
 1

Neural Network Feature Selection in Complex Trait Analysis

Lars Kaderali, ZAIK / Cologne University Bioinformatics Center (CUBIC)

Contact:

Lars Kaderali,

ZAIK/University of Cologne, Weyertal 80, 50931 Koeln, Germany

Tel ++49-221-470 6003

E-Mail kaderali@zpr.uni-koeln.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/141726226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Abstract

Neural networks are well-established tools in the pattern recognition community. They have

previously been suggested for the analysis of complex genetic traits [Lucek et al., 1998], however

with mixed results. While the method showed interesting results and even pointed to two genes

previously not identified, also some doubts were raised as to the stability of results in a later

analysis [Marinov and Weeks, 2001].

We give a brief overview of neural networks and their application to gene finding in affected-

sibling-pair studies. We then show that the method is indeed unstable, identifying different genes

and ranking them differently in multiple runs. Worse yet, we show that the method suffers from a

high prediction error when the trained network is used to predict affection status from previously

unseen marker data, giving an error rate that is higher than would be obtained from mere

guessing. An analysis of the causes is given, identifying dataset sparsity and marker

dimensionality as the two main concerns. We discuss pruning as a means to control these

problems, and then show how the method can be combined with a marker subset selection step

carried out by a genetic algorithm. Results are given on a simulated dataset.

Key Words: Pattern Classification, Complex Trait, Linear Classification, Neural Networks

 3

Introduction

The identification of susceptibility genes in complex genetic diseases poses many challenging

methodological questions. Complex traits are phenotypes that are not attributable to a single gene

locus with classical mendelian inheritance, but instead are generally believed to be influenced by

multiple interacting disease loci. In addition, environmental factors can interact with disease

genes and should ideally be considered as well in analysis [Schork, 1997].

Traditionally, genetic linkage analysis is done by considering a single putative trait locus at a

time, hoping to find the marginal individual effects. The affected-sibling-pair (ASP) method

looks at identity-by-descent (IBD) sharing of alleles in affected sibling pairs, assessing one

marker at a time and comparing expected and observed IBD sharing [Risch, 1990a,b,c].

Lucek and others [Lucek and Ott, 1997], [Lucek et al, 1998] have suggested to apply artificial

neural networks (NNs) to address the complexity stemming from interacting gene loci. Neural

networks have found wide use in statistical pattern recognition [Duda et al., 2001], with diverse

applications ranging from character recognition tasks to strategy evaluation in chess robots. NNs

are inspired by their biological counterparts in the human brain. They consist of several layers of

interconnected “neurons” , where each neuron receives input signals from the previous layer, and

passes a signal on to the next layer if the sum of the inputs received exceeds a threshold. A

dedicated input layer receives its input signals directly from the pattern to classify, and a

dedicated output layer represents the classification output. For example, a neural network to

recognize handwritten characters of size 10x10 pixels would consist of 100 input neurons, each

receiving the colour of one specific pixel as input, and 26 output neurons, with one or more

hidden layers in between. Each output neuron corresponds to one “class” , respectively, a

character from the English alphabet. If the handwritten character was an “A” , the output neuron

corresponding to “A” would emit signal 1, and all other neurons would be zero.

 4

Mathematically, each single neuron in a network calculates a function
��
������

i
ii xwf , where the

sum is over all inputs xi to the neuron and the weights wi are parameters of the network. f() is

typically chosen as a nonlinear function, such as the sigmoid.

“Training” a neural network then refers to presenting the training patterns to the input neurons,

and adjusting the weights such that the desired output is achieved at the output layer. Usually,

this is done iteratively using a gradient descent procedure on the classification error for a given

pattern, defined as the sum of the squared differences between the actual and the desired output

for each output neuron. After several iterations of training, the network is normally used to

predict classes of patterns where the output is not known.

In order to apply neural networks to affected sibling pairs, IBD sharing probabilities are

calculated for each marker and serve as inputs for the network, each input neuron corresponding

to one marker. The output neurons indicate whether the sibling pair presented is concordant

affected, or not. In typical affected sibling pair studies, only families with (at least) two affected

siblings are collected, thus concordant unaffected or discordant pairs to train the network are not

available. [Lucek et al., 1998] circumnavigate this problem by generating random data as

controls. They then train a three-layer-network on the data, where each neuron in one layer is

connected to each neuron in the next layer. They use two output neurons, one that indicates

whether the pattern is concordant affected or not (and that is assumed to depend on signal and

noise in the data), the second one being set to 1 for all patterns and assumed to “attract the noise”

only. Furthermore, for m input neurons, m neurons are used in the hidden layer. In their

setting, Lucek et al. calculate IBD sharing probabilities for each parent separately, thus each

affected sibling pair generates two training patterns for the neural network, one showing paternal,

the other maternal IBD sharing for each marker.

 5

Even though it might be interesting to use neural networks as diagnostic tools to predict

phenotypic traits given genotypic data, the key interest in ASP studies is to identify genes

conferring to disease risk. Thus, one is interested in analysing the trained network to derive

hypotheses on influences of individual genes on the trait under investigation. Lucek et al. use a

somewhat ad-hoc procedure to calculate so-called “contribution-values” , which are calculated

from the weights in the trained network and represent the influence of each individual gene on

the disease. To this end, the contribution value from input neuron i to output neuron k is

calculated by first computing

�
=

j
jkijik wwu

where the sum is over all hidden units i, wij is the weight from input unit i to hidden unit j, and

wjk is the weight from hidden unit j to output unit k. From this, the contribution value CV(i) of

input neuron i is calculated as

21)(ii uuiCV −= ,

assuming that output neuron 1 representing the affection status attracts signal and noise, and

output neuron 2 being constantly set to 1 attracts noise only, thus following the idea (signal +

noise) – noise = signal in the analysis.

[Marinov and Weeks, 2001] have remarked later that contribution values and their ranks vary

quite considerably from run to run of the neural network, raising some doubts as to the stability

of the method. Typically in neural network training, the weights are initialised randomly at the

beginning of training, thus results may depend on this random initialisation. Marinov and Weeks

show that indeed over different runs on the same data, the contribution values calculated vary

considerably, and argue that they were unable to replicate the results presented by Lucek et al. in

their paper on the same dataset. They attribute this to the error function optimised in the neural

 6

network having many local minima, in which the gradient descent performed during training gets

stuck, results thus being very sensitive to starting conditions.

Generalization and Variability

There is indeed a second problem associated with the neural network, that has not been addressed

before in this context. In order to assess the quality of a trained network, it is standard practice in

the machine learning field to split the data set available in two independent sets, and use one half

for training, the other for validation. During training, the error on the training data set is

minimized. The validation set is used to assess the performance on unseen data. Ideally, a low

training error would also yield a low error on the validation set, which is indication that the

network has indeed picked up the relevant signal contained in the data during training. If, on the

other hand, the training error is low but a high error is obtained on the validation set, this

indicates that the network has been tuned to recognize the noise during training, it has memorized

the training data, but not been able to extract meaningful signal. Only if both training and

validation error are low should an analysis of the weights in the network be undertaken to

generate hypotheses on trait genes.

As the number of available sibling pairs is small in most studies, it is tempting to use all the data

available to train the neural network. We show in the following that this leads to severe

overfitting of the network, with very poor generalization properties.

We simulated data with 100 markers on 500 sibling pairs in both training and control data. Data

were simulated with 10 markers spaced 10 cM on each of 10 chromosomes, with four genes

contributing to disease and 1 protective gene as specified in table I. No phenocopies were

introduced in the simulation, and complete penetrance was assumed. Of the 500 sibling pairs

simulated for each of training and control data, 250 pairs were concordant affected, and 250

 7

discordant. Table 2 shows the distribution of disease causes for the simulated dataset in

concordant affected pairs. The overall population frequency of the simulated trait amounts to

about 0.14%. Figure 1 shows results for a classical χ² test, which identifies genes 3 and 4 at a

significane level of 0.01, and the protective gene 5 at a significance level of 0.05. Genes 1 and 2

are not identified.

Figure 2 shows the mean squared error for 10 runs of a 3-layer-neural network on training and

validation data, with 100 input neurons, 10 hidden neurons and 2 output neurons. Simulations

were done using the Stuttgart Neural Network Simulator (SNNS), Version 4.2 [Zell et al., 2002].

Output neuron 1 was coded as +1 for concordant affected sibling pairs, and 0 for discordant pairs.

Output neuron 2 was set to constantly +1, as described by Lucek et al. Training was done using

the standard backpropagation function, with the default parameters. In contrast to the method

described by Lucek et al., we use one vector for both paternal and maternal IBD sharing,

containing for each marker the expected number of alleles shared IBD (between 0 and 2). We

chose this method as it will identify interactions between alleles inherited from different parents,

which are not found if two separate vectors are generated for paternal and maternal IBD sharing.

It can be seen immediately that even though training is very successful (with a training error

converging rapidly to zero), the validation error actually increases. This indicates that the

network is learning “noise” that is (randomly) present in the training data, but has nothing to do

with the trait and is thus not found in the validation dataset. An analysis of the contribution

values as defined by Lucek et al. confirms this suspicion. Contribution values were calculated for

the ten independent runs of the neural network. Consistent with the results presented by Marinov

and Weeks, the actual CVs and their ranks vary considerably from run to run (fig. 3).

 8

Complexity Control and Pruning

The difficulties arising as shown in the previous section stem from an overly complex decision

function with many degrees of freedom, resulting in poor generalization of the results, but also in

many local optima and bad repeatability of results. Two culprits complicate matters. One is

Bellman’s “curse of dimensionality” (too many features), the other is the “curse of dataset

sparsity” (too few samples) [Somorjai, 1993]. Typically in genetic studies, each sample

(individual or pedigree) is characterized by hundreds to thousands of markers, but only very few

samples are available, as sample acquisition is associated with significant work and cost.

To control these culprits, first of all, the complexity of the classification function must be adapted

to the sample size. It is known that three-layer neural networks can in principle express any

continuous function from input to output, given sufficient hidden neurons, proper nonlinear

activation functions and weights [Duda et al., 2001]. This expressive power comes at a price. For

our network with 100 input, 10 hidden and 2 output layer neurons there are 1020 weights to be

trained. Furthermore, assuming that each of the 100 markers in the simulated dataset either is or

is not associated with the disease, there are 2100 or approximately1030 possible combinations of

disease causes. On the other hand, only 500 training points are available, making it very probable

that the neural network picks up random noise present in the data and represents affection status

as a function of this noise. Obviously, when the trained network is then validated on an

independent set, performance will be very poor.

To complicate matters further, it should be noted that we should expect a high error for even the

perfect classifier: IBD sharing of a marker is used as an indication for disease association in ASP

studies, assuming that if a marker is associated with the disease, it will be shared IBD by affected

sibling pairs. However, on average, we would expect 25% of healthy sibling pairs to share two

alleles for any given marker identical by descent as well, and cannot distinguish these two cases.

 9

As a consequence of the arguments given above, we opted to use a two-layer network instead of

the three-layer network suggested before. Furthermore, we use only one output neuron, that is set

to +1 if the sibling pair is concordant affected, and –1 otherwise. A two-layer network

implements in principle a linear classifier (neglecting nonlinearities introduced by the networks

activation function). Viewing the input space of d markers as a d-dimensional vector space,

geometrically, such a linear classifier inserts a hyperplane into the vectorspace, such that the

concordant affected and discordant sibling pairs are on different sides of the hyperplane. Such a

hyperplane classifier can be described by a discrimimant function

() o

d

i
ii wxwxg +=

�
=1

,

where xi is the IBD score of the i-th marker of a given individual, w weighs each marker, and w0

is a bias. The goal in training then is to choose the weights w such that g(x)<0 for concordant

affected and g(x)>0 for discordant sibling pairs, and the points x with g(x)=0 form the

hyperplane. Restraining further, we want to choose the hyperplane such that g(x)=-1 for

concordant affected sibling pairs, and g(x)=+1 otherwise (note that the restriction from the

equality can be alleviated by using a sigmoid function around g(x), which however complicates

computations in the gradient descent and has not been done by the author).

By choosing ��
����=

x
y

1
and ��

��

�

	

�

�
=

dw

w

w

a
 1
0

, g(x) can be rewritten in vector form as g(x)=yta, where yt

stands for the transpose of y. Furthermore, let Y be the matrix containing the vectors yj of all

pedigrees j in its rows, and let b be the (-1,+1) column vector containing the affection status of

the pedigrees. Then, in matrix form, our goal is to find a weight vector a satisfying Ya=b. If Y

 10

were non-singular, we could write a=Y-1b and obtain a formal solution at once. However,

normally, Y is rectangular. In that case, we can solve for a using the Pseudoinverse

Y* = (Yt Y)-1 Yt

of Y, calculating a=Y* b, where Yt stands for the transpose of Y. If Yt Y is singular, we can

generalize slightly and calculate

() ,lim
1

0

* tt YYYY
−

→
Ι+= ε

ε

where I is the unit matrix with 1 on the diagonal and 0 everywhere else. It can be shown that

using the pseudoinverse in the calculation is equivalent to defining an error Err(a) = ||Ya – b||2

and minimizing Err(a), for example by a gradient descent procedure. Because the gradient of

Err(a) is

)(2)(bYaYaErr t −=∇ ,

the obvious update rule is for the weights a is

),(1 bYaYaa k
t

kkk −−=+ η

where a0 can be chosen arbitrarily, kk /1ηη = is the learning rate and 0η is any positive constant.

Our results show that even such a linear classifier suffers from the curses of dimensionality and

dataset sparsity (data not shown). It is tempting to use all the variables available for classification,

but it is known that the addition of further variables that are not linked to the trait to the optimum

set of markers will only increase variance of the prediction (Miller, 2002).

It can safely be assumed that for complex genetic traits, only a few of the markers identified will

actually be linked to the disease. One simple approach frequently taken in neural network theory

is to force many of the weights close to zero in training, thus restricting the number of input

neurons that contribute to the output computed. In standard backpropagation training as

 11

introduced by [Rumelhart and McClelland, 1986], the weight update
�

wij for the weight

connecting neurons i and j is calculated as

�
wij = ��� joi,

where � is the learning rate, oi the output from neuron i, and � j is a function of the difference

between target value and actual output of the neuron j. In addition to each update of a weight by

standard backpropagation, in weight decay [Werbos, 1988], each weight is decreases by a part d

of its old value:

�
wij(t) = ��� joi – dwij(t-1).

Thus, weights are driven to zero unless reinforced by backpropagation. Furthermore, connections

between neurons are completely removed from the network if their weight falls below a

predetermined threshold c.

We tried this with parameters d = 5*10-5 and a c = 1*10-3, again using the Stuttgart Neural

Network Simulator (SNNS) package. Both training and validation error decreased and converged

to a value of around 230. The network is pruned considerably, with about 6 connections

remaining in the network in each run. Figure 4 shows how often each marker remains in the

network in the ten runs, indicating that with several repetitions the method is able to identify trait

genes, but single runs still produce some variance. Furthermore, the method is very sensitive to

initial parameter choice. In the following, we demonstrate an alternative strategy for marker

subset selection using a genetic algorithm.

Marker Subset Selection

Genetic Algorithms are inspired by the process of biological evolution. A population of

individuals, for example neural networks, each varying somewhat from another, is used to solve a

given problem, and each is scored according to its performance on the problem, its fitness. Then,

 12

the individuals are ranked according to their fitness, and the best are retained and can reproduce –

either by accumulating some random mutations, or by mating with another individual and thus

combining properties of both. Over many generations, the population will then adapt to the

problem given, and hopefully give a good solution.

We suggest to combine a simple two-layer network with a genetic algorithm to select markers as

input for the network. Thus, instead of training one single network on the full set of all markers, a

whole population of networks is trained, each with just a few randomly chosen markers. Then,

the “best” of those networks are combined, and form the next generation, whereas the “weak

performers” die off and cannot reproduce. This is iterated over several generations, and the

lowest-error network of the final generation is analysed to gather information about causative

genes.

As the genetic algorithm requires repetitive training of many networks with different input

neuron subsets, we used the network function

() o

d

i
ii wxwxg +=

�

=1

as described above, and the matrix pseudoinverse technique to find a solution in one step. A

population of n such linear classifiers is generated, where n is the number of markers in the

dataset, and classifier i has only the i-th markers as input. The classifiers are then trained, and

each classifier i is assigned a fitness value fi by linear interpolation based on its error calculated

by ten-fold cross-validation on the training data, and the errors of the best and the worst

classifier, where the best classifier is assigned a fitness of 1, and the worst classifier a fitness of 0.

Then, each classifier is chosen for reproduction with probability

()Tf

Tf

i

i

eE

e
iP

/

/

)(= ,

 13

where the expectation ()⋅E is over the current generation and T is a control parameter loosely

referred to as the temperature, similar to the temperature in simulated annealing. Early in the

evolution, T is set high, giving roughly equal probability to all individuals and thus ensuring

genetic variability. Later on, the temperature T is decreased, thus giving the fittest individuals

best survival chances. We simply chose T=1/g, where g is the generation number.

If a classifier is chosen for reproduction, it is assigned to one of two groups with equal

probability. In the first group, asexual reproduction is simulated by introducing random mutations

to each classifier, i.e. markers are removed or added to the set of markers used by the classifier

randomly with a user-defined probability. In the second group, for each marker m separately, it is

determined which parent the offspring should match. If the parent chosen uses the marker as

input for the classifier, then the new classifier does so as well, otherwise it does not. This

procedure effectively “mixes” two classifiers by combining subsets of their inputs into a new

classifier.

It is important in the genetic algorithm as well to control for classifier complexity. By combining

classifiers and accumulating markers as inputs, the classification error on the training set will

decrease (as with more input features it is easier to separate the datapoints), however leading to

poor generalization performance. Different methods exist to control classifier complexity. One

possibility is to “penalize” overly complex classifiers by reducing their fitness dependent on the

number of input features they use. The disadvantage here is that fine-tuning is required to weigh

the two goals one against the other in the fitness function, i.e. determine by how much the fitness

should be decreased if an additional weight is used. On the other hand, this parameter can be used

to tune the sensitivity of the method.

 14

Alternatively, a pruning step as described above could be integrated, keeping weights close to

zero by reducing their value by a fraction of their old value in the gradient descent procedure, and

pruning weights if they fall below a threshold during training. The disadvantage here is that this

method works only with gradient descent training, and not the pseudoinverse technique, which

provides significant speed improvements. Furthermore, it is not immediately clear how to apply

pruning if cross-validation is used and different weights are pruned in the repetitions.

The third alternative is to adjust the probabilities in the mutation module such that adding a

marker to a classifiers input set is much less likely than removing one. We found that values of

pinsertion=0.001 and pdeletion=0.1 seemed to work well for our examples (i.e., for each marker, if the

marker is NOT in the input set of a given classifier it is added with probability pinsertion; whereas if

it already is in the marker set, then it is removed with probability pdeletion). However, different

probabilities for insertion and deletion alone will not guarantee quick convergence of the genetic

algorithm. We have thus used a combination with a penalty for network complexity in the fitness

function. For the simulated dataset, it was determined empirically that a penalty of 2 per input

neuron resulted in quick convergence and networks with about 5 input neurons.

Results

Figure 5 shows errors for a sample representative run of the genetic algorithm over 150

generations. The chromosome 5, marker 8 locus is identified immediately in the first generation,

however is replaced due to the random nature of the genetic algorithm by marker 5.9 in the

consecutive iterations, which is reverted in generation 10 where marker 5.8 is reintroduced.

Chromosome 7 marker 2 is added in generation 16 with a notable decrease in training and

validation error. Marker 10.4 is added in generation 22, and marker 7.2 replaced by 7.1 in

 15

generations 51-53. Finally, marker 2.3 is added in generation 99, after which no more changes

occur until the end of the simulation.

To asses the stability of the results, the genetic algorithm was run 10 times. All of the ten runs

identified markers 2.3, 5.8 and 7.1. Marker 10.4 was identified by 8 of the ten runs. Three runs

also had markers 3.8 and one run marker 3.6, which are not in the proximity of a disease gene.

Noteworthy, 7 of the runs produced completely identical results, all reporting markers 2.3, 5.8,

7.1 and 10.4. The remaining 3 runs each had marker 3.8, and one of them also marker 3.6 in the

resulting network.

Discussion

Our results indicate two points. First of all, we demonstrate clearly the problems resulting from

large dimensionality of the data together with small sample sizes, that pose a severe pitfall to

pattern classification tools like neural networks if applied to the analysis of genetic studies.

Secondly, we show that these problems can be controlled by taking specific design precautions,

such as limiting the complexity of the classifier and incorporating an additional marker subset

selection step as is done with the genetic algorithm.

Neural Networks hold the promise to analyse all markers simultaneously in one analysis, which

differs significantly from the current state-of-the art methods that concentrate on the effects of

single loci on the disease at a time. Even though we used only a two-layer neural network in our

analysis, such a network will consider linear combinations of markers and should thus have

higher power in detecting additive effects of multiple genes with only small individual

contributions. As it is infeasible to search all possible marker subsets due to their exponential

number, the genetic algorithm implements an efficient marker subset selection method, that

converges quickly. Most importantly, results are stable and repeatable over different runs; the

 16

marker subset selection performed by the genetic algorithm thus reduces problems stemming

from the curses of dimensionality and dataset sparsity.

Several questions remain open though. Most importantly, still no method is known to assign bias-

free significance levels to the markers selected. This could be done by estimates from computer

simulation, but a more theoretically founded framework would be highly desirable. We are

presently working on improvements in this domain.

Secondly, the method as presented makes use of only parts of the information available, and it

seems that including the additional information will ameliorate results even further. The χ²

hypothesis test makes use of knowledge about the distributions of IBD scores in sibling pairs.

Such information could be used to improve ASP classification by the network, and may also

serve as a means to assign confidence intervals to classification results. Similarly, knowledge

about genomic distances between individual markers is available, and might be usable as a means

to control noise. Further work is needed to clarify these ideas.

References

Carroll L. 2002: Genes, virus implicated in multiple sclerosis. Reuters Health, Sep. 2.
Duda RO, Hart PE, Stork DG. 2001: Pattern Classification, second edition. Wiley and Sons,

New York.
Lucek PR, Ott J. 1997: Neural Network Analysis of Complex Traits. Genet Epidemiol

14:1101-1106.
Lucek PR, Hanke J, Reich J, Solla SA, Ott J. 1998: Multi-Locus Nonparametric Linkage

Analysis of Complex Trait Loci with Neural Networks. Hum Hered 48:275-284.
Marinov M, Weeks DE. 2001: The Complexity of Linkage Analysis with Neural Networks.

Hum Hered 51:169-176.
Miller A. 2002: Subset Selection in Regression. 2nd ed., Boca Raton.
NIH, National Institute of Disorders and Stroke. 1996. Multiple Sclerosis: Hope through

research. NIH Publication No. 96-75.
Risch N. 1990a: Linkage strategies for genetically complex traits. I. Multilocus models. Am J

Hum Genet 646:229-241.
Risch N. 1990b: Linkage strategies for genetically complex traits. II. The power of affected

relative pairs. Am J Hum Genet 46:229-241

 17

Risch N. 1990c: Linkage strategies for genetically complex traits. III. The effect of marker
polymorphism on analysis of affected sib pairs. Am J Hum Genet 46:242-253.

Robertson NP, Compston DAS. 1195: Surveying multiple sclerosis in the united kingdom. J.
Neurol Neurosurg Psych 58, 2-6.

Robertson NP, Fraser M, Deans J, Claiton D and Compston DAS, 1996: Age adjusted
recurrence risks for relatives of patients with multiple sclerosis. Brain 119:449-455.

Rumelhart DE, McClelland JL. 1986 : Parallel Distributet Processing, Volume 1. MIT Press.
Sadovnick AD, Baird PA, Ward RH, 1988 : Multiple Sclerosis ; updated risks for relatives.

Am J Med Genet 29:533-541.
Sawcer, S. et al. 1996 : A genome screen in multiple sclerosis reveals susceptibility loci on

chromosome 6p21 and 17q22. Nat Genet 13:464-468.
Schork NJ. 1997: Genetics of complex disease: approaches, problems and solutions. Am J

Respir Crit Care Med 156:S103-S109
Somorjai RL, Nikulin A, 1993: The curse of small sample sizes in medical diagnosis via MR

spectroscopy. Proc Soc Magn Reson Med Twelth Annual Scientific Meeting. New York,
pp 685.

Werbos P. 1099: Backpropagation: Past and future. In Proceedings of the IEEE International
Conference on Neural Networks, p. 343-353, IEEE Press.

Zell A. et al. 2002 : SNNS – Stuttgart Neural Network Simulator, User Manual, Version 4.2,
University of Stuttgart. Available from ftp.informatik.uni-stuttgart.de.

 18

Tables and Figures

Gene Chromosome Marker Distance Probability Modus Contribution

1 1 2 5 0.01 Dominant 40%
2 2 5 1 0.1 Dominant 10%
3 5 8 2 0.05 Dominant 50%
4 7 1 0 0.005 Dominant 80%
5 10 5 5 0.3 Dominant -100%

Table I. Parameters used for simulated dataset. 10 markers evenly spaced at 10 cM were

simulated on each of 10 chromosomes. Shown are the locations of the four disease genes and one

protective gene, together with the probability of carrying the diseased allele and the contribution

of the allele to the disease phenotype.

 19

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Cases
 x x 164
x x x 44
 x x x 15
x x 13

Table II. Distribution of genetic causes in 250 concordant affected cases (training data). The

remaining 14 affected pairs were distributed over the other cases, where in 4% of the data two

siblings were both affected with different genetic causes.

 20

0

5

10

15

 M
kr

_1
.1

 M
kr

_1
.5

 M
kr

_1
.9

 M
kr

_2
.3

 M
kr

_2
.7

 M
kr

_3
.1

 M
kr

_3
.5

 M
kr

_3
.9

 M
kr

_4
.3

 M
kr

_4
.7

 M
kr

_5
.1

 M
kr

_5
.5

 M
kr

_5
.9

 M
kr

_6
.3

 M
kr

_6
.7

 M
kr

_7
.1

 M
kr

_7
.5

 M
kr

_7
.9

 M
kr

_8
.3

 M
kr

_8
.7

 M
kr

_9
.1

 M
kr

_9
.5

 M
kr

_9
.9

 M
kr

_1
0.

3

 M
kr

_1
0.

7

Figure 1. Chi-squared values for the simulated dataset. The two horizontal lines show the

significance levels for α = 1% and α = 5%, respectively. The loci on chromosomes 5 and 7 are

detected at a significance level 0.01, the locus on chromosome 10 at a significance level of 0.05,

whereas the loci on chromosome 1 and 2 are not detected.

 21

Figure 2. Sum-squared error of 10 runs of a 3-layer neural network on the simulated data. The x-

axis shows the number of training steps performed, the y-axis represents the error on training and

validation dataset. Decreasing curves correspond to training error, increasing curves to validation

error.

 22

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Marker 7.1

Marker 2.3

Marker 1.2

Marker 10.4

Marker 5.8

Figure 3. Contribution values for two sample runs on the simulated dataset. CVs for first run are

shown on X axis, for second run on Y axis. Perfect correlation between two runs would put all

points on the diagonal.

 23

0 1 2 3 4 5 6 7 8 9 10

 Mkr_1.1

 Mkr_1.2

 Mkr_2.3

 Mkr_2.6

 Mkr_2.7

 Mkr_2.8

 Mkr_2.10

 Mkr_3.6

 Mkr_3.8

 Mkr_4.10

 Mkr_5.7

 Mkr_5.8

 Mkr_5.10

 Mkr_7.1

 Mkr_7.2

 Mkr_8.4

 Mkr_8.5

 Mkr_10.4

Figure 4. Frequency of markers remaining in pruned 2-layer neural network for 10 runs on the

simulated dataset. The y-axis shows how often the respective marker was left in the network.

 24

380

390

400

410

420

430

440

450

460

470

480

490

500

510

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

Figure 5. Training and validation error of fittest individual and average training error of entire

population for genetic algorithm over 150 generations on simulated dataset. The upper dashed

curve shows the validation error of the fittest individual in each generation, the lowest curve

shows its training error. The decreasing dotted curve in the middle is the average training error of

all 100 classifiers in each generation. Note that the expected error for “guessing” would be 500.

