
RANDOMISED EVALUATIONS IN SINGLE AGENT

SEARCH

Ingo Althoefer∗

Faculty of Mathematics and Computer Science
Friedrich–Schiller–University Jena

07737 Jena, Germany

Susanne Heuser†

ZAIK, University of Cologne
Weyertal 80

50931 Cologne, Germany

February 16, 2005

Abstract

Most game playing programs are based on heuristic game tree search:
the nodes at distance t from the root are evaluated by a heuristic evaluation function, and
these values are backed up to the root by minimaxing.
Following an old investigation by Beal and Smith [1], we discuss depth-t search with randomised
evaluation functions: the heuristic leaf evaluations are artificially randomised before backing
them up. Our experiments were done for single-agent search, namely in the sliding tile puzzle
SlideThree [7]. The main finding is that applying a random disturbance to the heuristic leaf
values may considerably improve the playing strength.

1 Introduction

A standard method in game playing programs is heuristic game tree search. This method has been
extremely successful and largely investigated for two player games like chess (see e.g. [2]). Beal and
Smith conducted experiments with randomised evaluation functions for a full minimax search in
chess [1]. They found that randomising the heuristic evaluation function led to better play. Their
conjecture was that the randomised version of the evaluation function tends to prefer (and select)
positions with higher mobility. Other experiments conducted for several simple two player games
(like Blobs, Domineering, and others) by Rolle showed mixed results of success when randomising
the heuristic evaluation function [6].
We conducted first experiments with randomised evaluations for single player games and describe
our findings in this report. Our subject of investigation was Troyka’s puzzle SlideThree [7] with
its about 11.6 million different positions. One advantage of this relatively small search space was
that results of perfect retrograde analysis were available for comparison.
The note is organized as follows: In Section 2 we present the puzzle SlideThree and state some
of its properties. Section 3 explains the method that was used for the tree search and discusses
why randomisation might be helpful when searching the SlideThree game tree. The design of our
experiments is explained in Section 4. Results are shown and discussed in Section 5. Section 6
consists of conclusions, conjectures, and open problems. This article is based on [4].

∗email:althofer@minet.uni-jena.de
†email:heuser@zpr.uni-koeln.de

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/141726242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 The Puzzle SlideThree

The puzzle SlideThree was invented and programmed for Zillions of Games [8] by W.D. Troyka
[7]. There are nine tiles that are numbered from 1 to 9 on a 4×4 board. The task is to reverse the
order of the tiles by sliding blocks of three tiles in horizontal or vertical direction. The blocks must
be selected from a row or a column. If a block from a row is chosen, it may only be slid within this
row. A block from a column may only slide within this column, respectively. Figure 1 depicts the
Win and Start positions and a sample sequence of two legal moves from the starting position. The

987

65

321

4

9 8 7

6 5 4

2 13

9

8 7

6

5 4

2 1

9

8 7

6

5

3

2 1

4

3

StartWin Slide Column Slide Row

Figure 1: Win and Start positions and a sequence of two legal moves

’game’ tree of SlideThree is rather uniform. Each position has either 4 or 5 or 6 successors. There
are no cycles of odd length in the graph. With DTW (Distance To Win), we denote the minimal
number of moves that are needed to transfer a SlideThree position into the Win position. We did
retrograde analysis on all 11,612,160 legal positions and found that the Start position is in DTW
24, and the maximum DTW is 26 (cf. [4], Chapter 3).

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1.400.000

1.600.000

1.800.000

2.000.000

N
um

be
r

of
 P

os
iti

on
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Distance to Win

Figure 2: Distribution of SlideThree Positions

Figure 2 shows the distribution of SlideThree positions according to their DTW.

2

There is a straightforward generalisation of SlideThree to SlideK, the corresponding puzzle played
with K2 tiles on a board of size (K + 1) × (K + 1). SlideFour was programmed for Zillions by
S. Heuser [3]. The quickest SlideFour solution discovered so far takes 92 moves, but the DTW of
the SlideFour Start position remains an open problem.

3 Game Tree Search

3.1 Algorithm

We search the tree up to a fixed depth t. Basically, the following steps are performed:

1. Create the first t plies of the game tree.

2. Evaluate the leaves with a heuristic evaluation function.

3. Up-propagate the values in the tree by repeated minimising.

4. Execute the move that leads from the root to the successor with the minimal value. Ties are
broken by random choice.

In the multi-game program Zillions of Games [8] single agent search is executed just in this way,
in an iterative-deepening procedure (first a search of depth 1, then depth 2, ...).

3.2 Why Randomisation?

Applying random disturbance to deterministic heuristic leaf values might have the following benefits
for a game playing program.

1. Stepping out of Cycles
Deterministic evaluation functions behave always identically in the same situation. If the
evaluation function chooses a certain move in position P, it will choose the same move every
time, position P is reencountered during the tree search. Therefore, deterministic evaluation
functions often get stuck in cycles. Randomisation offers a possibility to leave such cycles,
thus solving this problem.

2. Nextbest Candidate Moves
If randomisation is intense enough, it is able to switch the ranks of the moves evaluated best.
Thus not only the best, but also the second best, third best, or k-th-best moves become
candidates for execution.

3. Tiebreak-Descend in Promising Subtrees
In case of coarse-grained heuristics we often have the situation that after a depth-t search
several successors of the root share the minimal value. In such a tie situation, randomisation
increases the chance to step into a subtree with many good leafs. Consider the situation
shown in Figure 3. In the left subtree there are three ”optimal” leaves, in the right subtree
there is only a single one. After a modest randomisation, the leaf with the minimal value
will be in the left subtree with probability (3/4 =) 75 percent and in the right subtree with
only (1/4 =) 25 percent.

In the multi-game program Zillions of Games [8] the user can adjust several parameters for the
computer engine. One of these parameters is called Variety. There are 11 different levels, ranging
from small over moderate to large. Variety determines to what extent leaf values in the depth-t
search are randomised: on the lowest level there is no randomisation at all, and on the other
ten levels the average degree of randomisation grows linearly with the level number. There are a
number of games and puzzles where large Variety improves the playing strength of Zillions.

3

3 3 3 5 9 3 6 8

3 3 3 6

3

s

3

Figure 3: Example for a tie situation in a min-tree of depth 3

4 Experimental Design

We conducted autoplay experiments for samples of SlideThree positions. This means that we let
our algorithm play SlideThree for up to 100 moves starting from a sample position. As a measure
for the playing strength we used the winning quota WQ,

WQ =
number of games won within 100 moves

number of games played
.

For each sample, 1068 starting positions were randomly chosen from several fixed DTWs. This
sample size gives us a maximum standard deviation of 3% on a significance level of 95%. This
means that, if two winning quotas Q1 and Q2 for two different evaluation functions E1 and E2

differ by more than 6% (Q1 − Q2 > 6%), we can conclude that E1 plays better than E2. The
probability that this conclusion is correct is 95% or better.

Heuristic Evaluation Functions in our Test
We tested six different heuristic evaluation functions which estimate the distance to the Win posi-
tion by different criteria. The first three are natural ones whereas the others look rather artificial.
This was fully intended as we wanted to analyse the randomisation approach also for strange eval-
uations. Here, the multi-game program Zillions of Games with its automatically generated and
sometimes strange evaluation functions was our role model.

9

8 7

6

5

3

2 1

4

Position P

Figure 4: Position for the Example Computations of the Evaluation Functions

4

Definition 1 Let Pos be any SlideThree position. In the examples we compute the respective
heuristic value for the position depicted in Figure 4, denoted by P in the following.
(1) Euclidian On Board
Let r(i) be the distance in rows, c(i) the distance in columns of tile i to its goal square, respectively.
The value of Pos according to Euclidian On Board is

Eu(Pos) =

√√√√
9∑

i=1

r(i)2 + c(i)2

Example:
Eu(P) =

√
r(1)2 + c(1)2 + r(2)2 + c(2)2 + . . . + r(9)2 + c(9)2

=
√

22 + 22 + 22 + 02 + . . . + 12 + 12

=
√

54 ≈ 7.348

(2) Manhattan Metric
Let d(i) be the Manhattan distance of tile i to its goal square (d(i)=distance in rows + distance in
columns). Then the value of Pos according to the Manhattan Metric is

Man(Pos) =
9∑

i=1

d(i)

Example:
Man(P) = d(1) + d(2) + . . . + d(9)

= 4 + 2 + . . . + 2
= 26

(3) Neighbour Distance
The value of Pos according to the Neighbour Distance is the sum of various mali. We assign a
malus of +1 to a tile in Pos for each wrong, additional, or missing neighbour. Furthermore a malus
of +1, if the tile is not on its goal square. The neighbourhood structure is the 4-neighbourhood.
Whether a neighbour is missing, additional, or wrong is derived with respect to the neighbours of
the tile in the Win position.
Let m(i) be the malus for tile i. The Neighbour Distance for Pos is given by

Nb(Pos) =
9∑

i=1

m(i)

Example:
Consider tile 3 in position P. Its current position is in the fourth row, first column; its goal square
is first row, third column. So we already have a malus of +1 because the tile is not on its goal
square. Next, we take a look at the neighbours. In P, tile 3 has no left neighbour, tile 6 as an upper
neighbour, a blank as a right neighbour, and no lower neighbour. Compared to its neighbours in the
Win position, it misses tile 2 as its neighbour on the left. This gives a malus of +1 for a missing
neighbour. In the Win position, tile 3 is located in the first row, thus having no upper neighbour.
Therefore we get another malus of +1, because of an additional upper neighbour in the current
position. The right neighbour of tile 3 in P is a blank, which is consistent with its right neighbour
in the Win position. So we have no malus for the right neighbour. The lower neighbour of tile 3
in the Win position is tile 6. But in P, a lower neighbour is missing, which gives us another malus
of +1. Altogether, the malus for tile 3 in P is m(3) = 1 + 1 + 1 + 0 + 1 = 4. Treating the other
tiles analogously, we obtain

Nb(P) = m(1) + m(2) + m(3) + m(4) + m(5) + m(6) + m(7) + m(8) + m(9)
= 5 + 5 + 4 + 5 + 5 + 5 + 5 + 5 + 5
= 44

5

(4) Permutation Distance
Let π be the permutation of the tiles within Pos. Then the value of Pos according to the Permutation
Distance is

Perm(Pos) =

{ √
0.5 +

∑9
i=1(π(i)− i)2 if Pos 6= Win
0 if Pos = Win

The additive term 0.5 in the root guarantees that Perm(Pos) becomes 0 only for the Win position.

Example:
First we determine the permutation of the tiles within P, starting in the upper left corner and
proceeding rowwise to the lower right corner. Blanks are skipped:

π(P) =
(

8 7 9 5 4 6 2 1 3
1 2 3 4 5 6 7 8 9

)

Now we can compute the heuristic value according to Perm:

Perm(P) =
√

0.5 + (8− 1)2 + (7− 2)2 + (9− 3)2 + . . . + (3− 9)2
=

√
0.5 + 49 + 25 + 36 + . . . + 36

=
√

222.5 ≈ 14.916

(5) Inversions Distance
Let π be defined as in (4). The value of Pos according to the Inversion Distance is

Inv(Pos) =
{

0.5 + number of inversions of π if Pos 6= Win
0 if Pos = Win

Example:
An inversion is a switch of the lexicographical order of two numbers, e.g. (8,7) is an inversion in
π, (8,9) is not. The number of all such switches in π(P) is 30.

Inv(P) = 0.5 + inv(π)
= 0.5 + 30 = 30.5

(6) L2 Metric
To define this evaluation function, we convert Pos into a vector v(Pos) in the 16-dimensional
Euclidian space R16. This is done rowwise, starting in the upper left corner. The first four entries
of the vector correspond to the first row of Pos, the second four entries to the second row of Pos,
and so on. Blanks are represented by zeroes.
The value of Pos according to the L2 Metric is the Euclidian distance (also called L2 distance) of
v(Pos) to v(Win)=(1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9, 0, 0, 0, 0, 0):

L2(Pos) =

√√√√
16∑

i=1

(vi(Pos)− vi(Win))2

Example:
The vector corresponding to P is v(P) = (0, 8, 7, 0, 0, 9, 5, 4, 6, 2, 1, 0, 3, 0, 0, 0).

L2(P) =
√

(0− 1)2 + (8− 2)2 + (7− 3)2 + (0− 0)2 + . . . + (0− 0)2
=

√
1 + 36 + 16 + 0 + . . . + 0

=
√

192 ≈ 13.856

6

Randomisations in our Test
In our experiments each of the six evaluation functions was randomised in five different ways:

1. Add: Add a uniformly distributed random value (rv) to the deterministic evaluation function
(evf). So, evf becomes evf + rv , with − a ≤ rv ≤ a .
This is the easiest way of randomising a deterministic evaluation function. The intensity of
the randomisation is scalable by changing the range of the random value, but depends on
the absolute values of the heuristic evaluation function.

2. Mult: Multiply the evaluation function by (1+rv). So evf becomes evf · (1 + rv),
with − a ≤ rv ≤ a .
This is a relative randomisation of the evaluation function. Its intensity no longer depends
on the range of the deterministic evaluation function.

3. Norm+: Substitute evf by evf+rv
evf = 1 + rv

evf , where 0 ≤ rv ≤ a .
When using this randomisation, the ranking of the moves as determined by the deterministic
evaluation function is reversed on average. A high deterministic evaluation is likely to give
a low heuristic value when using Norm+. Thus, the moves considered as being bad by the
deterministic evaluation function are preferred for execution when using this randomisation.
One could say that the ”knowledge” of the deterministic evaluation function is rejected. This
very strange randomisation is not meant as a serious proposal for application! Instead its
investigation shall only demonstrate that it is possible to decrease performance by randomi-
sation.

Example: Consider two SlideThree positions P and R with deterministic values evf(P)= 3
and evf(R)= 2. Drawing uniformly distributed random numbers rv from the interval [0, 5]
gives Norm+(P) in the interval [1, 1 + 5

3] and Norm+(R) in the interval [1, 1 + 5
2]. So, on

average, P, which has a worse heuristic value before randomisation, gets a better randomised
value.

4. Norm–: evf-rv
evf = 1− rv

evf , 0 ≤ rv ≤ a .
Norm– is the mirrored version of Norm+. If Norm+ orders two positions in one way, Norm–
is likely to reverse the order. In other words, the ranking of the moves as obtained by the
deterministic evaluation function is reproduced on average.

5. Comb: Add (rv ·Perm) to the deterministic evaluation function.
So evf becomes evf + rv · Perm, with − a ≤ rv ≤ a .
Perm is the Permutation Distance as defined in Definition 1, (4). So, here a linear com-
bination of two deterministic evaluation functions is attempted with a random weight for
the Permutation Distance. The deterministic evaluation function consults a second ”expert”
(which is Perm) and integrates this ”knowledge” randomly into its own evaluation.

Example: Consider a position P with deterministic value EP , where E is one of the
evaluation functions defined in Definition 1. The randomised value of P is Comb(P)=
EP + rv · Perm(P). If the absolute value of rv is small, only little information from the
Permutation Distance is included in the final value Comb(P). If it is large, a considerable
amount of the Permutation Distance evaluation is contributed to Comb(P).

In our experiments all random numbers are generated by the pseudo random number generator
”Mersenne Twister” by Matsumoto and Nishimura [5] and are uniformly distributed
in an interval [−a, a] or [0, a], a ∈ R+ . We tried different values for a in lots of different runs.

7

5 Results of the Experiments

All results in detail may be found in [4]. Here we give an overview. We conducted autoplay
experiments for each of the heuristic evaluation functions and each kind of randomisation for a
sample of 1068 SlideThree positions in DTW 14. The search depths were 4, 5, and 6. Tables 1
to 3 list our findings from the experiments with randomised heuristic evaluation functions on this
sample. Here, ”+” means a statistically significant increase, ”–” a decrease, and ”≈” no significant
change of the winning quota.

Add Mult Norm+ Norm– Comb
Eu + + – ≈ ≈

Man + + – + +
Nb + + – + +

Perm ≈ ≈ – ≈
Inv ≈ ≈ – ≈ ≈
L2 + ≈ – + ≈

Table 1: Effects of Randomisation for a Depth-4 Search on Sample in DTW 14

Add Mult Norm+ Norm– Comb
Eu + + – + +

Man + + – + +
Nb + + – + +

Perm + ≈ – +
Inv + ≈ – + ≈
L2 + ≈ – + +

Table 2: Effects of Randomisation for a Depth-5 Search on Sample in DTW 14

Add Mult Norm+ Norm– Comb
Eu + + – + +

Man + + – + +
Nb + + – + +

Perm + ≈ – +
Inv + + – + +
L2 + ≈ – + +

Table 3: Effects of Randomisation for a Depth-6 Search on Sample in DTW 14

In many cases, we observed a quite considerable increase of the winning quota when randomising
the deterministic heuristic evaluation function. Also, the positive impact of randomisation on the
winning quota increased with the search depth, as may be seen by the more technical tables in the
appendix.

When taking a closer look at the results, we can give a refined distinction of the behaviour of the
winning quota in dependence on the randomisation intensity. Five different patterns were observed.

1. The winning quota increases as soon as randomisation is introduced. It stays at a high level
until the randomisation becomes too intense, then it decreases.

8

2. The winning quota increases only after a certain intensity of randomisation has been reached.
When the randomisation becomes too intense it decreases again.

3. The winning quota does not change when randomisation is used. Once the randomisation
reaches a certain intensity, the winning quota decreases.

4. The winning quota drops to 0 as soon as randomisation is introduced. It does not recover.

5. None of the behaviours 1 to 4 was recognizable.

Add Mult Norm+ Norm– Comb
Eu 1 1 4 5 ≈ 5 ≈

Man 1 1 4 5 + 5 +
Nb 2 2 4 5 + 5 +

Perm 3 3 4 3
Inv 3 3 4 3 3
L2 5 ≈ 5 ≈ 4 5 ≈ 5 ≈

Table 4: Behaviour of Winning Quota

Table 4 lists the evaluation functions and their type of behaviour. It represents a summary of
all the experiments that were conducted and of which only a part is shown in detail in this note.
The entries with a 5 are additionally marked with a +, –, or ≈ sign, to indicate the change in
the winning quota when using randomisation. The classification of the behaviour of the L2 Metric
fails because of too low winning quotas.

In Figure 5 we show the winning quotas of the deterministic evaluation function Eu and its ran-
domised version Eu-Add (using the Add randomisation with random values taken from [–0.1, 0.1]).
Here we took samples from several DTWs (DTW = 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18). Each
data point shown in the figure is the winning quota achieved in the experiment on the respective
sample set of 1068 SlideThree positions. The DTW of the positions in the sample set is indicated
on the x-axis.
In the figure, ”Det” refers to the winning quota of the deterministic heuristic evaluation function
Eu and ”Rand” to its randomised version. Both for deterministic and randomised evaluations
the winning quotas decrease with increasing DTW, and for larger DTW the positive effect of
randomisation is more explicit.

6 Conclusions

We investigated randomised evaluation functions in single agent search. For this purpose, six
different deterministic heuristic evaluation functions for the puzzle SlideThree were constructed,
which show different playing strengths. These evaluation functions were randomised in five differ-
ent ways. The experiments were set up as autoplay experiments and applied a depth-t search to
select a move for execution. Playing strength was measured by the winning quota.

Our experiments show that a randomisation often is able to improve the playing strength. The
positive effect of randomisation increases with the search depth. Moreover, there should be an
upper bound for the playing strength of the deterministic evaluation function beyond which ran-
domisation cannot lead to further improvement. This implies that randomisation is most profitable
for deterministic evaluation functions of moderate playing strength.

9

0

0,2

0,4

0,6

0,8

1

8 9 10 11 12 13 14 15 16 17 18
DTW of Sample

W
in

n
in

g
 Q

u
o

ta

Det

Rand

Figure 5: Effect of Randomisation

We finish with two open problems: (i) Given a single agent game with heuristic search: is there
always some medium level of quality for the heuristic evaluation such that randomisation is most
helpful for heuristics at this level? (ii) Does randomisation also help for other procedures instead
of depth-t search, for instance for A*?

7 Acknowledgements

Thanks are due to W.D. Troyka for the publication of his nice puzzle SlideThree. Susanne
Heuser wants to thank especially Prof. van den Herik and his research group at the Univer-
sity of Maastricht, where she had a very fruitful 3-month’s stay during her diploma project. The
FRZ (Fakultaets-Rechen-Zentrum) at Jena University with its director Dr. Schorr was so kind to
provide extra computing time for very intense experimental sessions.

References

[1] D.F. Beal and M.C. Smith. Random Evaluations in Chess. ICCA Journal, Vol. 17, No. 1,
pp.91-94, 1994.

[2] E.A. Heinz. Scalable Search in Computer Chess. Vieweg, 2000.

[3] S. Heuser. Puzzle SlideFour. 2003. An electronic version is available at
http://www.zillionsofgames.com/cgi-bin/zilligames/submissions.cgi/99611?do=show;id=828.

[4] S. Heuser. Randomised Evaluation Functions in Single Agent Search. Diploma Thesis, Friedrich-
Schiller-University Jena, Faculty of Mathematics and Computer Science, 2003. An electronic
version is available on request from heuser@zpr.uni-koeln.de .

[5] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACMTMCS: ACM Transactions on Modeling and
Computer Simulation, Vol.8, pp. 3–30, 1998.

10

[6] T. Rolle. Development of a multi-game engine. Diploma Thesis, Friedrich-Schiller-University
Jena, Faculty of Mathematics and Computer Science, 2003. An electronic version is available
on request from althofer@minet.uni-jena.de .

[7] W. D. Troyka. Puzzle SlideThree. 2001. An electronic version is available at
http://www.zillionsofgames.com/cgi-bin/zilligames/submissions.cgi/99744?do=show;id=829.

[8] Zillions. Multi-game program Zillions of Games. 1998. http://www.zillionsofgames.com .
Updated weekly.

Appendix

Tables A1 to A3 show the best winning quotas that were achieved in the experiments. For each
pair of evaluation and randomisation, we tried several intervals for the random numbers. The
tables show the highest winning quotas achieved and in []-brackets the corresponding intervals
from which the random numbers were taken. These intervals are meant for orientation. In fact, our
experiments showed a significant increase of the winning quotas for a broad range of intensities of
randomisation. Column Det refers to the deterministic evaluation function without randomisation.

Det Add Mult Norm+ Norm– Comb
Eu 0.355 0.421 [-0.1, 0.1] 0.452 [-0.1, 0.1] 0.001 [0, 0.5] 0.380 [0, 1] 0.343 [0, 2]

Man 0.169 0.254 [-2.5, 2.5] 0.245 [-0.3, 0.3] 0.001 [0, 1] 0.271 [0, 1] 0.238 [0, 2]
Nb 0.046 0.099 [-5, 5] 0.110 [-0.3, 0.3] 0 0.117 [0, 1] 0.109 [0, 2]

Perm 0.045 0.052 [-5, 5] 0.040 [-0.3, 0.3] 0 0.045 [0, 0.2]
Inv 0.050 0.065 [-0.5, 0.5] 0.047 [-0.5, 0.5] 0 0.054 [0, 0.5] 0.051 [0, 1]
L2 0.003 0.016 [-2.5, 2.5] 0.007 [-0.5, 0.5] 0.001 [0, 1] 0.017 [0, 0.5] 0.010 [0, 0.5]

Table A1: Winning Quotas for a Depth-4 Search on Sample in DTW 14

Det Add Mult Norm+ Norm– Comb
Eu 0.463 0.638 [-0.005, 0.005] 0.645 [-0.1, 0.1] 0.001 [0, 1] 0.568 [0, 2] 0.531 [0, 0.5]

Man 0.271 0.460 [-2.5, 2.5] 0.443 [-0.2, 0.2] 0 0.481 [0, 1] 0.431 [0, 0.5]
Nb 0.086 0.181 [-0.5, 0.5] 0.137 [-2.5, 2.5] 0 0.219 [0, 0.3] 0.200 [0, 2]

Perm 0.064 0.107 [-1, 1] 0.078 [-0.1, 0.1] 0 0.104 [0, 0.2]
Inv 0.063 0.132 [-0.5, 0.5] 0.074 [-0.2, 0.2] 0.001 [0, 2] 0.138 [0, 1] 0.083 [0, 0.5]
L2 0.007 0.038 [-5, 5] 0.013 [-0.2, 0.2] 0.001 [0, 0.5] 0.041 [0, 0.2] 0.022 [0, 1.5]

Table A2: Winning Quotas for a Depth-5 Search on Sample in DTW 14

Det Add Mult Norm+ Norm– Comb
Eu 0.592 0.799 [-0.5, 0.5] 0.818 [-0.1, 0.1] 0 0.737 [0, 2] 0.682 [0, 2]

Man 0.353 0.666 [-2.5, 2.5] 0.623 [-0.2, 0.2] 0 0.684 [0, 2] 0.632 [0, 1.5]
Nb 0.148 0.326 [-5, 5] 0.301 [-0.5, 0.5] 0.001 [0, 0.5] 0.400 [0, 0.3] 0.344 [0, 3]

Perm 0.139 0.192 [-1, 1] 0.178 [-0.5, 0.5] 0.001 [0, 0.5] 0.203 [0, 2]
Inv 0.134 0.220 [-1, 1] 0.197 [-0.5, 0.5] 0 0.228 [0, 2] 0.193 [0, 1]
L2 0.009 0.092 [-2.5, 2.5] 0.022 [-0.5, 0.5] 0.001 [0, 0.5] 0.088 [0, 0.5] 0.037 [0, 1]

Table A3: Winning Quotas for a Depth-6 Search on Sample in DTW 14

11

