
Semi–preemptive routing on a line

Dirk Räbiger

Zentrum für Angewandte Informatik Köln, Arbeitsgruppe Faigle/Schrader
Universität zu Köln

Weyertal 80, 50931 Köln

Abstract

The problem of routing a robot (or vehicle) between n stations in the plane in order
to transport objects is well studied, even if the stations are specially arranged, e.g.
on a linear track or circle. The robot may use either all or none of the stations for
reloading. We will generalize these concepts of preemptiveness/non–preemptiveness
and emancipate the robot by letting it choose k ≤ n reload–stations.

Key words: pickup and delivery, dial–a–ride

1 Introduction

A robot is given the task of transporting m objects between n stations in the
plane. Each (heterogeneous) object is initially located at one of the stations
and has to be moved to its destination. The robot is only strong enough
to hold one object at a time. A station can be source and destination for
several objects. We focus on the special case when the n stations, given as
the set S, are arranged on a line. There are exactly two stations at both
ends of the line that have only one neighbor, any other (inner) station has
exactly two neighbors. The distance between neighboring stations i, j is given
by l(i, j) ∈ R+. If two stations are not neighbors their distance will be the
sum of the distances over the unique path using only neighboring stations.
Every object has a source si ∈ S and destination sj ∈ S assigned, and we will
call this a request (si, sj). We will often use object as a synonym for request.
The set of m requests is given as R. Every station is source or destination of a
request, otherwise any unused station will be removed. The robot starts at one
terminal station s0 ∈ S of the line and moves back and forth along the line to

Email address: raebiger@zaik.de (Dirk Räbiger).

Preprint submitted to Electronic Notes in Discr. Math. 13 February 2004
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/141726229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

pick up objects, transport them, and drop them. We want to find the minimal
motion to transport every object from the source to its destination. Typically,
one distinguishes between a non–preemptive and a preemptive version of the
problem. In the first case any object must only be dropped at its destination
station once it is picked up. The latter case allows the robot to drop the object
at any intermediate node and pick it up later. We will call this action a reload.
Both cases were studied by Atallah,Kosaraju in [1]. A nice overview of
closely related problems is given in [3].

We want to generalize the concepts of preemptiveness/non–preemptiveness
and let the robot know a number k ∈ N, k ≤ n that defines the maximum
quantity of reload–stations the transport is allowed to use. The reload–stations
may be exogenously given as a subset B ⊆ S and the robot is allowed to use
every node s ∈ B for reloads. In a different model the k reload–stations have
to be endogenously determined and the robot has to find out itself which
stations are best for reloading in order to minimize the total travel length.
We will only deal with the more interesting endogenous case in this Extended
Abstract. The exogenous case can be easily deducted from it. Moreover, we
introduce a cost value ∆ ∈ R for every reload station installed.

2 The model and its properties

The goal is to construct a directed multigraph GT = (S, E) that the robot can
take as routing advice, in the sense that it will move according to the edge set
E. If E contains an edge (si, sj) then the robot will move to j when it arrives
in i. We cannot use any graph for routing, thus GT needs certain properties
which we will specify soon. The node set S corresponds to the set of stations.
To represent this in GT , two nodes are neighboring if their corresponding
stations on the line are neighboring. The distance between nodes corresponds
to the stations on the line, and we will use the distance function l : E → R+.
We number all nodes continuously according to their appearance on the line,
thus we can say the nodes si, si+1 are neighboring for all i = 0, . . . , n − 2.

A request r1 = (sa, sc) ∈ R crosses station b if a < b < c or c < b < a. Suppose
the robot transports object r1 and b was declared to be a reload station. The
robot picks up r1 at node sa and starts moving towards sc. Along the way
it will pass sb. At this point it may drop r1 and transport any other object,
before it returns to sb and continues the transportation of r1 towards sc.

Given a directed multigraph G = (V, A), we denote by δ−(v) (δ+(v)) the
number of incoming (outgoing) edges of v ∈ V . We will now define what kind
of graphs the robot needs. It is easy to see that all the following properties are
necessary and sufficient in order to describe a feasible routing for the robot.

2

Definition 1 A transport graph GT = (S, E) has the following properties:

(1) For every (si, sj) ∈ R exists a one–to–one sequence
((sx0

, sx1
), (sx1

, sx2
), . . . , (sxp−1

, sxp
)) where ∀q=0,...,p−1 : (sxq

, sxq+1
) ∈ E,

∀q=1,...,p−1 : sxq
∈ B ⊆ S,

such that

si = sx0
< sxq

< sxq+1
< sxp

= sj if i < j, and

si = sx0
> sxq

> sxq+1
> sxp

= sj if i > j

(2) GT uses at most k reloads, i.e. |B| ≤ k.
(3) GT is degree balanced, i.e. ∀s∈S : δ+(s) = δ−(s)
(4) GT is connected

The cost of such a graph GT is l(GT) =
∑

e∈E l(e)+ |B|∆. Property 1 demands
that the movement of every object has to be performed, but it allows to split
the single edge (si, sj) into several smaller edges along the unique path from
i to j. Note that every request needs its own sequence as the robot can only
hold one item at a time. Property 2 permits to split these requests at most
k times. Property 3 is known as the Euler criterium. Together with the last
property it assures that the robot will be able to return to the start node,
because every connected component will be strongly connected.

Referring to the line, we call the section between the stations si and si+1 the
interval i, and l(i) = l(si, si+1) is the length of interval i.

Definition 2 The flow φ(i) across an interval i is defined as
φ(i) = |{(sa, sb) ∈ E|a ≤ i < b}| − |{(sb, sa) ∈ E|a ≤ i < b}|

We know that we do not have to care about the node degrees if and only if
we establish a zero flow across all the intervals.

Lemma 3 (Atallah, Kosaraju 1988 [1])
∀si∈S : δ−(si) = δ+(si) ⇔ ∀i=0,...,n−1 : φ(i) = 0.

We now want to construct a minimum cost transport graph GT . Suppose E

initially consists of all request edges (si, sj) ∈ R. Together with the properties
of l, one can deduct from Lemma 3 how to minimally augment GT in order to
degree balance all nodes si ∈ S. We do so by adding augmenting edges to E.
For any interval i we have to add φ(i) edges (si, si+1) (resp. (si+1, si)) to E if
φ(i) < 0 (resp. > 0). The cost of such an augmentation is γ :=

∑n−1

i=0 l(i)|φ(i)|.
Figure 1 illustrates an example. After adding these edges to E all nodes of GT

are degree balanced, but GT is not necessarily connected.

Note 1 For a given connected component CC ⊆ S and an arbitrary node
si ∈ CC, all requests of CC can be independently transported, such that the
robot starts and ends in si.

3

φ(1)=1 φ(2)=2 φ(3)=0 φ(4)=0 φ(6)=0φ(5)=1

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
0

s
1

s
2

s
3

s
4

s
5

s
6

φ(1)=0 φ(2)=0 φ(3)=0 φ(4)=0 φ(6)=0φ(5)=0

(a)

(b)

Fig. 1. (a) graph with request edges (solid) and flow values (b) same graph with
added augmenting edges (dashed)

In order to transport all objects of every component the robot must be able
to switch from one component to another. The robot has two choices to join
connected components. First, it could add more augmenting edges between
neighboring nodes of different connected components. Doing so, it will always
add two anti–parallel edges (si, si+1), (si+1, si), or otherwise the flow criterium
of Lemma 3 will be violated. Alternatively, the robot may use one of the
k reload stations to switch from one connected component to another and
back again. To calculate the optimal solution out of these alternatives we
will construct an auxiliary graph H, whose node set will be the connected
components of GT . We use a known algorithm to construct a spanning tree T

for H. In one special case we will need to do some local repair on T in order
to use it as direction of how to traverse the connected components of GT .

3 Endogenous reload stations

Construct an undirected auxiliary graph H = (C, Er∪̇Eb). For every strongly
connected component CCi of GT , create a supernode vi ∈ C. The edges are
either colored red (e ∈ Er) or blue (e ∈ Eb). In either case an edge is weighted
by c : Er ∪ Eb → R. Starting with Er = Eb = ∅, construct H as follows.

• Add a red edge (vi, vj) ∈ Er with cost c(vi, vj) = l(a, b) to H, if there exist
nodes sa, sb ∈ S which are neighbors, but in different connected components
sa ∈ CCi, sb ∈ CCj, i 6= j of GT .

• Add a blue edge (vi, vj) ∈ Eb with cost c(vi, vj) = ∆ to H, if there exists
an edge (sa, sc) ∈ R with sa, sc ∈ CCi which crosses a node sb ∈ S, sb ∈
CCj, i 6= j in GT .

4

We know that H contains a spanning tree on the red edges, because every
node si 6= s0 has a neighbor si−1 “towards” s0.

Definition 4 Let G = (V, Er∪̇Eb) be an undirected graph. A k–tree is a
spanning tree T ⊆ Er ∪ Eb with |T ∩ Eb| ≤ k.

Proposition 5 (Gabow, Tarjan 1984 [2]) Let G = (V, E = Er ∪ Eb) be
an undirected graph and c : E → R a cost function. If it exists, a minimal cost
k–tree T ⊆ E can be calculated in O(|E| log |V | + |V | log |V |) time.

Theorem 6 Let T be a minimal k–tree of H with cost c(T) =
∑

e∈T∩Er c(e)+
|T ∩Eb|∆. T can be used to construct an optimal transport graph G∗

T with cost
l(G∗

T) = 2
∑

e∈T∩Er c(e) + β∆ + γ in O(n log n) time, where γ is the cost to
degree balance the initial graph and

β =

|T ∩ Eb| if∆ ≥ 0

k if∆ < 0

The idea of using the tree T to construct G∗
T is the following, starting with

G∗
T = GT . Let CC0 be the connected component containing the start node s0.

Choose v0 as root and traverse T using depth-first search. Suppose vi is the
current node and vj its son. If (vi, vj) ∈ Er there exist two neighboring nodes
s ∈ CCi and t ∈ CCj. Add both edges (s, t), (t, s) to G∗

T . If (vi, vj) ∈ Eb there
is a chance that an edge starting and ending in CCi crosses a node t ∈ CCj.
In this case split the request edge at t and add t to B. Otherwise there is an
edge starting and ending in CCj that crosses a node t ∈ CCi. We can exploit
the structure of the line to show that there must be another blue edge out
of an anchestor of vj that we can use instead. In case ∆ < 0, |T ∩ Eb| < k,
we can choose any node t ∈ S \ B and add it to B. Repeating this step until
|T ∩ Eb| = k will improve the quality. If there is a transport graph D with
l(D) < l(G∗

T), we can always construct a k–tree T ′ with c(T ′) < c(T).

References

[1] M.J. Atallah and S.R. Kosaraju, Efficient solutions to some transportation
problems with applications to minimizing robot arm travel, SIAM Journal
Computing. 17 (1988) 849–869.

[2] H.N. Gabow and R.E. Tarjan, Efficient algorithms for a family of matroid
intersection problems. Journal of Algorithms. 5 (1984) 80–131.

[3] D.J. Guan, Routing a vehicle of capacity greater than one, Discrete Applied
Mathematics. 81 (1998) 41–57.

5

