
Semi–Preemptive Routing on Trees

Sven O. Krumke a Dirk Räbiger b Rainer Schrader b

aDepartment of Mathematics, University of Kaiserslautern

Paul-Ehrlich-Str. 14, 67653 Kaiserslautern

Germany

bZentrum für Angewandte Informatik, Universität zu Köln

Weyertal 80, 50931 Köln

Germany

Abstract

We study a variant of the pickup-and-delivery problem (PDP) in which the objects
that have to be transported can be reloaded at most d times, for a given d ∈

�
. This

problem is known to be polynomially solvable on paths or cycles and NP-complete
on trees. We present a (4/3 + ε)-approximation algorithm if the underlying graph
is a tree. By using a result of Charikar et al. (1998), this can be extended to a
O(log n log log n)-approximation for general graphs.

Key words: pickup and delivery, dial-a-ride, transportation, approximation,
colored arborescences, stacker crane

1 Introduction

Let G = (V, E) be an undirected graph on n nodes with nonnegative edge
lengths l : E → � +. For the semi-preemptive pickup-and-delivery problem
(Spdp) we are given a set of m objects. Each object corresponds to a trans-
portation request, i.e., a pair (vi, vj) of nodes from V so that the object has to
be moved from its initial location vi to its destination node vj. Transportation
is done by a vehicle which can handle only one object at a time. The vehicle
starts at a predefined start node v0 ∈ V and moves along the edges of the
graph G, serves the set of all requests R and returns to v0. On its way, the

Email addresses: krumke@mathematik.uni-kl.de (Sven O. Krumke),
raebiger@zpr.uni-koeln.de (Dirk Räbiger), schrader@zpr.uni-koeln.de
(Rainer Schrader).

Preprint submitted to Discrete Applied Mathematics 24 October 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/141726272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

vehicle may use up to d ≤ |V | intermediate nodes as reload nodes where it may
drop the currently carried object and resume its transportation later. The ob-
jective is to minimize the total length of the tour. Hence, we are looking for a
(constrained) minimum-length closed walk in G which contains a (vi, vj)-path
for every request (vi, vj) ∈ R.

It is easy to see that the famous travelling salesman problem is a special case of
the Spdp, and thus Spdp is NP-complete in general. If the underlying graph
is a path or a cycle, the problem was shown to be polynomial time solvable
for d = n (the so-called preemptive case) and for d = 0 (the non-preemptive
version) by Atallah and Kosaraju (1988) and for arbitrary d by Räbiger (2004).

In this paper we study the Spdp in the more general case when the underlying
graph is a tree. While the preemptive version in this case is known to remain
polynomially solvable (cf. Frederickson and Guan (1992)), the non-preemptive
variant was shown to be NP-hard in Frederickson and Guan (1993) for trees
in general, and even on caterpillars in Hauptmeier et al. (2001). Frederickson
and Guan (1993) also give an approximation algorithm for the non-preemptive
Spdp on trees with a performance ratio of 1.21363. Recall that a polynomial-
time algorithm A is said to be a ρ-approximation algorithm for a minimization
problem Π, if for every problem instance I of Π with optimal solution value
OPT(I) the solution of value A(I) returned by the algorithm satisfies A(I) ≤
ρ · OPT(I).

Since the non-preemptive version is NP-hard on trees, Spdp is NP-hard on
trees as well. We present an approximation algorithm with approximation
ratio of 4/3 + ε for any given ε > 0. Using results about the approximation
of arbitrary metric spaces by tree metrics Charikar et al. (1998) this result
implies an O((4/3 + ε) log n log log n)-approximation for arbitrary graphs.

This paper is organized as follows. In Section 2 we study the problem of finding
a minimum-weight arborescence in a graph with colored arcs subject to the
constraint that the arborescence may use only a limited number of blue arcs.
This problem turns out to be related intimidately to the Spdp as we show in
Section 3, which contains our approximation algorithm on trees. In Section 4
we briefly sketch how our approximation algorithm can be extended to general
graphs with a polylogarithmic increase in performance guarantee. Section 5
contains a short conclusion.

2 Colored arborescences

Let G = (V, E) be a directed (multi-) graph and r ∈ V be a fixed node. An
r-arborescence of G is a spanning arborescence with root r, that is, a subgraph

2

(V, A) whose arcs form a spanning tree of G and every node different from r is
the head of exactly one arc in A. We now consider the situation where the arc
set of G = (V, E) is partitioned into a subset Er of red arcs and a subset Eb

of blue arcs, that is, E = Er ∪Eb and Er ∩Eb = ∅. For a given number d ∈ �
any r-arborescence of G which contains at most d blue arcs will be referred to
as (d, r)-arborescence.

Given a non-negative weight function w : Er∪̇Eb → � and d ∈ � , we consider
the problem of finding a minimum-weight (d, r)-arborescence.

To the best of our knowledge, the complexity status of the (d, r)-arborescence
problem remains unsolved: it is neither known to be polynomial time solvable
nor known to be NP-hard. In view of the approximation of the Spdp, it turns
out that it suffices to have an efficient approximation algorithm for the (d, r)-
arborescence problem.

Recall that a family {Aε}ε of approximation algorithms for a minimization
problem Π, is called a fully polynomial approximation scheme or FPTAS, if
algorithm Aε is a (1 + ε)-approximation algorithm for Π and its running time
is polynomial in the size of the input and 1/ε.

Theorem 1 There exists an FPTAS for the (d, r)-arborescence problem.

PROOF. The statement follows from a more general result by Papadimitriou
and Yannakakis (2000) on the existence of approximation schemes. For this, let
Π be a {0, 1}-minimization problem, that is, a minimization problem where for
each instance x of Π the set of feasible solutions F (x) is a subset of {0, 1}n.
Given two linear functions w1, w2 and an accuracy requirement ε > 0, let
Pε(x) ⊆ F (x) be a subset of the solutions F (x) with the following property:
for every s′ ∈ F (x) there exists a a solution s ∈ Pε(x) such that wi(s) ≤
(1 + ε)wi(s

′) for i = 1, 2 (Pε(x) is an approximate pareto-set for the bicriteria
problem of minimizing simultaneously w1 and w2 over F (x)).

Papadimitriou and Yannakakis (2000) prove that Pε(x) can be calculated in
time polynomial in the encoding length of x and 1

ε
, provided that there exists

a pseudopolynomial algorithm to solve the following decision problem: given
a linear weight function w, and a number C ∈ � , does there exist a feasible
solution of Π with cost exactly C? In particular, this result implies that the
cardinality of the set Pε(x) can be assumed to be polynomially bounded in |x|
and 1/ε. For the r-arborescence problem, such a pseudopolynomial algorithm
for the related decision problem is described by Barahona and Pulleyblank
(1987).

Consider an instance x of the (d, r)-arborescence problem with corresponding
weight function w : Er∪̇Eb → � . Let w1 := w and w2 be the incidence vector

3

of the blue arcs. Given ε > 0, we use the approach of Papadimitriou and
Yannakakis (2000) to construct the set Pε′(x) for ε′ := min{ε, 1

n
} containing

a small number of “fairly good” solutions in polynomial time.

Let T ∗ be a minimum weight (d, r)-arborescence for x and s∗ the corresponding
incidence vector of arcs. By definition of Pε(x), there exists a solution s ∈ Pε(x)
with wi(s) ≤ wi(s

∗)(1 + ε) for i = 1, 2. Since w2(s) ≤ (1 + ε′)w2(s
∗) =

(1+ε′)d < d+1 we can conclude that s uses at most d blue arcs. Also w1(s) ≤
(1 + ε)w1(s

∗) and, thus, s is a (d, r)-arborescence which ε-approximates the
optimal solution. Since the size of Pε(x) is polynomially bounded by |x| and
1/ε, we can enumerate the elements of Pε(x) to find such an s. 2

3 Approximation on trees

In this section we present an approximation algorithm for Spdp on trees with
a performance of 4/3 + ε for any given ε > 0. We will actually consider a
slightly more general problem by allowing an additional cost of ∆ for each
reload operation.

The input consists of a tree G = (V, E), a distance function l : E → � on the
edge set, a set of requests R, a start node v0 ∈ V , a limit d ≤ |V | for the
number of reloads, and a cost ∆ ∈ � for every time we reload. The goal is to
find a minimum-cost tour to transport the objects by a vehicle which travels
along the edges of the tree G. The vehicle can carry at most one object at a
time, and it starts and ends at the designated start node v0. After picking up
an object which has to be moved from vi to vj this object may be dropped at an
intermediate node v and picked up later again. Each such “reload” operation
involves a cost of ∆ and we refer to v as a reload node.

Note that we can assume without loss of generality that each vertex of degree
one or two in G is the source or destination of at least one request, since we
can remove useless leaves and replace an unused node of degree two together
with its two incident edges by a new edge.

We create a directed graph B = (V,R) which contains an arc for every request.
The length l(u, v) of an arc is the length of the unique path from u to v in G.
Let l(R) be the sum of all arc lengths in B.

As was shown by Frederickson and Guan (1993), we may assume without loss
of generality that in B the indegree of every node is equal to its outdegree
(this is called the transition to a balanced instance in Frederickson and Guan
(1993)). This follows from the fact that G is a tree and any transportation
starting and ending at v0 must traverse each edge e = [u, v] of G the same

4

number of times from u to v as from v to u. Let X be the connected component
of G−e containing u and Y be the component of G−e containing v and denote
by φ(X, Y) := |{ (x, y) ∈ R : x ∈ X ∧ y ∈ Y }| the number of requests with
source in X and destination in Y . Any transportation W which serves all
requests in R must traverse edge [u, v] from u to v at least b(u, v) times,
where

b(u, v) :=

1 if φ(X, Y) = φ(Y, X) = 0

φ(Y, X) − φ(X, Y) if φ(Y, X) > φ(X, Y)

0 otherwise.

Thus, adding b(u, v) “balancing requests” from u to v will not affect the opti-
mum solution. We refer to Frederickson and Guan (1993) for further details.

Thus, in the sequel we will assume without loss of generality that the given
instance of Spdp is already balanced. As a consequence, every strongly con-
nected component of B is a Eulerian subgraph and each weakly connected
component is also strongly connected. The component containing the start
node v0 and a component containing at least two nodes (and thus request
arcs) are called non-trivial. The others which consist of isolated nodes are
termed trivial. We call two components neighbors if they contain nodes which
are adjacent in G.

It turns out that there is a close connection between Spdp and a rooted Steiner
arborescence problem which helps in designing our approximation algorithm.
Let D = (W, A) be a directed graph, r ∈ W a root node, and S ⊆ W a set of
terminals. Then T ⊆ A is an r-Steiner arborescence if there exists a directed
(r, v)-path for every v ∈ S in T . The undirected version of this problem is the
classical Steiner tree problem. Since the undirected variant can be modeled as
a directed problem, the Steiner arborescence problem is NP-complete. Now,
let the arcs of D be colored either red or blue, i.e. D = (W, Ar∪̇Ab). We then
require in addition that no more than d ∈ � blue arcs should be used and call
this problem (d, r)-Steiner arborescence.

We can relate the (d, r)-Steiner arborescence problem to Spdp as follows. We
construct a second directed auxiliary graph D = (C, Er∪̇Eb) whose nodes
correspond to the connected components of B and whose arcs are colored
either red or blue, together with a weight function w : Er∪̇Eb → � on the arc
set. We allow parallel arcs if they are colored differently. Let SC0 be the node
of D corresponding to the component of B which contains the start node v0.

• If the connected components SCi 6= SCj ⊆ V of B are neighbors, we add red
arcs (SCi, SCj), (SCj, SCi) to Er. Let w(SCi, SCj) = w(SCj, SCi) be twice
the minimum distance of nodes u ∈ SCi and v ∈ SCj in G (see Figure 1(a)).

• Let (u, v) ∈ R be a request with u, v ∈ SCi. If z ∈ SCj (i 6= j) lies on the

5

unique (u, v)-path in G, we add a blue arc (SCi, SCj) to Eb with weight
w(SCi, SCj) = ∆ (see Figure 1(b)) .

r

u

u v

SCi SCj

∈ SCi ∈ SCj

v

(a) pair of red arcs

r

u v
z

u vz

SCi SCj

∆

∈ SCi ∈ SCi∈ SCj

(b) blue arc

Fig. 1. Construction of the instance of the (d, r)-Steiner arborescence problem.

According to their corresponding components in B we distinguish between
trivial and non-trivial nodes of H. There are two simple observations:

Fact 2 (i) (u, v) ∈ Er if and only if (v, u) ∈ Er and w(u, v) = w(v, u)
(ii) (u, v) ∈ Eb implies that u is non-trivial.

The following theorem gives the precise relation between the Spdp and the
(d, r)-Steiner arborescence problem.

Theorem 3 Given an instance I of the Spdp and a (d, SC0)-Steiner arbores-
cence T in D with terminal set consisting of all non-trivial nodes of D we can
construct in polynomial time a solution of I with cost at most l(R) + w(T).
Conversely, each solution of I with cost l(R) + W implies a (d, SC0)-Steiner
arborescence with weight w(T) ≤ W .

PROOF. The basic idea behind the proof is that each red arc of an (d, SC0)-
Steiner arborescence T corresponds to a direct carrying move of an object, that
is, a move where the object is transported from its source to its destination
without intermediate dropping. On the other hand, each blue arc of T relates
to a reload operation.

We first show how to convert a Steiner arborescence T into a solution for the
Spdp. To this end, we iteratively modify the graph B = (V,R) by using the
arcs of T .

Consider a red arc (SCi, SCj) of T . By construction of H, there exist two
nodes u ∈ SCi and v ∈ SCj whose distance in G is 1

2
w(SCi, SCj). We add two

anti-parallel arcs (u, v), (v, u) to B with cost l(u, v) + l(v, u) = w(SCi, SCj)
(see Figure 2(a)).

6

B

SC0

SCi

SCj

u

v

u

v

(a) red arc

B

z

z

v

SCi

u

v

SCj

u

(b) blue arc

Fig. 2. Using arcs of a Steiner arborescence to build a transportation. In the upper
figures, the dashed arcs are red arcs, the solid arcs are blue arcs. In the lower figures,
the grey edges indicate the underlying tree G on which the vehicle moves.

For every blue arc (SCi, SCj) of T there exists a request (u, v) with both its
source and destination node in SCi crossing a node z of the component SCj.
This means that by transporting the object from u to v and using only edges
of the underlying tree G, we will inevitably pass z. We replace (u, v) in B by
two arcs (u, z) and (z, v) with costs w(u, z) = ∆ and w(z, v) = w(u, v) (see
Figure 2(a)). The node z will be designated to be a reload node. When we
repeat this process, we may assume that every blue arc corresponds to a path
from u to v. Every arc of this path represents a path in the tree. One of the
arcs (x, y) traverses z. We split (x, y) into two arcs (x, z) and (z, y) and assign
the costs of (u, v) to the second arc and ∆ to the first.

Let B′ be the graph obtained from B by repeatedly applying these two opera-
tions to every arc of T and finally replacing each blue arc (u, v) by a directed
path corresponding to the unique shortest path from u to v in G. Since each
replacement of an arc of T merges two connected components of B into one,
the nodes of all non-trivial components of B will be contained in a single
component of B′. Both operations do not change the degree balance of any
node, thus the resulting super-component will be a Eulerian subgraph which
contains the start node v0. Moreover, since T has at most d blue arcs, we use
no more than d reload nodes.

It is straightforward to see that a Eulerian tour in B ′ starting and ending at v0

7

gives a valid transportation. As indicated initially, each blue arc gives a reload
operation and the total cost of the Euler tour equals the cost of all arcs in B ′

which in turn is exactly l(R) + w(T).

Now consider conversely a feasible transportation Q for I with cost l(R) + W
and consider again the graph B = (V,R) whose arc set is formed by the set
of requests. Initialize AR := ∅, Ae := ∅ and Ar := ∅. We follow the movement
of the vehicle from its initial position v0 along Q back again to v0.

For each empty move (that is, without carrying an object) of the vehicle along
an edge [u, v] of G from u to v we add a directed arc (u, v) to Ae. Observe
that, since the tour is closed and we assumed the instance to be balanced, it
follows that the edge [u, v] is traversed empty by the vehicle in both directions
the same number of times. Thus, Ae will consist of pairs of antiparallel arcs.

If a request from u to v is transported directly without intermediate reload
operation from u to v, we add a directed arc from u to v to AR. Finally, if
an object is transported from its source u to its destination v with reload
occurring at z1, . . . , zp, we add the arcs (u, z1), (z1, z2), . . . , (zp, v) to Ar.

The transportation Q implies a Eulerian tour in the graph (V, AR ∪Ae ∪Ar).
We contract each connected component of B into a single node. Clearly, each
nontrivial component of H is reachable from SC0, thus there exists an arbores-
cence rooted at SC0 which by construction is a (d, SC0)-Steiner arborescence
of H with weight W as desired. 2

Theorem 3 implies that the cost of an optimal transportation is l(R)+w(T ∗),
where T ∗ is an optimal (d, SC0)-Steiner arborescence. Any approximation of
the Steiner arborescence problem can be used to approximate Spdp. Unfor-
tunately, it is in general not possible to approximate Steiner arborescences
within a constant factor (cf. Feige (1998)). On the other hand, the auxiliary
graph H has a very special structure that we can exploit. For this, we further
simplify the auxiliary graph. Let C ′ ⊆ C be the subset of nodes which are
trivial. Now construct a directed and colored graph H ′ = (C \ C ′, E ′) which
contains only the non–trivial nodes V \V ′ of H. For every ordered pair of nodes
(SCi, SCj) ∈ C \ C ′ find the shortest (SCi, SCj)-path in H using at most one
blue arc. This can be done by a simple modification of a shortest-path algo-
rithm. If the (SCi, SCj)-path uses only red arcs, color the arc (SCi, SCj) in H ′

red and blue otherwise. Define a weight function w : E ′ → � on all arcs of E ′

by assigning the distance of a shortest path.

Theorem 4 Let T be a minimum weight (d, SC0)-arborescence of H ′, and T ∗

a be minimum weight (d, SC0)-Steiner arborescence of H. Then we have that
w(T) ≤ 2w(T ∗).

8

PROOF. Given a (d, SC0)-Steiner arborescence T ∗ of H, we will prove the
existence of a (d, SC0)-arborescence in H ′ with cost at most 2w(T ∗).

Enumerate the nodes of T ∗ by depth-first-search so that every node appears
as often as its degree in T ∗. Let P = (SC0, . . . , SCp) be the sequence of nodes
in the order of their appearance. Any consecutive pair of nodes in P de-
scribes an arc in T ∗. Furthermore, every arc (SCi, SCj) of T ∗ appears twice,
once in its orientation (. . . , SCi, SCj, . . .) and then against its orientation
(. . . , SCj, SCi, . . .). Thus, the costs of all arcs described by P are 2w(T ∗).
Let Q = (SC0, . . . , SCq) be the subsequence of P induced by the non-trivial
nodes.

We now construct a (d, SC0)-arborescence T for H ′. We do so by marking
the nodes of Q and adding arcs to T . A node SCi will be marked if T con-
tains a (SC0, SCi)-path. The process terminates when all nodes of Q are
marked. Initially mark SC0. Let SCj be the first unmarked node and SCi

be its predecessor in Q. By definition of Q, SCi and SCj are non-trivial. Let
P i,j = (ci, u1, . . . , up, cj) be the (unique) subsequence of P , corresponding to
the pair SCi, SCj. Then all ui’s are trivial. P i,j describes a sequence of arcs,
possibly against their orientation. By w(P i,j) we denote the sum of weights of
these arcs.

We will show that

(i) P i,j describes a directed (SCi, SCj)-path in T ∗ and thus in H and
(ii) P i,j contains at most one blue arc.

(i) SCi is marked, thus in T there exists a directed (SC0, SCi)-path. By in-
duction, arcs in T correspond to directed paths in T ∗. So in T ∗ there exists
a directed (SC0, SCi)-path, which additionally visits some trivial nodes.
Either SCi is the root or in T there exists an arc with head SCi which is
not induced by P i,j, since SCi is already marked. In both cases (SCi, u1)
is used in its orientation, or else T ∗ contains two arcs with the same head
node (but T ∗ is an arborescence). In the DFS, starting at SCi, all follow-
ing arcs have to be used in their orientation. The orientation can only
be reversed if we visit a leaf node. Only non-trivial nodes can be leaves,
and the first non–trivial node after SCi in P i,j is cj. Thus P i,j describes
a directed (SCi, SCj)-path.

(ii) In particular (up, SCj) is visited in its orientation. By recalling fact 2 we
know that the tail-nodes of all arcs used in P i,j are non-trivial. Hence,
only two arcs can be colored blue: (SCi, u1) and (SCj, up). This proves (ii).

Thus in H ′ there exists an arc (SCi, SCj) with cost w(SCi, SCj) ≤ w(P i,j)
which we add to T . As there was a directed (SC0, SCi)-path in T , there now
is a directed (SC0, SCj)-path and we mark SCj.

9

We never consider the same subsequence P i,j twice. By induction, all nodes
of Q are marked and finally T is a (d, SC0)-arborescence with cost

w(T) =
∑

(ci,cj)∈T

w(ci, cj) ≤
∑

(ci,cj)∈T

w(P i,j) ≤ w(P) ≤ 2w(T ∗)

This completes the proof. 2

We do not know a polynomial time algorithm to solve (d, r)-arborescence
problem, but recall that we provided a FPTAS in Theorem 1. We will use this
result in the following algorithm which assumes that I is an input for Spdp.

Algorithm 1

1: Construct auxiliary graphs H and H ′ from I.
2: Calculate approximately a (d, SC0)–arborescence T ′ for H ′. .

Corollary 1
3: Construct a (d, SC0)-Steiner arborescence T for H out of T ′ .

Theorem 4
4: Construct a feasible transportation from T ′ . Theorem 3.

The proof of the following result is along the lines of Frederickson and Guan
(1993) but generalizes their result.

Theorem 5 Let OPT denote the length of an optimal transport graph for an
instance of Spdp on a tree. Algorithm 1 constructs a transportation with cost
at most 4

3
+ ε for any ε > 0.

PROOF. The degree balanced graph B contains at least two anti-parallel
arcs for every edge of the underlying tree G. Thus l(R) ≥ l(E). Let T ∗ be
a minimal cost (d, SC0)-arborescence for H ′. A red arc in T ∗ corresponds to
a path between strongly connected components of D in G. To connect all
components by anti-parallel arcs we do not need more than twice the length
of G. Using blue arcs in T ∗ will not increase its cost. Thus, we have 2l(R) ≥
2l(E) ≥ w(T ∗). Let us estimate the ratio between our solution and an optimal
transportation. For this, let S be an optimal (d, SC0)-Steiner arborescence
for H. Corollary 1 expects an accuracy constant ε′ which we set to ε′ := 3

2
ε.

10

l(GT)

l(G∗
T)

Thm. 3
=

l(R) + w(T)

l(R) + w(S)

Cor. 1
≤

l(R) + w(T ∗)(1 + ε′)

l(R) + w(S)

= 1 +
w(T ∗)(1 + ε′) − w(S)

l(R) + w(S)
≤ 1 +

w(T ∗)(1 + ε′) − w(S)

w(T ∗) + w(S)
Thm. 4
≤ 1 +

w(T ∗)(1 + ε′) − 1
2
w(T ∗)

w(T ∗) + 1
2
w(T ∗)

=
4

3
+

ε′w(T ∗)
3
2
w(T ∗)

=
4

3
+ ε

This completes the proof. 2

4 Approximation on General Graphs

In this section we show how our approximation algorithm for trees from Sec-
tion 3 can be used to obtain an approximation algorithm for general graphs.
Note that for Spdp on general graphs we can assume without loss of generality
that each instance satisfies the metric property. In fact, suppose an edge (u, v)
of the underlying graph G = (V, E) violates the triangle inequality. We can
simply replace the length oft this edge by the length of a shortest (u, v)-path
in G without consequences to feasibility.

Definition 6 A set of metric spaces S over V α-probabilistically approxi-
mates a metric space M over V , if the following conditions are satisfied:

(i) for all u, v ∈ V and N ∈ S, dN(u, v) ≥ dM(u, v), and
(ii) there exists a probability distribution D over S such that for every u, v ∈

V we have ED[dN(u, v)] ≤ α · dM(u, v).

Bartal (1998) proved that any metric space over a finite set V can be α-
probabilistically approximated by tree metrics, where α = O(logn log log n).
Charikar et al. (1998) later improved this result, showing that the mentioned
approximation can be achieved by a a probability distribution on O(n log n)
trees, where the trees and the distribution can be computed in polynomial
time. In particular, this implies that a deterministic approximation of an ar-
bitrary metric by tree metrics is possible (by using exhaustive search for the
best of the O(n log n) trees).

Suppose that we are given an instance of Spdp on a general graph G such
that the weight function is metric. We (deterministically) α-approximate the
metric space induced by G by a set S of O(n logn) trees and run the algorithm

11

from Section 3 for each of the trees. Picking the best of the O(n logn)-solution
then results in a O((4/3+ ε) logn log log n)-approximation. Thus, we have the
following result:

Theorem 7 For any ε > 0, there is a O((4/3+ε) logn log log n)-approximation
algorithm for Spdp.

5 Remarks

In a more restrictive variant of Spdp we are given a set X ⊆ V of nodes which
we may use as reload nodes. The problem is then to decide which nodes of X
to use in an optimal transportation plan. This version is still a generalization
of the preemptive (X = ∅) and non-preemptive PDP (X = V) and hence
NP-complete. It is easy to see that our algorithm can be adopted to give a
(4/3 + ε)-approximation for this version on trees.

References

M.J. Atallah and S.R. Kosaraju. Efficient solutions to some transportation
problems with applications to minimizing robot arm travel. SIAM Journal
Computing, 17:849–869, 1988.

F. Barahona and W.R. Pulleyblank. Exact arborescences, matchings and
cycles. Discrete Applied Mathematics, 16:91–99, 1987.

Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proceedings
of the 30th Annual ACM Symposium on the Theory of Computing, pages
161–168, 1998.

M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin. Approximating
a finite metric by a small number of tree metrics. In Proceedings of the
39th Annual ACM Symposium on the Theory of Computing, pages 379–388,
1998.

U. Feige. A Threshold of ln n for Approximating Set Cover. Journal of the
ACM, 45:634–652, 1998.

G. Frederickson and D. Guan. Preemptive ensemble motion planning on a
tree. SIAM Journal of Computing, 21:1130–1152, 1992.

G. Frederickson and D. Guan. Nonpreemptive ensemble motion planning on
a tree. J. Algorithms, 15:29–60, 1993.

D. Hauptmeier, S. O. Krumke, J. Rambau, and H.-C. Wirth. Euler is stand-
ing in line. Dial–a–ride problems with precendence–constraints. Discrete
Applied Mathematics, 113:87–107, 2001.

C. H. Papadimitriou and M. Yannakakis. On the approximability of trade–offs
and optimal access of web sources (Ext. Abstract). In 41st Annual Sympo-

12

sium on Foundations of Computer Science: Proceedings: 12–14 November,
2000, Redondo Beach, California, pages 86–92, 2000.

D. Räbiger. Semi–Preemptive Routing on a Linear and Circular Track. Tech-
nical report, Zentrum für Angewandte Informatik Köln, 2004.

13

