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Abstract

For a permutation group given by a set of generators, the problem of finding
“special” group members is NP-hard in many cases. E.g., this is true for the problem
of finding a permutation with a minimum number of fixed points or a permutation
with a minimal Hamming distance from a given permutation. Many of these prob-
lems can be modeled as linear optimization problems over permutation groups. We
develop a polyhedral approach to this general problem and derive an exact and
practically fast algorithm based on the branch& cut-technique.
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1 Introduction

Permutation groups can have exponential size in the number of elements of the
domain. For computational matters, they are usually specified by a small set
of generators. In fact, for every permutation group on n > 3 elements, there
exists a set of at most bn/2c generators [11]. Many natural tasks like testing
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membership and computing the order of the group can be performed in poly-
nomial time for such a representation. An algorithm for solving both problems
was presented by Sims using the concept of strong generating sets [13], but
only much later it was shown to run in polynomial time [6]. The fastest al-
gorithm devised so far runs in O(n4 logc n+mn2) time, where m denotes the
number of given generators and c is some constant [1]. Additional membership
tests only take O(n2) runtime.

On the other hand, finding “special” permutations in a permutation group
given by generators is often computationally hard. To give an example, it is
an NP-complete problem to decide the natural question whether the group
contains a fixed-point-free permutation. In the subsequent sections, we dis-
cuss the much more general problem of linear optimization over permutation
groups: we desire to minimize or maximize an arbitrary linear objective func-
tion over all permutations in the given group. Here, we identify permutations
with permutation matrices, so that a linear objective function is given by a
cost coefficient for each matrix entry.

We present a promising approach for solving this general problem that is
based on integer programming techniques. For this, we examined the poly-
tope spanned by all permutation matrices corresponding to elements of the
given permutation group. We present a complete description of this polytope
by linear constraints derived from the given set of generators. Using this de-
scription, we designed a heuristic cutting plane algorithm and embedded it
into a branch & cut-framework. We tested our algorithm in numerous experi-
ments; the results were very satisfactory in general.

There are many practical applications for this algorithm. Our main motiva-
tion for studying linear optimization over permutation groups was the desire
to find geometric symmetries in graphs for the purpose of automatic graph
drawing [5]. In this area of research, the aim is to create nice two- or three-
dimensional layouts of abstractly given graphs automatically. An important
criterion for measuring the layout quality is whether possible symmetric struc-
ture of the graph is revealed. This leads to the problem of finding an auto-
morphism of the graph with a minimum number of fixed points that satis-
fies certain additional conditions imposed by the restriction of the number
of dimensions. Unfortunately, these conditions cannot be modeled by a lin-
ear objective function, but we could solve the problem by adding new linear
constraints to the permutation polytope corresponding to the automorphism
group of the graph. Generators of this group were computed by nauty [12].

In general, if a permutation group is given as an automorphism group of some
combinatorial object, it is usually easier to compute a set of generators of
this group than to find an automorphism optimizing a given linear objective
function. This is even true in terms of theoretical complexity unless the graph-
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isomorphism problem is NP-complete. Thus it makes sense to combine our
algorithm with nauty in general.

This paper is organized as follows. In Sect. 2, we give a precise definition of our
basic problem along with some special cases and a proof of its NP-hardness. In
Sect. 3, we define and investigate the permutation polytope corresponding to
a permutation group. Finally, in Sect. 4, we describe a branch& cut-algorithm
that is based on this investigation and report experimental results.

2 The Basic Problem

In the following, we examine the problem of linear optimization over a per-
mutation group that is given by a set generators:

Problem 1 Given a finite set X, permutations π1, . . . , πm of X, and any
cost function c:X2 → R, find a permutation π ∈ (π1, . . . , πm) minimiz-
ing

∑
i∈X c(i, π(i)).

Here (π1, . . . , πm) denotes the subgroup of the symmetric group over X that
is generated by π1, . . . , πm, i.e., the group of all compositions of these per-
mutations. Problem 1 is very general. Even if we only consider binary cost
functions, i.e., if we require c(X2) ∈ {0, 1}, there are still a lot of interesting
special cases arising from special cost functions. Some of them are listed in
the following.

Problem 2 Given a finite set X, permutations π1, . . . , πm of X, and a sub-
set R of X2, find a permutation π ∈ (π1, . . . , πm) using a minimum number
of pairs in R, i.e., minimizing #{(i, j) ∈ R | π(i) = j}.

Problem 3 Given a finite set X and permutations π1, . . . , πm of X, find a
permutation in (π1, . . . , πm) with a minimum number of fixed points.

Problem 4 Given a finite set X and permutations π1, . . . , πm and π of X,
find a permutation π ∈ (π1, . . . , πm) agreeing with π on as many points as
possible, i.e., maximizing #{i ∈ X | π(i) = π(i)}.

Problem 5 Given a finite set X, permutations π1, . . . , πm of X, and any two
colorings ϕ1, ϕ2:X → N, find a permutation π ∈ (π1, . . . , πm) transferring ϕ1

to ϕ2 as well as possible, i.e., maximizing #{i ∈ X | ϕ1(i) = ϕ2 ◦ π(i)}.

Observe that Problem 2 is the general problem with binary cost function,
while Problems 3, 4, and 5 are special cases. Problem 4 searches for the closest
permutation to π with respect to the Hamming distance. This is also a special
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case of Problem 5 by setting ϕ1 = π and ϕ2 = idX and identifying the finite
set X with a subset of N.

In the remainder of this section, we show the NP-hardness of Problem 1. For
this, it obviously suffices to show that the following problem is NP-complete:

Problem 6 Given a finite set X and permutations π1, . . . , πm of X, decide
whether (π1, . . . , πm) contains a fixed-point-free permutation.

This problem is similar to the problem of deciding whether a given graph
admits a fixed-point-free automorphism, which was shown to be NP-complete
by Lubiw [9]. The NP-completeness of Problem 6 does not follow from this
result, as computing generators of the automorphism group of a graph is an
isomorphism-complete problem and hence possibly NP-complete. However,
essentially the same reduction as in the proof of Lubiw can be used for our
problem, except that we do not need edges and labels so that in our case
the proof is technically more simple. For this reason, and for the sake of
completeness, we include a full proof here.

Theorem 7 Problem 6 is NP-complete.

PROOF. The problem is in NP. For showing completeness, we use a re-
duction from 3SAT. Given an instance of 3SAT, we denote the variables
by U = {u1, . . . , up} and the clauses by C = {c1, . . . , cq}. Furthermore,
for r ∈ {0, . . . , 7} and k ∈ {1, 2, 3}, let r(k) denote the number r with the k-th
bit in the binary representation changed. An instance of Problem 6 is con-
structed as follows: we define the domain X by

X =
p⋃

i=1

{ui(0), ui(1)} ∪
q⋃

j=1

{cj(0), . . . , cj(7)} .

For every variable ui, we define two permutations πi(t) and πi(f); both are
involutions. The permutation πi(t) fixes all points except that ui(0) ↔ ui(1)
and, for every clause cj containing the variable ui without negation as the k-th
literal,

cj(r) ↔ cj(r
(k)) for all r = 0, . . . , 7 .

The permutation πi(f) is defined analogously as fixing all points except that
ui(0) ↔ ui(1) and, for every clause cj containing the negated variable ui as
the k-th literal,

cj(r) ↔ cj(r
(k)) for all r = 0, . . . , 7 .

Now consider G = (π1(t), π1(f), . . . , πp(t), πp(f)). We claim that C is satisfi-
able if and only if G contains a fixed-point-free permutation of X.

For any satisfying truth assignment T :U → {t, f}, it is readily checked that
the composition of all πi(T (ui)) for i = 1, . . . , p is a fixed-point-free permu-
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tation: on the points ui(0) and ui(1), this is obvious, as only the permuta-
tion πi(T (ui)) acts on these points in a non-trivial way. As any clause cj
contains at least one satisfied literal ui or ui, the corresponding permuta-
tion πi(T (ui)) induces a fixed-point-free permutation on {cj(0), . . . , cj(7)}.
Only the permutations corresponding to the two other literals in cj also act
on {cj(0), . . . , cj(7)} in a non-trivial way, but these change other bits in the
binary representation and hence cannot induce a fixed point.

Now let π be any fixed-point-free permutation in G. As G is Abelian and all
generators are involutions, we may assume that every generator appears at
most once in a chosen composition of π. Additionally, for every i = 1, . . . , p,
we must have either πi(t) or πi(f) in this composition, as otherwise the points
ui(0) and ui(1) would be fixed by π. For the same reason, we cannot have
both. Hence a well-defined truth assignment T :U → {t, f} is given by

T (ui) =

 t if πi(t) appears in the chosen composition of π, and

f if πi(f) appears in the chosen composition of π.

We claim that T satisfies all clauses in C. Indeed, if any clause cj would not be
satisfied by T , i.e., all literals of cj would be false, then by construction every
point in {cj(0), . . . , cj(7)} was fixed by π, contradicting our assumption. 2

As shown by this proof, Problem 6 remains NP-complete even if restricted to
permutation groups of exponent two, i.e., permutation groups containing only
involutions. Problems 1 to 3 are straightforward generalizations of Problem 6,
hence they are all NP-hard already for this special class of permutation groups.
The same can be shown for Problems 4 and 5 by similar proofs, where for
Problem 5 we may even require ϕ1(X) = ϕ2(X) = {0, 1} without loosing
NP-hardness.

3 The Permutation Polytope

Let G = (π1, . . . , πm) be a permutation group over a finite set X. Let n denote
the number of elements of X. As a first step towards a polyhedral approach
to Problem 1, we define and describe a polytope modeling G in the following.
Consider

M :G→ RX2

, M(π)ij =

 1 if π(i) = j

0 otherwise .

This is the usual way of representing permutations of X by n×n permutation
matrices. Notice that M yields a group monomorphism of G into the gen-
eral linear group GLnR. The permutation polytope PG corresponding to the
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group G is defined as the convex hull of M(G) in RX2
. A similar but much

more general class of polytopes related to real representations of finite groups
was examined by Barvinok [3].

Theorem 8 The automorphism group of PG contains G as a subgroup. It acts
transitively on the vertices of PG.

PROOF. For π ∈ G, define an automorphism ϕ′(π):RX2 → RX2
by eij 7→

eiπ(j) for all i, j ∈ X, where eij is the unit vector corresponding to the di-
mension (i, j). The map ϕ′(π) induces a permutation of the vertices of PG, as
for ψ ∈ G we have ϕ′(π)(M(ψ)) = M(π◦ψ). Thus ϕ(π) = ϕ′(π)|PG

∈ Aut PG.
This defines a group monomorphism ϕ:G → Aut PG. For the second state-
ment, let ψ1, ψ2 ∈ G. Then ϕ(ψ2 ◦ ψ−1

1 ) maps M(ψ1) to M(ψ2). 2

Corollary 9 All cones of vertices of PG are isomorphic.

Observe that the automorphism group of PG can be much larger than G. For
an example, consider the cyclic group generated by π = (1 2 . . . n). In this
case, the polytope PG is spanned by the vectors M(πi), i = 1, . . . , n, which
all use different dimensions. Thus Aut PG is the symmetric group over G
containing n! elements, while G only contains n elements.

Our next task is to give a complete description of PG in terms of linear con-
straints derived from the set of generators {π1, . . . , πm}. This generalizes the
corresponding results for the automorphism polytope [5]. We use xij to de-
note the variable for the dimension (i, j), i.e., we have xij = M(π)ij if (xij)
models π ∈ G.

First consider the special case that G is the complete symmetric group over X.
In this case, the permutation polytope PG is the well-known assignment poly-
tope for X. The latter is fully described by the constraints

∑
j∈X

xij = 1 for all i ∈ X (1)

∑
i∈X

xij = 1 for all j ∈ X (2)

and by non-negativity of all variables [4]. Its dimension is (n − 1)2 and the
number of its facets is n2 [2].

In the general case, the polytope PG is obviously a subpolytope of the assign-
ment polytope. In particular, the constraints (1) and (2) are still valid for PG.
However, this is not a complete description any more, hence we have to find
further valid constraints. As our group G is specified by a set of generators,
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we have to derive the new constraints from these generators. For this, fix any
positive integer t and define a relation on X t by

(i1, . . . , it) ∼ (j1, . . . , jt) ⇐⇒ ∃ π ∈ G:∀s ∈ {1, . . . , t}: π(is) = js .

Since G is a group, this defines an equivalence relation on X t and hence
a partitioning of X t. We call this partitioning the t-partitioning of X with
respect to G.

The t-partitioning can easily be computed from a set of generators using
disjoint dynamic sets: for this, start with sets containing single elements.
For all (i1, . . . , it) ∈ X t and all given generators π, merge the sets contain-
ing (i1, . . . , it) and (π(i1), . . . , π(it)), respectively. Clearly, the resulting parti-
tioning is the t-partitioning with respect to G.

Now let I be a multiset of elements of X2. Suppose that

{(i1, j1), . . . , (it, jt)} ⊆ I =⇒ (i1, . . . , it) 6∼ (j1, . . . , jt) . (3)

By definition, the homomorphism constraint

HI,t:
∑

(i,j)∈I

xij ≤ t− 1 (4)

is a valid inequality for the polytope PG. The following statement is a straight-
forward generalization of Theorem 1 in [5].

Theorem 10 In the affine subspace given by the equations (1), each rational
inequality valid for PG is induced by a homomorphism constraint.

PROOF. Consider an arbitrary rational inequality

H:
∑

(i,j)∈X2

aijxij ≤ t− 1

and assume that it is valid for PG. We may assume aij ∈ Z for all i, j ∈ X
and t ∈ Z. For every (i, j) ∈ X2 with aij < 0, we can replace xij by

1−
∑

j′∈X\{j}
xij′

using (1), thereby increasing the coefficient of each xij′ by −aij > 0. After
these replacements, all coefficients on the left hand side are non-negative,
hence we may assume aij ≥ 0 for all (i, j) ∈ X2. Since M(idX) ∈ PG, we
derive

∑
i∈X aii ≤ t − 1 and hence t ≥ 1. Let I be the multiset of elements
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of X2 containing the pair (i, j) exactly aij times, for all (i, j) ∈ X2. As H is
valid for PG, condition (3) holds for I and t. Obviously, we have H = HI,t. 2

Corollary 11 The permutation polytope PG is completely described by the
linear constraints (1) and (4).

Corollary 11 provides an interesting and useful link between the group struc-
ture of G and the linear structure of PG. This link is crucial for developing
an algorithm for Problem 1 using polyhedral methods, as explained in the
following section.

4 The Branch &Cut-Algorithm

In the following, we give a more detailed overview of our integer programming
approach for solving Problem 1. The proposed branch& cut-algorithm mainly
relies on Corollary 11 of the preceding section. Thereafter, we present results of
an experimental evaluation. For our implementation, we used ABACUS 2.4 [8]
in combination with CPLEX 7.1 [14].

Our starting point is the linear program modeling the assignment problem,
i.e., the linear program describing all permutations of X, equipped with the
objective function of Problem 1:

min
∑

(i,j)∈X2 c(i, j)xij

s.t.
∑

j∈X xij = 1 for all i ∈ X∑
i∈X xij = 1 for all j ∈ X

xij ≥ 0 for all (i, j) ∈ X2 .

(5)

The number of variables in this linear program is n2, but often many can be
left out; see Sect. 4.1. Having computed an optimal solution xij of (5), we check
whether this solution is feasible, i.e., whether the corresponding permutation is
a member of G; see Sect. 4.2. If it is, we have an optimal solution of Problem 1.

Otherwise, we try to separate xij from the permutation polytope, i.e., we try
to find linear constraints that are valid for the polytope PG but violated by the
given solution xij. By Corollary 11, we only have to separate homomorphism
constraints. In fact, we only consider homomorphism constraints for t = 2 in
our implementation; see Sect. 4.1 again.

If we find such violated constraints, we add them to (5) and reoptimize. Again,
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if the optimal solution is integer, we test feasibility and proceed as above.
However, we may also get a fractional solution now. In this case, we first try
to find feasible but not necessarily optimal solutions of Problem 1 by applying
a primal heuristic guided by the fractional values of the variables; see Sect. 4.3.
Afterwards, we separate and proceed as above.

If we do not find any violated constraint in some separation phase, we have to
branch, i.e., we have to split up the problem into two subproblems by choosing
a variable and setting this variable to zero in one subproblem and to one in
the other subproblem. In Sect. 4.4, we explain how to select the branching
variable and the next open subproblem to be processed.

This algorithm yields an optimal solution of Problem 1 after finite time. In
general, the runtime is exponential in n and m, however, most practical in-
stances can be solved quickly—see Sect. 4.5 for the results of an experimental
evaluation.

4.1 Separation

The core of any branch& cut-approach is the algorithm used for separation.
In our case, we have to solve the following

Problem 12 Given a permutation group G = (π1, . . . , πm) over a finite set X
and a vector x ∈ RX2

, decide whether x ∈ PG. If the answer is negative, find
a cutting plane for x, i.e., a linear inequality valid for PG but violated by x.

By a general result [7], this separation problem is polynomial time equivalent
to the corresponding optimization problem. As the latter is Problem 1, we
derive from Theorem 7 that Problem 12 is NP-hard. By Corollary 11, this is
already true for separating homomorphism constraints. In fact, as long as t is
not bounded by a very small constant, we cannot deal with homomorphism
constraints anyway, as the t-partitioning, which has to be computed before,
is defined on a set of cardinality nt. In order to implement a practically fast
branch & cut-algorithm, Problem 12 thus has to be approached heuristically.

In our experiments, we observed that the best runtimes were achieved by using
only homomorphism constraints with t = 1 or t = 2. When we also tried to
separate homomorphism constraints with t = 3 or even higher values of t, the
number of LPs and subproblems we had to solve on average only decreased
slightly, while the time spent for separation grew significantly. Only for very
few instances the runtime could be improved by considering homomorphism
constraints for t > 2.
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Hence we only consider t = 1 and t = 2 in our implementation. In both cases,
we may assume that the index set I defining the constraint contains each
element of X2 at most once. The case t = 1 is trivial: a subset I of X2 defines
a valid homomorphism constraint with right hand side zero if and only if for
all (i, j) ∈ I there is no π ∈ G mapping i to j. This can be checked easily using
the 1-partitioning. In the affirmative case, the corresponding variable xij can
be omitted from the beginning. Observe that by this the number of variables
in our LPs can often be decreased significantly.

For t = 2, the situation is much more complicated: a subset I of X2 defines a
valid homomorphism constraint with right hand side one if and only if it defines
an independent set in the conflict graph H = (X2, E), where ((i, j), (i′, j′)) ∈
E if and only if (i, i′) ∼ (j, j′) with respect to the 2-partitioning. We do not
know whether separating homomorphism constraints for t = 2 can be done
in polynomial time, but we conjecture that this problem is NP-hard. In our
implementation, we separate using a fast greedy independent set heuristic
in H.

4.2 Feasibility

The problem of deciding feasibility for an integer solution of the current LP-
relaxation is equivalent to the membership test for the group G: as we use the
constraints (1) and (2) in all our LP-relaxations, any integer solution xij gives
rise to a permutation π of X by setting π(i) = j if and only if xij = 1.

Thus, for a given permutation π of X, we must decide whether it is contained
in G, i.e., generated by the permutations π1, . . . , πm. It has long been an open
question whether this problem can be solved in polynomial time. In 1971, an
algorithm for testing membership has been devised by Sims [13]; only in 1980,
Furst et al. [6] could show that a version of this algorithm runs in O(n6+mn2)
time. For many years, the best-known algorithm needed O(n5 + mn2) time.
The currently fastest algorithm was presented by Babai et al. [1] in 1997,
reducing runtime to O(n4 logc n+mn2), where c is some constant.

This algorithm and its predecessors share the useful property that subsequent
membership tests can be carried out much more efficiently: most of the time
is needed for constructing a strong generating set with respect to some sub-
group chain of G. Once having computed this, every membership test can be
performed in O(n2) time. In our context, this fact is very important, as we
have to check many permutations in general, not only those corresponding
to integer solutions of the LP-relaxation but also those arising from primal
heuristics; see Sect. 4.3. As in general even the number of variables in our LP
is quadratic in n, a quadratic runtime for each membership test is definitely
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acceptable.

Whenever a permutation π corresponding to an integer LP-solution turns out
not to be a member of G, we add the constraint

∑
i∈X xiπ(i) ≤ |X|−2 to our LP.

This constraint is valid for the polytope PG as any two different permutations
of X must differ on at least two points of the domain. Hence no permutation
of X can violate this constraint except for π.

4.3 Primal Heuristics

In our implementation, we use the following simple but very effective primal
heuristic: we traverse all variables xij in descending order according to their
current LP-value. If π(i) and π−1(j) are undefined up to now, we set π(i) = j
and π−1(j) = i. It is easy to see that after having traversed all variables we are
left with a well-defined permutation π of X. Then we check this permutation
for membership in G; see Sect. 4.2. If successful, we compare the objective
function value of π to the one of the currently best feasible solution, and
save π if better.

An even simpler but often effective method to find good primal solutions is
to have a look at the given generators π1, . . . , πm or at certain compositions
of them. These are feasible by definition. In our implementation, we check πi

and πi ◦ . . . ◦ π1 for i = 1, . . . ,m. The permutations of the second type are
particularly useful when minimizing the number of fixed points.

4.4 Branching and Enumeration

According to our evaluation, the following branching and enumeration strat-
egy clearly outperforms all standard techniques implemented in ABACUS: as
branching variable, we always choose the one with the largest fractional LP-
value; the subproblem considered next in the enumeration tree is the one with
most variables set to one.

The aim of this strategy is to set as many variables as possible as soon as
possible. For this, notice that setting a variable xij to one implies setting all
variables xi′j with i′ 6= i and all variables xij′ with j′ 6= j to zero by (1) and (2).
More generally, it allows to set to zero any variable xi′j′ such that (i, i′) 6∼ (j, j′)
with respect to the 2-partitioning. On the other hand, setting a variable to
zero doesn’t necessarily allow to set further variables.

Our enumeration strategy is thus designed to find feasible solutions quickly.
This is also true for the depth first method. In fact, the results for depth first
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enumeration were similar to those for our strategy. On the other hand, breadth
first or combinations of breadth and depth first resulted in significantly longer
runtimes.

Our branching strategy also aims at finding feasible solutions quickly, which is
done by choosing variables with an LP-value already close to one. According to
our enumeration strategy, in the one of the two resulting subproblems consid-
ered first this variable will be set to one. For our problem, this method turned
out to be much more successful than choosing a variable with an LP-value
close to one half.

For reducing the size of the enumeration trees further, we also plan to imple-
ment the isomorphism pruning technique devised by Margot [10]. The idea
of this technique is to prevent that isomorphic subproblems in this tree are
solved more than once. This method is profitable whenever the linear model
under consideration has a large symmetry group. In our case, it is easy to
see that the group G itself is a subgroup of this symmetry group—as long as
we do not take the objective function into account. The most useful way to
embed G is to define the symmetry induced by π as mapping xij to xπ(i)π(j)

for all (i, j) ∈ X2.

As the symmetry group must also fix the objective function, it is usually trivial
for random instances. In these cases, isomorphism pruning is pointless. For
some special problems, however, the objective function is compatible with G.
E.g., this is true for minimizing the number of fixed points. In these cases, we
can apply isomorphism pruning with respect to G. The full symmetry group
of our model may be larger than G; nevertheless, it is preferable to use G
as we do not have to spend time for computing the symmetry group then,
as necessary in other applications, but get it for free as part of the problem
instance. Furthermore, we can make use of the group theoretic algorithms
needed for the membership tests anyway.

4.5 Experimental Results

In the following, we give a short summary of experimental results obtained for
our implementation of the branch& cut-algorithm presented here. All relevant
parts of this implementation have been described above; we didn’t use any
further improvements or refinements. Unless stated otherwise, we sticked to
the standard parameter setting of ABACUS. The experiments were carried out
on an Intel Pentium 4 processor with 2.80 GHz. All runtime figures are given
in CPU-seconds; they do not contain the time needed for the membership
test preprocessing, as our focus is on the branch& cut-algorithm (and our
implementation of the group theoretic algorithms is surely not state of the
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art). In all experiments, we restricted the total runtime to five CPU-minutes
per instance.

We are not aware of any other existing algorithm for linear optimization over
permutation groups. Thus we cannot present any comparison here but have
to state our results independently. Nor can we refer to any existing test set.
Instead, we had to create our own test instances, which was a delicate task
as on one hand it was hard to decide which instances were appropriate and
on the other hand the performance of the algorithm strongly depended on the
type of the chosen instances.

4.5.1 Test sets

Our aim was to create test instances randomly and automatically. The hardest
instances we could construct in this way were produced as follows: given the
domain size n, we create a permutation π over X = {1, . . . , n}. For every
point i ∈ X, we fix π(i) = i with a probability of 1 − 1√

n
. The remaining

points in X are permuted randomly by π. The reason for choosing so many
fixed points for each generator was that otherwise too many created instances
turned out to be full symmetric groups.

We produced two classes of instances: small instances were generated by b1
2

√
nc

permutations, each one created as just explained, while large instances were
generated by b2

√
nc such permutations. Creating instances in this way, we

often encountered permutation groups being full symmetric groups when re-
stricted to their orbits. Being trivial for our approach, such instances were
rejected. We created 100 instances for each n = 20, 40, 60, 80, 100 and for each
of the two classes of instances.

When dealing with permutation groups, the order of G usually has a stronger
impact on runtime than the size n of the domain and the number m of gener-
ators. The group orders of our test instances are shown in Fig. 1.

4.5.2 Objective functions

We report experimental results for two types of objective functions leading to
extremely different runtime figures. For the first type, coefficients were chosen
randomly from {0, . . . , n− 1}. For the second type, we set c(i, j) = 1 if i = j
and c(i, j) = 0 otherwise; this models the problem of minimizing the number
of fixed points arising in our original application [5]. We also experimented
with other objective functions, yielding results lying between those for the
two reported cases.
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Fig. 1. Group orders for small (left) and large (right) instances. Every cross repre-
sents a single instance. The boxes indicate the maximum size n! of a permutation
group on n elements

4.5.3 Results for random objective functions

The runtime results for random objective functions are given in Table 1 for
small instances and Table 2 for large instances. For each domain size, we list
average and maximal figures for the total runtime, for the time needed to find
an optimal solution—not necessarily knowing its optimality at this point—,
for the number of subproblems considered in the enumeration tree, including
the root problem, and for the number of LP-relaxations solved during the
optimization process.

Table 1
Results for small instances, random objective functions

runtime opttime #subprobs #LPs gap

n avg max avg max avg max avg max avg max

20 0.00 0.04 0.00 0 2.0 17 3.3 22

40 0.08 3.63 0.00 0 18.7 929 29.5 1365

60 1.50 77.23 0.18 6 158.9 7485 234.8 11230

80 8.09 4 % 1.79 130 410.4 10175 655.6 14920 0.1% 4.2 %

100 20.22 28 % 1.99 91 678.0 11015 1014.6 16092 0.5% 8.8%

Recall that we restricted runtime to five CPU-minutes per instance. The fig-
ures reported in Table 1 and Table 2 only refer to those instances that could
be solved within this limit. Where this was not the case for all 100 instances
represented by a row of the table, we state the percentage of unsolved in-
stances instead of the maximal runtime. In the last column, we then note the
average and maximal gap over all 100 instances, i.e., the quality guarantee for
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Table 2
Results for large instances, random objective functions

runtime opttime #subprobs #LPs gap

n avg max avg max avg max avg max avg max

20 0.03 1.57 0.01 1 11.9 571 14.8 667

40 1.91 116.82 0.22 14 139.4 9165 186.3 12427

60 3.03 5 % 0.03 3 50.2 4211 83.6 7044 0.1% 3.0%

80 2.96 15 % 0.96 81 25.9 1031 31.2 1440 0.5% 7.0%

100 1.39 25 % 0.05 1 3.5 65 6.2 130 1.2% 12.6%

the best found solution relative to the unknown optimal solution.

First of all, the results show that runtime varies strongly from one instance to
the other, even within the same test set. In fact, up to 28% of the instances
could not be solved to proven optimality within the time limit of five CPU-
minutes, while the remaining instances were solved within a few CPU-seconds
on average. This fact becomes obvious in Fig. 2, showing that nearly all large
instances were either solved very quickly or not solved at all. For larger groups,
the percentage of the latter increases. However, hard instances also occur for
smaller groups. For the small instances, the general picture was the same.
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Fig. 2. Runtime results for large instances by the size of the permutation group: on
the left, all instances; on the right, instances needing at most one CPU-second

Looking at the gaps, it is remarkable that even for the unsolved instances the
algorithm in general yields a feasible solution of reasonable quality. In many
cases, this solution should even be optimal—this hope is underpinned by the
fact that for the solved instances the optimal solution was usually found much
earlier than its optimality was proven: on average, this happened after 13.8%
of the total runtime.
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Comparing the results for small and large instances, it is not obvious that one
of the two classes is significantly harder: while for the latter the percentage
of unsolved instances is higher in most cases, the solved instances need less
time in general. In summary, the algorithm behaves more capricious for large
instances. Most figures in Table 2 decrease for larger n because more of the
hard instances reach the time limit then and are hence not included any more.

4.5.4 Fixed point minimization

Up to now, all reported results referred to random objective functions. In our
main application, we desire to minimize the number of fixed points. For this
special objective function, our algorithm performed dramatically better; see
Table 3 for small groups and Table 4 for large groups. A possible explanation
is that the probability of a feasible solution to be (provably) optimal is much
higher here. This is true in particular if there exist fixed-point-free permuta-
tions in G. Consequently, large instances needed much less subproblems and
LPs to be solved than small ones in general. Yet runtime for large instances is
longer, as the number of variables in the LPs that can be omitted is smaller
in this case.

Table 3
Results for small instances, minimizing the number of fixed points

runtime opttime #subprobs #LPs gap

n avg max avg max avg max avg max avg max

20 0.00 0.01 0.00 0 1.1 7 1.0 5

40 0.00 0.05 0.00 0 1.3 19 1.2 11

60 0.01 0.09 0.00 0 1.2 19 1.1 13

80 0.02 1.58 0.01 1 2.6 161 2.6 164

100 0.07 1% 0.04 4 4.8 333 4.1 287 0.0% 1.6 %

Table 4
Results for large instances, minimizing the number of fixed points

runtime opttime #subprobs #LPs gap

n avg max avg max avg max avg max avg max

20 0.00 0.09 0.00 0 1.9 63 1.9 75

40 0.02 0.42 0.00 0 2.1 57 1.6 32

60 0.04 0.06 0.00 0 1.0 1 1.0 1

80 0.07 0.13 0.00 0 1.0 1 1.0 1

100 0.13 1% 0.00 0 1.0 1 1.0 1 0.1% 10.0 %
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5 Conclusion

We presented a branch& cut-algorithm for linear optimization over permuta-
tion groups, based on an investigation of the polytope spanned by all cor-
responding permutation matrices. This polytope is hard to examine in a
traditional way, as we do not even know how to compute its dimension in
polynomial time. In particular, searching for general classes of facet-inducing
inequalities is a hopeless task. Nonetheless, we could find a complete linear
description of this polytope including a class of cutting planes that we can
separate in a fast heuristic way.

Together with other ingredients, this leads to a promising algorithm. The
runtime of this algorithm strongly depends both on the structure of the group
and the objective function, but according to our experience instances from
practice are much easier to solve in general than the instances we created for
our evaluation; see e.g. [5].

Future improvement can be expected from further examination of the class of
homomorphism constraints, in particular, from finding more comprehensive
subclasses that can still be separated quickly, even if only heuristically.

References
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