for allu ∈ U
and all representativesuj:

m
∑

i=1

ymi
χ(mi, u) ≥ cu and

m
∑

i=1

ymi
χ(mi, uj) = cuj

.

In particular, the resulting vectoryM solves (M) with componentsyM
a given

as

yM
a =

{

ya if a ∈ M
0 if a /∈ M .

Proposition 3.1 Assume that all weights cu are integers. Then all compo-
nents ya of the Monge solution y are integral.

�

Note that an iteration relative to an inactive elementm ∈ L does not
affect the weights of the remaining elementsu ∈ U . It follows that an
elementu ∈ U with nonnegative weightcu must be removed at an iteration
involving an active element. Hence we find

Lemma 3.1 If mi ∈ M is an active element such that the Monge algorithm
chooses an inactive lower neighbor m∗ ∈ `(m), then m∗ is the unique lower
neighbor of m.

Proof. Suppose that the Lemma is false andmi has at least two lower
neighborsm∗,m′ ∈ `(mi). W.l.o.g., letm∗ be such thatui ∈ χ(m)\χ(m∗).

As the Monge algorithm chosem∗ (instead ofm′), we know that there
must be someu ∈ χ(m) \ χ(m′) with (reduced) weight

c′u ≥ c′ui
≥ 0.

Sincem′ 6≤ m∗, u is still in the representative set for the reduced lattice{a ∈
L | a ≤ m∗} and has nonnegative reduced weight. Moreover, if there exist
an active elementmi−1 ∈ M , the modularity ofχ impliesu 6∈ χ(mi−1).
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So the Monge algorithm must produce at least one more active element
mk such thatmk < mi and, if mi−1 ∈ M exists,mi−1 < mk < mi. A
contradiction.

�
Note that, in particular, the minimal active elementm1 in the Monge

algorithm has at most one lower neighbor.

3.1 Equality Constraints

Consider the linear system

(M=) ya ≥ 0 for all a ∈ L and
∑

χ(a)3u

ya = cu for all u ∈ U.

While (M) is always solvable, (M=) might be infeasible. Dietrich and
Hoffman [3], however, have observed that a greedy-type algorithm finds a
feasible solution for (M=), provided one exists at all:

(M1) Let m ∈ L be maximal and choosēu ∈ χ(m) such that

c̄ = cū = min {cu | u ∈ χ(m)}.

(M2) Setym = c̄ and subtractym from all cu with u ∈ χ(m).

(M3) ReplaceL by theū-reductionL̄ = L \ ū = {a ∈ L | ū /∈ χ(a)}.

(M4) Iterate untilL = ∅.

We claim that, in the equality case, our Monge algorithm may be inter-
preted as a special version of the Dietrich-Hoffman algorithm.

Theorem 3.1 If (M=) has a feasible solution at all, the Monge algorithm
relative to (M) computes a feasible solution y for (M=).

Proof. Assuming (M=) to be feasible, we first showc∗ = c̄. The in-
equality c̄ ≤ c∗ follows from the definition. Let̄m be the maximal element
of L̄ and choose somem′ ∈ `(m) such thatm̄ ≤ m′ ≤ m.

Let u′ ∈ χ(m) \ χ(m′) be an arbitrary element with weightc′. (C1)
impliesu′ /∈ χ(a) for all a ∈ L̄. So the feasibility of the Dietrich-Hoffman
algorithm yields

c∗ ≥ c̄ = ym = c′ ≥ c∗.
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So we can choosēu = u∗ in the Dietrich-Hoffman algorithm. Consider any
a ∈ L. If a ∈ L∗, then (C1) impliesu∗ /∈ χ(a). On the other hand, if
a /∈ L∗, we havea∨m∗ = m. Hence the modularity ofχ yieldsu∗ ∈ χ(a).
Consequently, we find̄L = L∗.

�

Corollary 3.1 If (M=) is feasible and M ⊆ L the chain of active elements
in the Monge algorithm, then M is a maximal (i.e., at most trivially ex-
tendible) chain in L.

Proof. If (M =) is feasible, all elementsm considered in the Monge al-
gorithm are active. Since successive elements are neighbors, the resulting
chain is non-extendible if no element ofL is represented by the empty set∅.
Otherwise,M can be trivially extended by the minimal element ofL.

�

3.1.1 The Monge Algorithm and the Birkhoff Representation

In the case of the Birkhoff representationχ(a) of the distributive latticeL
by subsets of the ordered set(P,≤) of irreducibles ofL, one wants to solve

(M) ya ≥ 0 for all a ∈ L and
∑

χ(a)3p

ya = cp for all p ∈ P .

for a givenc : P → R. The Monge algorithm successively removes max-
imal elementspn, pn−1, . . . of minimal weight and thus generates alinear
extension π of P , where

π = p1p2 . . . pn−1pn such that pi ≤ pj ⇒ i ≤ j .

This Monge algorithm is the basis of the generalized (poly-)matroid greedy
algorithms (see,e.g., [6, 7, 17, 15]). It produces the solution

ymk
= cpk

− cpk+1
.

The solution is feasible if and only ifc : P → R is nonnegative with the
antitone property (cf. [5]):

p ≤ q =⇒ cp ≥ cq ≥ 0.

The classical (poly-)matroid case of Edmonds [4] (see also [10]) corre-
sponds toP being trivially ordered.
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Assume thaty ≥ 0 is a feasible solution for (M=), relative to the weight
function c : U → R. The Monge algorithm produces the maximal chain
M = {m1 < . . . < mn}. SinceL is distributive,P can be arrranged in a
(unique) linear extensionπ = p1 . . . pn such that

m1 = p1 and mj = mj−1 ∨ pj (j = 2, . . . , n).

So the Monge solution induces a weightingc : P → R, via

cpj
=

n
∑

k=j

ymk
(j = 1, . . . , n),

andy turns into a feasible solution of the corresponding system (M) as well.
Hence (with hindsight) the Monge algorithm relative to (M=) permits an
interpretation within the framework (M) of the Birkhoff representation.

4 The Greedy Algorithm

Under the same assumptions on the (pseudo)latticeL, we now consider a
functionr : L → R and the linear system

(P) x(a) ≤ r(a) for all a ∈ L,

with the understanding thatx is a vector with componentsxu and

x(a) =
∑

u∈U

xuχ(a, u) =
∑

χ(a)3u

xa .

Again, it is clear that (P) always is feasible while its nonnegative version
may be infeasible:

(P+) xu ≥ 0 for all u ∈ U and x(a) ≤ r(a) for all a ∈ L,

Motivated by the Monge algorithm, we consider an arbitrary chainM =
{m1 < . . . < mk} ⊆ L such thatm1 has at most one lower neighborm0 in
L. Moreover, we select a sequenceπ = u1 . . . uk of representatives

uj ∈ χ(mj) \ χ(mj−1) (j = 1, . . . , k).

Let us generally call such a pair(M,π) aMonge pair. Thegreedy algorithm
computes a candidate solutionxπ for (P) from the Monge pair(M,π) by
modifying the components of the zero vectorx = 0 iteratively as follows:
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(G1) xu1
= r(m1).

(G2) xuj
= r(mj) −

∑

{xui
| i < j, ui ∈ χ(mj)} (j = 2, . . . , k).

The algorithm yields immediately

Proposition 4.1 Assume that r is integer-valued. Then every component of
the greedy vector xπ is an integer.

�

Sinceui /∈ χ(mj) if i > j, we observe for the greedy vectorxπ thus
constructed:

xπ(mj) = r(mj) for all j = 1, . . . , k.

With respect toxπ being a candidate solution (P+), we note

Lemma 4.1 Assume that r : L → R is nonnegative and monotone increas-
ing. Then the greedy vector xπ is nonnegative.

Proof. The algorithm yieldsxu1
= r(m1) ≥ 0 directly. Since each

ui ∈ χ(mj) with i < j must also lie inχ(mj−1), we furthermore find
iteratively

xuj
= r(mj) −

∑

{xui
| i < j, ui ∈ χ(mj)}

≥ r(mj) −
∑

{xui
| ui ∈ χ(mj−1)}

≥ r(mj) − r(mj−1) ≥ 0 .

�

Before discussing sufficient conditions for the feasibility of xπ, we de-
rive further feasibility properties.

Lemma 4.2 Let r : L → R be nonnegative and monotone increasing. Let
furthermore xπ be the greedy vector relative to the Monge pair (M,π) and
consider the lattice element a ∈ L. Then

a < m1 =⇒ xπ(a) = 0 ≤ r(a)
mj−1 < a < mj =⇒ xπ(a) ≤ r(a) (j = 2, . . . , k)

a > mk =⇒ xπ(a) ≤ r(a).
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Proof. Assumemj−1 < a < mj. From Lemma 3.1 we knowmj−1 <
a < m∗ for the unique lower neighborm∗ ∈ `(mj) chosen by the Monge
algorithm.

By the consecutive property (C1),ui ∈ χ(a) impliesui ∈ χ(mj−1) for
all i. Soxπ ≥ 0 yields

xπ(a) ≤ xπ(mj−1) = r(mj−1) ≤ r(a).

The casea ≥ mk is analyzed the same way. Let finallym0 be the lower
neighbor ofm1 and assumea < m1. Thena ≤ m0 andu1 /∈ χ(m0) yields
u1 /∈ χ(a). Similarly, no otheruj can lie inχ(a), i.e., χ(a) = 0.

�

5 Submodular Functions

Let L be a pseudolattice with modular representationχ, satisfying (C0)-
(C2), as before and assume thatr : L → R is submodular, i.e.,

r(a ∧ b) + r(a ∨ b) ≤ r(a) + r(b) for all a, b ∈ L.

It follows that anyx ∈ R
U induces a submodular functionh = r − x,

where
h(a) = r(a) − x(a) for all a ∈ L.

To say thatx is a feasible solution for the linear system (P) of the previ-
ous section is equivalent to saying thath is nonnegative.

Theorem 5.1 Let M = {m1 < . . . < mk} be an arbitrary chain in L.
Assume that h : L → R is a submodular function with the properties

(1) h(mj) = 0 for all mj ∈ M .

(2) h(a) ≥ 0 if mj−1 ≤ a ≤ mj for some j.

(3) h(a) ≥ 0 if a ≤ m1 or a ≥ mk.

Then h(a) ≥ 0 holds for all a ∈ L.

Proof. Suppose the Theorem is false anda a minimal counterexample.
Soa 6≤ m1 anda 6≥ mk. If a 6≤ mk, then

h(a) ≥ h(a ∧ mk) + h(a ∨ mk) − h(mk)

= h(a ∧ mk) + h(a ∨ mk) ≥ 0 ,
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asa ∨ mk ≥ mk anda ∧ mk < a imply that both additive terms are non-
negative. Hence there must exist somej > 1 such that

a 6≤ mj−1 and a ≤ mj.

Noting mj−1 ≤ a ∨ mj−1 ≤ mj, we then arrive at a contradiction in a
similar way through the submodular expansion

h(a) ≥ h(a ∧ mj−1) + h(a ∨ mj−1) − h(mj−1)

= h(a ∧ mj−1) + h(a ∨ mj−1) ≥ 0 ,

�

Corollary 5.1 Let (M,π) be the Monge pair obtained from the Monge al-
gorithm relative to some weight function c : U → R and xπ the associated
greedy vector relative to the submodular function r : L → R. Then we have

xπ(a) ≤ r(a) for all a ∈ L

provided r is nonnegative and monotone increasing or the Monge algorithm
solves the equality constrained system (M=) .

Proof. Consider the submodular functionh(a) = r(a)−xπ(a). In either
case of the Corollary,h satisfies the hypothesis of Theorem 5.1. Hence we
conclude

h(a) ≥ 0 or xπ(a) ≤ r(a).

�

5.1 Submodular Linear Programs

Under the same assumptions onL and U as before, consider a function
r : L → R, a weightingc : U → R and the linear program

(P) max
∑

u∈U

cuxu such that x(a) ≤ r(a) for all a ∈ L

with dual

(D) min
y≥0

∑

a∈K

r(a)ya such that
∑

χ(a)3u

ya = cu for all u ∈ U.

(P) is always feasible. From linear programming duality, wetherefore know
that an optimal solution exists if and only if (D) is feasible. So the Monge
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algorithm can be used to decide whether an optimal solution exists at all. Let
y ≥ 0 be the feasible solution computed by the Monge algorithm for(D)
and construct the greedy vectorxπ from the associated Monge pair(M,π).

Consider the matrixM with elementsχ(m,u) for m ∈ M andu ∈ π.
Denoting byȳ and r̄ the restrictions ofy andr to M and byc̄ and x̄ the
restrictions ofc andxπ to π, we find

ȳTM = c̄T and Mx̄ = r̄

and thus conclude
∑

a∈L

r(a)ya =
∑

m∈M

r(m)ym = ȳTMx̄ =
∑

u∈π

cux̄u =
∑

u∈U

cuxπ
u. (1)

Soxπ andy ≥ 0 are optimal solutions for (P) and (D) precisely when
xπ is feasible for (P).

The same argument applies to the nonnegative version

(P+) max
x≥0

∑

u∈U

cuxu such that x(a) ≤ r(a) for all a ∈ L

of (P) with dual

(D+) min
y≥0

∑

a∈K

r(a)ya such that
∑

χ(a)3u

ya ≥ cu for all u ∈ U.

Hence we obtain our main result:

Theorem 5.2 If r : L → R is submodular, the Monge and the greedy al-
gorithm construct optimal solutions for (D) and (P) or demonstrate that no
optimal solution exists.

If r : L → R is submodular, nonnegative and monotone increasing, the
Monge and the greedy algorithm construct optimal solutions for (D+) and
(P+).

�
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6 Supermodular Functions

The functionp : L → R is said to besupermodular on the pseudolattice
L if its negativer = −p is submodular. Now the linear program (P) of the
previous section is equivalent with the linear program

(Q) min
∑

u∈U

cuxu such that x(a) ≥ p(a) for all a ∈ L.

Hence the Monge and greedy algorithm also solves a linear program of
type (Q) optimally ifp is supermodular.

A curious situation arises from the nonnegative version

(Q+) min
x≥0

∑

u∈U

cuxu such that x(a) ≥ p(a) for all a ∈ L.

Frank [9] establishes a greedy algorithm to solve (Q+) in the case where
the supermodular functionp is nonnegative and monotone decreasing. His
algorithm is quite similar in spirit to our algorithm for thesolution of (P+)
with a submodular and nonnegative monotone increasingr. Yet, we do not
see a direct way to derive Frank’s algorithm from our approach. Nor does
Frank’s algorithm appear to be applicable to (P+).
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