
Semi–preemptive routing on a linear and

circular track

Dirk Räbiger

Zentrum für Angewandte Informatik Köln, Arbeitsgruppe Faigle/Schrader
Universität zu Köln

Weyertal 80, 50931 Köln

Abstract

The problem of routing a robot (or vehicle) between n stations in the plane in order
to transport objects is well studied, even if the stations are specially arranged, e.g.
on a linear track or circle. The robot may use either all or none of the stations for
reloading. We will generalize these concepts of preemptiveness/non–preemptiveness
and emancipate the robot by letting it choose k ≤ n reload–stations. We will show
that the problem on the linear and circular track remains polynomial solvable.

Key words: pickup and delivery, dial–a–ride, transportation

1 Introduction

A robot is given the task of transporting m objects between n stations in the
plane. Each (heterogeneous) object is initially located at one of the stations
and has to be moved to its destination. The robot is only strong enough to
hold one object at a time. A station can be source and destination for several
objects. We focus on the special cases where the n stations, given as set S, are
arranged on a line or a circle. The distance between neighboring stations si, sj
is given by l(si, sj) ∈ R+. Every object has a source si ∈ S and destination
sj ∈ S assigned, and we will call this a request (si, sj). We will often use
object as a synonym for request. The set of m requests is given as R. Every
station is source or destination of a request, otherwise any unused station will
be removed. The robot starts at any predefined station s0 ∈ S and moves
back and forth along the track to pick up objects, transport them, and drop
them. We want to find the minimal motion to transport every object from the

Email address: raebiger@zaik.de (Dirk Räbiger).

Preprint submitted to Discrete Applied Mathematics 11 October 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/141726237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

source to its destination and return to the start station afterwards. Typically,
one distinguishes between a non–preemptive and a preemptive version of the
problem. In the first case any object may only be dropped at its destination
station once it is picked up. The latter case allows the robot to drop the object
at any intermediate node and pick it up later. We will call this action a reload.
Both cases were solved in [1]. A nice overview of closely related problems is
given in [5].

We want to generalize the concepts of preemptiveness/non–preemptiveness
and let the robot know a number k ∈ N, k ≤ n that defines the maximum
quantity of reload–stations used during the transport. The reload–stations may
be exogenously given as a subset B ⊆ S and the robot is allowed to use every
station s ∈ B for reloads. In a different model the k reload–stations have to
be endogenously determined and the robot has to find out itself which stations
are best for reloading in order to minimize the total travel length. Moreover,
we introduce a cost value ∆ ∈ R+ for every reload station installed. Altough
is easy to extend the results for ∆ < 0 we abandon this case, because any
optimal solution will use exactly k reload nodes. We will give polynomial time
algorithms for both the endogenous (sec. 2) and exogenous (sec. 3) cases. The
problem is NP–complete on a tree as a result of the generalization of the
non–preemptive case [3]. Thus the proposed generalization does not make the
problem harder if we simply distinguish between polynomial time solvable and
NP–complete problems.

2 Endogenous reload nodes

2.1 Properties of the line and circle graph

We are given a set of n nodes S which are either arranged on a line or a
circle such that the distance function l(si, sj) ∈ R+ is defined on neighboring
nodes si, sj. If the nodes are all arranged on a line we can connect the end
nodes by using a sufficiently large distance and treat this problem as a special
case of the circle case. We will choose the start node s0 and number all nodes
clockwise while we often loosely write si+1 instead of si+1 mod n. Referring to
the circumference we call the section between the station si and si+1 the in-
terval i. We are also given a set of m requests R. One can move an object
(sa, sc) either in clockwise or counter–clockwise direction along the circumfer-
ence. Once chosen the direction each request is assigned a unique path along
the circumference which uses only neighboring nodes. Now the length of the
arc (sa, sc) is determined by the sum of the distances along this path. We will
say that a request is either moved along its major resp. minor arc.

2

We are interested in finding a transport graph GT = (S, A,B) which is a
directed multigraph that contains an Eulerian walk which visits at least all
(sa, sc) ∈ R. We partition the arc set A into three subsets A := AR∪̇Aψ∪̇AC
and initially set AR = R. Within GT we need to decide for every request in
which direction it should be moved. The following result reduces the number
of possible combinations to m+ 1.

Lemma 1 (Atallah, Kosaraju 1988 [1])
In any optimal transport graph, at most one object is moved to its destination
along the major arc.

When we are going to determine an optimal transport graph within an algo-
rithm we will iteratively choose one of the requests as being transported via
its major arc. For now assume that r ∈ R∪ {∅} will be this request and that
all directions of requests are fixed. (sa, sc) crosses a node sb if its unique path
contains sb.

In order to serve all requests we possibly need to use some empty movements
while we do not move any object which will be represented by augmenting
arcs. We are able to calculate some augmenting arcs which are necessary in
every transport graph. The node set of any Eulerian graph must be degree
balanced, i.e. ∀si∈S : δ−(si) = δ+(si). If any node is unbalanced we will need
to add some extra arcs. As the distance function l is additive we can restrict all
augmenting arcs to arcs between neighboring nodes. Intuitively speaking we
will only use arcs along the circumference. The following definition together
with lemma 3 gives us an alternative characterization of the degree balance
property on circles.

Definition 2 The flow φ(i) across an interval i is defined as

|{a ∈ A crossing i clockwise}| − |{a ∈ A crossing i counter–clockwise}|.

Note that φ(i) also counts arcs crossing i which do neither end in si nor si+1.
The φ(i)’s (i = 0, . . . , n − 1) can all be computed in O(m) time. Iff the flow
across all intervals equals a value ψ ∈ Z then all nodes will be degree balanced:

Lemma 3 (Atallah, Kosaraju 1988 [1])

∀si∈S : δ−(si) = δ+(si) ⇔ ∀i=0,...,n−1 : φ(i) = ψ

Given a flow value ψ, we have to add |ψ − φ(i)| many arcs (si, si+1) (resp.
(si+1, si)) to GT if φ(i) < ψ (resp. > ψ) for all intervals i = 0, . . . , n − 1. We
will denote this set of augmenting arcs to establish a flow value of ψ by Aψ.
Figure 1 illustrates an example. In (S, Aψ∪AR) all nodes are degree balanced,
but not necessarily connected. Thus the graph constructed so far decomposes

3

s0
s1

s2

s3
s

s5

s6

s7

s0
s1

s2

s3
s4

s

s6

s7

4

5

φ(7)=0 φ(0)=1

φ(1)=2

φ(2)=1

φ(3)=0φ(4)=0

φ(5)=−1

φ(6)=0

φ(0)=0φ(7)=0

φ(6)=0 φ(1)=0

φ(2)=0

φ(3)=0φ(4)=0

φ(5)=0

(b)(a)

Fig. 1. (a) graph with requests (solid) and flow values (b) same graph with added
augmenting arcs (dashed)

into strongly connected components CCi. Let I = (S, l,∆,R, k) be the input
to our problem. We will often refer to the components CCi as being defined
by (I, ψ, r). The following lemma summarizes which values of ψ we have to
take into account and which we will enumerate later.

Lemma 4 (Atallah, Kosaraju 1988 [1])

(1) There exists an optimal augmentation with ψ ∈ [−m− 1,m+ 1].
(2) In any optimal transport graph, at most one object is moved to its desti-

nation along the major arc.
(3) If an optimal transport graph contains a major arc, then its flow value ψ

equals either 1 or −1.
(4) Let the node set be arranged on a line. Then ψ = 0.

Hitherto no optimizing has happened yet, because we started constructing GT

by only adding arcs which will be necessary for every graph if were are given
the major arc r and ψ. Before we describe the cost function of a transport
graph, we consider which alternatives we have in order to make the graph
Eulerian. We could add further augmenting arcs between neighboring nodes of
different connected components. If we do so then we need to add pairs of anti–
parallel arcs (sa, sa+1), (sa+1, sa) or otherwise the flow criterion of lemma 3 will
be violated. We will denote these additional augmenting arcs by AC . We are
also allowed to determine a set of reload nodes B with |B| ≤ k. If a request
(sa, sc) crosses a reload node sb ∈ B then we will split the arc (sa, sc) and
replace it by (sa, sb), (sb, sc). A request can be split several times. We then
refer by P (sa, sc) to the path which corresponds to (sa, sc) ∈ R and only
uses nodes of B. By B(sa, sc) ⊆ B we denote the set of reload nodes used
to split (sa, sc). Then let AR :=

⋃
r∈R P (r). Both operations contribute to

make GT Eulerian. We can now describe the cost of a transport graph by

4

c(GT) = l(Aψ) + l(AR) + l(AC) + |B|∆. We want to find a minimum cost
transport graph. Note that γ := l(Aψ)+ l(AR) is constant for a given (I, ψ, r).

Recall that we currently assume ψ and r to be given. We will construct a
directed auxiliary graph H = (C,Er∪̇Eb). For every strongly connected com-
ponent CCi defined by (I, ψ, r), create a supernode vi ∈ C. Let v0 be the node
corresponding to the connected component CC0 containing s0. The arcs are
either colored red (e ∈ Er) or blue (e ∈ Eb). In either case an arc is weighted
by c : Er ∪ Eb → R. Starting with Er = Eb = ∅, construct H as follows.

• Add a red arc (vi, vj) with cost c(vi, vj) = 2l(sa, sb) to Er, if there exist
nodes sa, sb ∈ S which are neighbors, but in different connected components
sa ∈ CCi, sb ∈ CCj, i 6= j. If there are several candidates choose sa, sb such
that l(sa, sb) is minimal.

• Add a blue arc (vi, vj) with cost c(vi, vj) = ∆ to Eb, if there exists an arc
(sa, sc) ∈ A with sa, sc ∈ CCi which crosses a node sb ∈ S, sb ∈ CCj, i 6= j.
Note that (sa, sc) ∈ A must correspond to a request (sa, sc) ∈ R, because
only these arcs will cross a node.

Definition 5 Let G = (V,Er∪̇Eb) be a directed multigraph. A (k, r)–arbo-
rescence is an arborescence T ⊆ Er ∪ Eb rooted in r ∈ V with |T ∩ Eb| ≤ k.

Theorem 6 Let T be a (k, v0)–arborescence of H constructed as above with
cost c(T). T can be used to construct an optimal transport graph GT for
(I, ψ, r) with cost l(GT) = c(T) + γ in O(n) time. If T is minimal relative
to c then GT is minimal to l.

PROOF. Suppose we are given a (k, v0)–arborescence T of H. We will use
T in order to construct a transport graph for our robot problem. We will do
so by adding arcs to AC or splitting arcs of AR. Start in v0 and traverse the
nodes of T , e.g. by using depth–first–search. Let vi be the current node and
vj be the current son of vi. (vi, vj) ∈ T is either colored red or blue.

(1) (vi, vj) ∈ Er: By definition exist neighboring nodes sa, sb of different
connected components sa ∈ CCi, sb ∈ CCj in GT . Add two anti–parallel
arcs (sa, sb), (sb, sa) to A in order to maintain degree balancy in both
nodes. The cost of adding both arcs to GT is c(vi, vj).

(2) (vi, vj) ∈ Eb: By definition exist sa, sc ∈ CCi with (sa, sc) ∈ AR crossing
sb ∈ CCj. Add sb to B and replace (sa, sc) by (sa, sb), (sb, sc). The degree
balances of all nodes are unchanged. The cost of this operation is ∆.

In T existed a (v0, vi)–path for every vi ∈ C, and after processing T , GT

will contain a (s0, si)–path for every si ∈ S. T uses at most k blue arcs, i.e.
|B| = |T ∩Eb| ≤ k. The cost of GT is as claimed. T contains at most n

2
nodes

and we need O(n) time to traverse T .

5

Now let T be a minimum cost (k, v0)–arborescence T . Suppose GT is not op-
timal, then let G∗

T = (S, A∗, B∗) be an optimal transport graph with l(G∗
T) <

l(GT). We will construct a (k, v0)–arborescence H∗ with c(H∗) < c(T). The
nodes of any transport graph have to be degree balanced. The minimal aug-
mentation suggested by lemma 3 is unique if we split all augmenting arcs
into minimal arcs, and thus we can w.l.o.g. assume that Aψ = A∗

ψ and A∗ =
Aψ∪̇A∗

R∪̇A∗
C . Let CCi ⊆ S be the connected components of (S, Aψ ∪ R),

such that CCi corresponds to the node vi of H = (C,Er ∪ Eb). Construct
H∗ = (C,Er∗ ∪ Eb∗) by shrinking the node sets CCi of G∗

T into supernodes
vi ∈ C. Let (sa, sb) ∈ A∗ be an arc with sa ∈ CCx, sb ∈ CCy, x 6= y. Then
(sa, sb) ∈ A∗

R∪̇A∗
C . If (sa, sb) ∈ A∗

C , add a red arc (vx, vy) with cost 2l(sa, sb)
to Er∗. If (sa, sb) ∈ A∗

R, then there exists a request (sc, sd) ∈ R, sc ∈ CCz,
such that (sa, sb) ∈ P (sc, sd). Add (vz, vy) with cost ∆ to Eb∗. Looking at the
variable costs we know that

l(G∗
T) < l(GT) ⇔ l(A∗

C) + |B∗|∆ < l(AC) + |B|∆

H∗ can be assumed to be an arborescence, or otherwise we could remove a
pair of anti–parallel arcs from A∗

C and that way reduce the cost of G∗
T . Thus

c(H∗) = l(A∗
C) + |B∗|∆ < l(AC) + |B|∆ = c(T)

in contradiction to T being optimal. 2

Unfortunately we do not know how to calculate a minimum cost (k, v0)–
arborescence. In the following we will first of all look at the undirected version
H ′ of our auxilary graph H and use a known algorithm in order to calculate
a minimum cost spanning tree T ′ using at most k blue edges. After this we
will try to direct the edges of T ′ in order to construct a (k, v0)–arborescence
for H with the same cost. It is obvious that we cannot orient T ′ in all cases,
and thus we will firstly restrict our considerations on instances (I, ψ, r) with
a certain property.

2.2 (k, r)–arborescences

Let H = (C,Er∪̇Eb) be a directed multigraph and c : Er∪̇Eb → R be a weight
function on the arcs. Consider the following properties.

(H1) ∀(vi,vj)∈Er : c(vi, vj) = c(vj, vi) and ∀(vi,vj)∈Eb : c(vi, vj) = ∆ ∈ R
(H2) (vi, vj) ∈ Er ⇔ (vj, vi) ∈ Er

(H3) ∀(vj ,vi)∈Eb∀(v0,vi)–paths P in H−vj
∃vx∈P : (vx, vj) ∈ Eb

H1 requires the cost function being symmetric on the red arcs and constant on
the blue arcs. The second condition demands that the red subgraph (C,Er)

6

should be symmetric. The third one is slightly weaker. Whenever there is a
blue arc (vj, vi) and we examine any directed path from the root to vi without
using vj there must be a node vx along this path with (vx, vj) ∈ Eb.

Definition 7 Let H ′ = (C,Er′∪̇Eb′) be an undirected multigraph. A k–tree is
a spanning tree T ⊆ Er′ ∪ Eb′ with |T ∩ Eb′| ≤ k.

Proposition 8 (Gabow, Tarjan 1984 [4]) Let G = (V,E ′ = Er′ ∪ Eb′)
be an undirected multigraph and c : E ′ → R a cost function. If it exists, a
minimum cost k–tree T ⊆ E ′ can be calculated in O(|E ′| log |V |+ |V | log |V |)
time.

Lemma 9 Let H fulfill properties H1, H2, and H3, and let H ′ = (C,Er′∪Eb′)
be the underlying undirected graph of H. If T ′ is a minumum cost k–tree of H ′

then we can construct a (k, v0)–arborescence T for H with cost c(T) = c(T ′).

PROOF. Choose v0 as root and traverse T ′ using depth–first–search. Let vi
be the current node and vj be its son. (vi, vj) ∈ T ′ can either be colored red
or blue. If (vi, vj) ∈ Er′ there will always be (vi, vj) ∈ Er by property H2.
If (vi, vj) ∈ Eb′ and (vi, vj) ∈ Eb exists then we are done, too. Add (vi, vj)
to T . So suppose (vi, vj) ∈ Eb′ , but (vi, vj) /∈ Eb. Then let P the so far
constructed (v0, vi)–path on T . By property H3 there exists a node vx ∈ P
with (vx, vj) ∈ Eb. Add this arc to T . c(T) = c(T ′) by H1. We need O(m log n)
time to construct T from T ′. 2

2.3 Solving special instances

We will now identify instances of the endogenous semi–preemptive routing
problem on a circle whose auxiliary graphs H will satisfy H1 to H3. After we
are able to solve these special instances we will present an algorithm for general
instances on the circle in section 2.4. Let us at first restrict our considerations
on instances (I, ψ, r) with the following property:

(P1) 6 ∃(sa, sc) ∈ R : (sa, sc) crosses all nodes of CC0.

Lemma 10 Let (I, ψ, r) be an instance of the robot transportation problem
with fixed ψ, r and H be constructed as described above. If (I, ψ, r) fulfills P1
then H satisfies H1 to H3.

PROOF. H1 and H2 are provided by construction of H. Let (vj, vi) ∈ Eb

be an arbitrary blue arc in H and assume (vi, vj) /∈ Eb. Then let P be any
directed (v0, vi)–path on H − vj. We will show that P must contain a node

7

0v

vX

vj

vi

s0

(b)

reload from CC to CC
possible

x j

(a)

Fig. 2. (a) path P plus the extra arc (vx, vj) ∈ Eb, (b) corresponding situation on
the circle, using connected components instead of node identifyers.

vx with (vx, vj) ∈ Eb. From the proof of theorem 6 we know that we can
use P as a direction how to construct a graph GP

T = (S, AP , BP) and visit
all connected components CCq with vq lying on P . In GP

T no node of CCj is
visited, but all s′ ∈ CCi. (vj, vi) ∈ Eb was constructed, because there exists
a request (sa, sc) ∈ R with sa, sc ∈ CCj which crosses a node sb ∈ CCi.
Either s0 is crossed by (sa, sc) as well but then there exists by property P1 a
request crossing a node of CCj and thus an arc (v0, vj) ∈ Eb. Or (sa, sc) does
not cross s0. Then AP contains an arc crossing either sa or sc, because AP

contains a (s0, sb)–path. Let CCx be the connected component containing the
start and end node of this arc. By definition there exists (vx, vj) ∈ Eb. Figure
2 illustrates an example. 2

Let (I, ψ, r) be given. Using the results above we now can formulate an al-
gorithm k-RobotLight to solve instances which fulfill P1. If we combine the
results, the algorithm will need O(m log n) running time.

Algorithm 1 k-RobotLight(I, ψ, r)

Set AR := R
Calculate Aψ and connected components CCi by applying lemma 3
Construct directed auxilary graph H = (C,E = Er ∪ Eb)
Construct undirected auxilary graph H ′ = (C,E ′ = Er′ ∪ Eb′)

and c : E ′ → R+.
Calculate minimum cost k–tree T ′ of (H ′, c) by applying proposition 8.
Construct (k, v0)–arborescence T by applying theorems 9 and 10.
Construct transportation graph GT = (S, Aψ ∪ AR ∪ AC , B) by

applying theorem 6.

8

2.4 Solving general instances

The algorithm of the previous subsection can only be used for instances that
fulfill property P1. We will now solve general instances by using a dynamic
programming approach. First we identify an area surrounding the start node
that we can solve with k-RobotLight and allow the robot to use at most
k′ = 0, . . . , k reload nodes. We then will determine an area surrounding the
already solved section on the circumference. This time we will use at most
k′′ = k−k′ reload nodes, for all k′ = 0, . . . , k, and merge the partial solutions.

Let CC(s) be the index i of the connected component CCi ⊆ S of (S, Aψ∪R)
with s ∈ CCi. We call X ⊆ S consecutive if for all sa, sc ∈ X exists a walk
from sa to sc in X by using only neighboring nodes. Let X ⊆ S be consecutive
and s0 ∈ X. Then we define by CX := {s ∈ S|∃(vCC(s), vCC(t))–path in (C,Eb),
6 ∃(vCC(t), vCC(s))–path in (C,Eb) with t ∈ X ⊆ S} the nodes in S from which
we can reach a node of X just by using reloads, but not the other way round.
By SX := max{X ′ ⊆ S \ CX |s0 ∈ X ′, X ′ consecutive} we define the maximal
consecutive subset of nodes surrounding s0 that does not contain a node of
CX . Then let

llX :=

 i|si+1 ∈ SX , si /∈ SX if SX 6= S

0 if SX = S

rlX :=

 i|si−1 ∈ SX , si /∈ SX if SX 6= S

0 if SX = S

be the left resp. right limit of SX on the circumference defined by X ⊆ S. If
CX is empty then SX will be the whole line and sllX = srlX = s0.

Initially we will calculate C{s0}, S{s0}, ll{s0}, and rl{s0}. The nodes si ∈ S{s0}
surrounding s0 can be seen as the part of the circumference on which we can
use k-RobotLight, i.e. if we restrict the requests to S{s0}, such that RS{s0}

:=
R ∩ (S{s0} × S{s0}) then the modified input (S, l,∆,RS{s0}

, k, ψ, r) will fulfill
property P1. In general the definition of SX implies the following.

Note 1 If (S, l,∆,RX , k, ψ, r) fulfills P1 then (S, l,∆,RSX
, k, ψ, r) fulfills P1

as well.

The example shown in figure 3 illustrates that a limiting node sll{s0}
does

not necessarily belong to a connected component that contains an arc which
crosses the start node. But in H exists a blue (vi, v0)–path if sll{s0}

∈ CCi and
no blue (v0, vi)–path.

9

s rl{s }0s ll{s }0

s0

Fig. 3. Graph (S, Aψ ∪R) with limits and inner nodes.

Note 2 Observe that there does not exist a request (si, sj) ∈ R with si ∈
SX , sj ∈ S \ SX . (Otherwise there exists a (vCC(si), v) ∈ Eb for v ∈ CX .)

In particular no arc starts in SX and crosses sllX nor srlX . Thus the only way to
connect the components of SX with S \SX is to use anti–parallel augmenting
arcs between a) sllX and sllX+1, b) srlX and srlX−1, or c) both.

Lemma 11 Let X ⊆ S be consecutive with s0 ∈ X and SX 6= S. Then:
SSX∪{sllX

} = SSX∪{srlX
} = SSX∪{sllX

,srlX
}.

PROOF. By definition sllX , srlX ∈ CX , i.e. in (C,Eb) there exists a short-
est (vCC(sllX

), vCC(sj))–path P for some sj ∈ SX . Let (va, vb) be the final arc
of P . Then there exists a request (si, sj) ∈ R, starting in si ∈ CCa ⊆ S
crossing a node sj ∈ CCb ⊆ SX . (si, sj) must cross all nodes of SX or other-
wise exists a blue arc (vb, va) ∈ Eb in H in contradiction to sj ∈ SX . Thus
sllX , srlX are either in the same connected component or (si, sj) crosses srlX .
In both cases exists a (vCC(sllX

), vCC(srlX
))–path in (C,Eb). We can proof the

existance of a (vCC(srlX
), vCC(sllX

))–path in (C,Eb) analogously. Thus there is

a (vCC(srlX
), v

′)–path for any node v′ ∈ C in (C,Eb) iff there is a (vCC(sllX
), v

′)–
path. 2

For a given consecutive subset X ⊆ S with s0 ∈ X consider the following
inputs which we will abbreviate using the notion for intervals, and which are
illustrated in figure 4. Note that if SX 6= S these subproblems can be seen as
problems on a path.

(I [X), k, ψ, r) := (S ′, l′,∆,R′, k, ψ, r) with

S ′ := SX ∪ {s′llX , sllX , srlX}

R′ := (R∩ (SX × SX)) ∪ {(s′llX , sllX), (sllX , s
′
llX

), (s0, srlX), (srlX , s0)}

10

XX
sllX

XS

X
sllX X

srl X
sstarts’ll s’rl

X
sll X

srl X
sstart s’rl

sstart srls’ll

X

Fig. 4. The graphs corresponding to (I [X), k, ψ, r), (I [X], k, ψ, r), and (I(X], k, ψ, r)
without arcs drawn inside SX .

(I [X], k, ψ, r) := (S ′, l′,∆,R′, k, ψ, r) with

S ′ := SX ∪ {s′llX , sllX , srlX , s
′
rlX
}

R′ := (R∩ (SX × SX)) ∪ {(s′llX , sllX), (sllX , s
′
llX

), (s′llX , sllX), (sllX , s
′
llX

)}

(I(X], k, ψ, r) := (S ′, l′,∆,R′, k, ψ, r) with

S ′ := SX ∪ {sllX , srlX , s′rlX}

R′ := (R∩ (SX × SX)) ∪ {(s′rlX , srlX), (srlX , s
′
rlX

), (s0, sllX), (sllX , s0)}

In all three cases let l′ be defined as l restricted to X and with zero distance
between an extra node and its original like s′llX , sllX .

(I [X), k, ψ, r) assumes that SX and S \ SX will be connected by using anti–
parallel augmenting arcs at the counter–clockwise end of SX , (I [X], k, ψ, r)
on both ends, and (I(X], k, ψ, r) at the clockwise end of SX . Let G[X) be a
transport graph for (I [X), k, ψ, r). If we remove all arcs of P (s0, srlX) and
P (srlX , s0) then G[X) will decompose to several connected components while
s0 and sllX will remain together in the same connected component. We will
iteratively presume that either G[X), G[X], or G(X] can be used as a part
of the general optimal solution. Within the next step an extended area X ′

surrounding the already solved area X will be identified. Both X and X ′ each
have three possible outcomes which we will combine. E.g. let us assume that in
the optimal solution for (I, ψ, r) at most k′ reload nodes are used inside X and
k′′ reload nodes inside X ′. Let us further assume that this solution connects
X with S \X by using arcs between sllX , sllX+1 and that X ′ is connected to
S \ X ′ by using arcs between srlX′ , srlX′−1. Figure 5 illustrates this example.

Given a transport graph Gk′

[X) as solution for (I [X), k′, ψ, r) we fix the arcs and

11

s rl{X}s ll{X}

s ll{X’} s rl{X’}

s0

Fig. 5. The idea of the dynamic program. A dotted arc represents a set of arcs.

reload nodes of Gk′

[X) and construct a new input (I
(X′]
[X) , k

′′, ψ, r) which is the

same as (I(X′], k′′, ψ, r) but without any choices inside X.

Algorithm 2 Fix(Gk′

[X), I
[X′), ψ, r) :

Gk′

[X) = (S ′X , Aψ ∪ AR∪ AC , BX), I [X′) = (S ′X′ , l′,∆,RX ′)

For all e ∈ AC
Create an artificial request e, add e to RC

Let (sa, sc) ∈ RX ′ be a request crossing s0.
Sort sbi=1,...,q

∈ BX after the appearance on the unique (sa, sc)–path along
the circumference using only neighboring nodes.

Let R′ := (RX′ \ {(sa, sc)}) ∪ {(sa, sb1), (sb1 , sb2), . . . , (sbq , sc)} ∪ RC

Return (S ′, l′,∆,R′)

The procedure Fix uses the solution Gk′

[X) of the subproblem (I [X), k′, ψ, r)
and fixes the movement of all objects within SX ∪{sllX , srlX}. As we have seen
before the problem can be reduced to the question how to augment connected
components and where to use reload nodes. Within algorithm k-Robot we
can guarantee to find a request crossing s0 as long X S. Gk′

[X) contains a
path from s0 to sllX . After applying the procedure both nodes will always be
in the same connected component. We can assume that the sbi ’s are already
indexed, so that we do not need to care about sorting time. Thus the running
time O(|X|) of Fix depends only on the cardinality of X. The algorithms to fix
transport graphs of the other types Gk′

[X] and Gk′

(X] are constructed analogously.

Theorem 12 The algorithm k-Robot finds an optimal solution for a given
input I.

PROOF. By lemma 4 exists an optimal transport graph G∗
T using a flow

value ψ ∈ [−m− 1,m+ 1], and by lemma 1 it moves at most one r ∈ R along
the major arc. The algorithm enumerates all possible values. In the following
we assume that we know the optimal ψ and r. We will prove by induction on
the number t of while loop iterations:

12

Algorithm 3 k-Robot(I = (S, l,∆,R, k))
Set z := ∞
For all r ∈ R ∪ {∅}

For all ψ ∈ [−m− 1, . . . ,m+ 1]
If r 6= ∅ and |ψ| 6= 1

Next for
If S{s0} 6= S

For all k′ = 0, . . . , k
Gk′

[{s0}) = k-RobotLight(I [{s0}), k′, ψ, r)

Gk′

[{s0}] = k-RobotLight(I [{s0}], k′, ψ, r)

Gk′

({s0}] = k-RobotLight(I({s0}], k′, ψ, r)

Set X = {s0}, X ′ = SX∪{sllX
,srlX

}
While X 6= S

For all k′ = 0, . . . , k

Construct I
[X′)
[X) , I

[X′)
[X] , I

[X′)
(X] , I

[X′]
[X) , I

[X′]
[X] , I

[X′]
(X] , I

(X′]
[X) , I

(X′]
[X] , I

(X′]
(X]

by using Fix.
For all k′′ = 0, . . . , k − k′

Gk′′

[X′) = argmin{l(G′)|G′ ∈ {
k-RobotLight(I

[X′)
[X) , k

′′, ψ, r),

k-RobotLight(I
[X′)
[X] , k

′′, ψ, r),

k-RobotLight(I
[X′)
(X] , k

′′, ψ, r)}}
Gk′′

[X′] = argmin{l(G′)|G′ ∈ {
k-RobotLight(I

[X′]
[X) , k

′′, ψ, r),

k-RobotLight(I
[X′]
[X] , k

′′, ψ, r),

k-RobotLight(I
[X′]
(X] , k

′′, ψ, r)}}
Gk′′

(X′] = argmin{l(G′)|G′ ∈ {
k-RobotLight(I

(X′]
[X) , k

′′, ψ, r),

k-RobotLight(I
(X′]
[X] , k

′′, ψ, r),

k-RobotLight(I
(X′]
(X] , k

′′, ψ, r)}}
End for

End for
X = X ′, X ′ = SX∪{sllX

,srlX
}

End while
If l(Gk

[X]) < z

G∗ = Gk
[X], z = l(Gk

[X])

End for
End for
Return G∗

13

t = 0 : Then X = S{s0} = S, and (I, ψ, r) fulfills property P1. Gk
[X] is the

solution to the problem (I [X], k, ψ, r) which is (I, ψ, r) with additional requests
of length 0.

t → t + 1 : From iteration t we are given 3(k + 1) solutions Gk′

(X], G
k′

[X], and

Gk′

[X), for k′ = 0, . . . , k. Within iteration t + 1 we will construct 9(k + 1)

problems of the types I
[X′)
[X) , . . . , I

(X′]
(X] which can be solved by k-RobotLight

to optimality. We will exemplary assume that we know an optimal solu-
tion G′

T = (S, A′, B′) for (I, ψ, r) with (sllX′ , sllX′+1), (sllX′+1, sllX′) /∈ A′,
(srlX′ , srlX′−1), (srlX′−1, srlX′) ∈ A′, (sllX , sllX+1), (sllX+1, sllX) ∈ A′, and
(srlX , srlX−1), (srlX−1, srlX) /∈ A′. Let |B′ ∩ SX | ≤ k′, |B′ ∩ SX′| ≤ k′′ + k′.

Obviously G′
T can be used to construct an optimal transport graph G∗

T =
(SX′∪{sllX′ , srlX′ , s

′
rlX′}, A∗, B∗) for (I(X′], k′′+k′, ψ, r). Thus we have to show

that the minimum cost solution of the problem (I
(X′]
[X) , k

′′, ψ, r) is as well a

minimum cost solution for (I(X′], k′′ + k′, ψ, r). The other cases are left to the
reader. IfX = S thenGk

[X] will be the optimal transport graph for (I [X], k, ψ, r)
which is equivalent to (I, ψ, r).

Certainly Gk′′

(X′] is a feasible solution for (I(X′], k′′ + k′, ψ, r). Suppose

l(G∗
T) < l(Gk′′

(X′]). As before we can assume that l(G∗
T) = l(A∗

ψ) + l(A∗
R) +

l(A∗
C) + |B∗|∆. The first two terms are constant for a given input. Let

Y := SX′ \ SX , then we can further decompose A∗
C = (A∗

C ∩ (SX ×
SX))∪̇(A∗

C ∩ (Y × Y))∪̇{(sllX+1, sllX), (sllX , sllX+1)}. We also want to par-
tition the arc set A of Gk′′

(X′] = (SX′ ∪ {sllX′ , srlX′ , s
′
rlX′}, A,B) according

to the connected components defined by (I(X′], k′′ + k′, ψ, r), so let AC =
ASX
C ∪̇AYC ∪̇{(sllX+1, sllX), (sllX , sllX+1)} be its variable portion. Thus:

l(G∗
T) < l(Gk′′

(X′]) ⇔

(A∗
C ∩ (SX × SX)) + |B∗ ∩ SX |∆ + l(A∗

C ∩ (Y × Y)) + |B∗ ∩ Y |∆

< l(ASX
C) + k′∆ + l(AYC) + k′′∆

(1)

Construct GX = (SX ∪{s′llX , sllX , srlX}, AX , BX): Let initially BX := B∗ ∩SX
and AX := (A∗ ∩ (SX × SX)). Add anti–parallel arcs (s′llX , sllX), (sllX , s

′
llX

) to
AX . Let BXr ⊆ BX be the set of nodes lying in clockwise direction from s0

within SX . Index these nodes according to their clockwise appearance. Then
add the arcs (s0, sb1), (sb1 , sb2), . . . , (sb|BXr | , srlX), (srlX , s0). Let P be a path

from s0 to sllX in A∗. P exists, otherwise G∗
T would not be connected. For all

nodes sb ∈ BXl := BX \ BXr exists exactly one arc (sa, sc) in P crossing sb.
Replace (sa, sc) ∈ AX by (sa, sb) and (sb, sc). Now GX is a transport graph for

14

(I [X), k′, ψ, r). As Gk′

[X) is optimal for (I [X), k′, ψ, r), the cost of GX must be at

least l(GX) ≥ l(Gk′

[X)), thus l(A∗
C ∩ (SX × SX)) + |B∗ ∩ SX |∆ ≥ l(ASX

C) + k′∆.
Applying this to inequality 1 gives us:

l(A∗
C ∩ (Y × Y)) + |B∗ ∩ Y |∆ < l(AYC) + k′′∆ (2)

Construct GY = (SX′ ∪ {sllX′ , srlX′ , s
′
rlX′}, AY , BY) by using components of

Gk′

[X) within SX and components of G∗
T within Y : Let BY := (B∗ ∩ Y) ∪

(B ∩ SX), and initially let AY = (A∗ ∩ (Y × Y)) ∪ (A ∩ (SX × SX)) ∪
{(sllX , sllX+1), (sllX+1, sllX)}. Let (sa, sc) ∈ (A∗ ∩ (Y × Y)) be the arc crossing
the nodes of SX and which was split in procedure Fix. Sort all bi ∈ (B ∩ SX)
according to their appearance on the unique (sa, sc)–path along the circum-
ference. Then replace (sa, sc) by (sa, sb1), (sb1 , sb2), . . . , (sb|B∩SX | , sc). Now GY

is a transport graph for (I
(X′]
[X) , k

′′ + k′, ψ, r) and by applying inequality 2 on
its variable costs we follow

l(GY) = l(A∗
C ∩ (Y × Y)) + |B∗ ∩ Y |∆ + l(AC ∩ (SX × SX)) + |B ∩ SX |∆

= l(A∗
C ∩ (Y × Y)) + |B∗ ∩ Y |∆ + l(ASX

C) + k′∆

< l(AYC) + k′′∆ + l(ASX
C) + k′∆

in contradiction to Gk′′

(X′] being optimal for the subproblem defined by I
(X′]
[X) .

At the end of each while loop iteration we enlarge X by at least two nodes.
We can do this although Gk′′

[X′) and Gk′′

(X′] do not exactly cover the same set of
nodes. Lemma 11 assures that the new limits will be a good choice for both.

If r = ∅ then (m + 3) many ψ values will be enumerated. If r ∈ R then
ψ ∈ {−1, 1} will be enumerated (see lemma 4). Thus the two outer for–loops
will be passed m+ 3 + 2m ∈ O(m) times. Beside this the algorithm’s running
time mainly depends on the three nested loops which separately need O(n)
time, and on the time k-RobotLight needs. We can roughly estimate its worst
case time by O(n3m2 log n). 2

3 Exogenous reload stations

We are now looking at a version of the semi–preemptive routing problem in
which all reload nodes are predetermined, i.e. the set B is part of the input.
Lemma 4 still holds, and we still only have to care about how to connect
the connected components defined by (I, ψ, r). In the endogenous case we

15

could use a reload node in order to connect two components as well, but
the consequences were more complicated, because the model implied a multi–
criterium objective function.

To solve the exogenous case we construct a directed auxiliary graph H as we
did in section 2.1, but we forget about the coloring of the arcs. We are then
looking for a minimum cost arborescence rooted in v0 which can be found in
O(m+ n log n) time using a fibonacci heap implementation [2].

Theorem 13 Let T be an arborescence rooted in v0 for the uncolored directed
auxiliary graph H = (C,E) constructed as above with cost c(T). T can be used
to construct a transport graph GT for (I, ψ, r) with cost l(GT) = c(T) + γ in
O(n) time. If T is minimal relative to c then GT is minimal to l.

The proof is analog to the one of theorem 6. All possible pairs of (ψ, r) can
be enumerated in O(m) time which guides us to a overall running time of
O(m2 +mn log n).

References

[1] M.J. Atallah and S.R. Kosaraju, Efficient solutions to some transportation
problems with applications to minimizing robot arm travel, SIAM Journal
Computing. 17 (1988) 849–869.

[2] H.N. Gabow and Z. Galil and T. Spencer and R.E. Tarjan, Efficient algorithms
for finding minimum spanning trees in undirected and directed graphs.
Combinatoria. 6 (1986) 109–122.

[3] G.N. Frederickson and D.J. Guan, Nonpreemptive ensemble motion planning
on a tree. Journal of Algorithms. 15 (1993) 29–60.

[4] H.N. Gabow and R.E. Tarjan, Efficient algorithms for a family of matroid
intersection problems. Journal of Algorithms. 5 (1984) 80–131.

[5] D.J. Guan, Routing a vehicle of capacity greater than one, Discrete Applied
Mathematics. 81 (1998) 41–57.

16

