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Abstract. Anticipation in traffic means that drivers estimate their leaders’ velocities for future timesteps.
In the article a specific stochastic car–following model with non–unique flow–density relation is investigated
with respect to anticipatory driving. It is realized by next–nearest–neighbour interaction which leads to
large flows and short temporal headways. The underlying mechanism that causes these effects is explained
by the headways of the cars which organize in an alternating structure with a short headway following a
long one, thereby producing a strong anti-correlation in the gaps or in the headways of subsequent cars. For
the investigated model the corresponding time headway distributions display the short headways observed
in reality. Even though these effects are discussed for a specific model, the mechanism described is in
general present in any traffic flow models that work with anticipation.

PACS. 02.50.Ey Stochastic processes – 45.70.Vn Granular models of complex systems; traffic flow –
89.75.Fb Structures and organization in complex systems

1 Introduction

The basic mechanisms that are responsible for traffic flow
breakdown are still not very well understood and discussed
controversial [1–4]. One reason for it is, that the micro-
scopic models in use nowadays still have deficiencies, how-
ever it is not obvious which ones. Therefore it is not clear
whether the mechanisms of breakdown displayed by a cer-
tain model have a counterpart in reality.

Sometimes, even the inner working of those models is
not very well understood. This is true, e.g., for the models
that work with so-called anticipation [5,6]. Here, anticipa-
tion means that drivers estimate the velocity of preceding
cars for future time steps. With respect to safe car motion
this driving strategy avoids abrupt braking and therefore
leads to a stabilization of the flow in dense traffic [5]. As a
result, these models display small temporal headways that
are similar to the ones observed in reality. Although the
mechanism of stabilization of the flow seems to be neces-
sary with respect to the reproduction of real–world traffic
data [7], the changes in the model’s dynamics in conse-
quence of anticipatory driving are not known in detail.
Therefore, it is the aim of this article to clarify the role of
anticipation in microscopic traffic flow models.

This will be done for a certain well–known microscopic
traffic flow model which is described in section 2. In this
model, anticipation is introduced via next–nearest–neigh-
bour interaction. The consequences on the model’s dy-
namics is explored by simulation as well as analytical cal-
culations (cf. section 3). Leaping ahead, it is stated that
by virtue of anticipation the system organizes the head-
ways of the cars in an alternating structure which allows

for the observed small temporal headways. As will become
clear from the discussion, most of the results found in the
following should be at work in other models, too.

2 A car–following model with anticipation

As stated above, the effects of anticipation will be inves-
tigated using a specific car following–model. The model
described in [8–10] is used as reference model and is re-
ferred to as SKM in the following.

It is based on an approach by Gipps [11] and three
basic assumptions, namely

– that vehicles move collision–free,
– not faster than a maximum velocity vmax and
– individual car acceleration a and deceleration b are

bounded.

Based on the requirement of collision–freeness a safety–
condition can be derived. Assume one car (driver–vehicle
unit) with velocity v is following another car (driving with
velocity ṽ) within a distance g. Here, g is the free space
between vehicles, i.e., the distance between the cars at po-
sitions x, x̃ minus the cars’ length lcar. Safety, i.e., crash–
free motion is guaranteed if

d(v) + τv ≤ d(ṽ) + g (1)

holds, with d(v) being the braking distance needed to stop
when driving with velocity v and τ a finite reaction time.
For braking with constant deceleration b > 0, i.e., −b ≤
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Fig. 1. Visualization of the variables v, g, ṽ, g̃, v̂. All cars are
considered to have equal length lcar.

dv/dt the braking distance is given by d(v) = v2/(2b). The
equation (1) then leads to

vsafe(ṽ, g) = −bτ +
√

b2τ2 + ṽ2 + 2bg. (2)

In order to complete the definition of the model’s dy-
namics it is assumed that every car moves at the high-
est velocity compatible with the assumptions. Based on
these assumptions an update scheme can be formulated in
the manner of the well–known Nagel–Schreckenberg model
(NaSch) [12].

The SKM is defined with continuous state variables
x, v and discrete timesteps ∆t. In each timestep every car
is updated after calculating its vsafe according to the fol-
lowing scheme

vdes = min{vt + a∆t, vsafe, vmax}

vt+∆t = max{vdes − ηεa, 0} (3)

xt+∆t = xt + vt+∆t∆t.

The update (3) is done in parallel. The random fluctuation
of strength ηεa is introduced to mimic deviations from
the optimal driving strategy given by vsafe. η is a random
number uniformly distributed in the interval [0, 1] and the
parameter ε determines the fluctuation strength in units
of a.

Before introducing anticipation into the model it should
be stated that the formulation of vsafe in equation (2) dif-
fers from that given in [9]. The reason is mostly that the
calculation of the update scheme (3) becomes more easy.
However, due to its structure we could not find a proof
for crash-freeness analytically (as is possible for the origi-
nal formulation). But extensive simulations with τ ≥ ∆t 1

neither gave a hint for collisions nor had we found a crucial
difference in the model’s dynamics.

We recall that in the SKM each car only takes into
account the car in front to deduce its optimal driving
strategy. It is common experience that such assumption is
unrealistic, especially in dense traffic situations. In order
to bring anticipation into the model the update scheme
is modified by an intermediate step: Each driver predicts
the worst–case strategy vanti her predecessor will choose in
the next timestep. Assuming that there is a car in front of
the predecessor within a distance g̃ driving with velocity
v̂ (see figure 1), then

vanti = max{ṽdes − εa, 0} (4)

with

ṽdes = min{ṽ + a, ṽsafe(v̂, g̃), vmax}. (5)
1 This conditions simply states that safe driving is possible, if

the “true” reaction time, i.e., one timestep, is smaller or equal
to the reaction time each driver assumes.

The calculated vanti will then be used to determine the
safe velocity. Therefore, the safety condition equation (1)
is restated with the assumption that the leading car will
choose ṽt+∆t ≥ vanti as driving strategy,

d(v) + τv + γc(v, ṽ) ≤ d(vanti) + vantiτ + g. (6)

The function γc(v, ṽ) has been introduced to take into ac-
count “unexpected” fluctuations in the predecessor’s driv-
ing behaviour. Then, the new expression equation (6) leads
to a new expression for the safe velocity,

vsafe = − bτ

+
√

b2τ2 + v2
anti + 2b(g + vantiτ − γc(v, ṽ)). (7)

In the following,

γc(v, ṽ) = min{vanti τ, gc}, (8)

will be chosen where gc is constant. Since g+vanti−γc(v, ṽ)
can be interpreted as an effective gap geff, where equation
(8) forces geff ≥ g. The idea of the effective gap is simi-
lar to the cellular–automaton model in [5] (BL–CA). The
major difference is that in the modified SKM anticipation
enters into the model by velocity and the effective gap
(cf. equation (7)) while in the BL–CA it does just via the
latter.

Besides the new definition of vsafe the update scheme
(3) is used.

3 The role of anticipation

In this section, by means of computer simulations, the
SKM with anticipation (SKA) will be compared to the
original model. For this purpose, a fixed set of parameters
is used, namely

a = 2 m/s2 b = 8 m/s2 vmax = 35 m/s
ε = 1 gc = 1 lcar = 7 m

As time scale τ = ∆t = 1 s is chosen. With respect to
these parameters jam formation (wide moving jams) and
stable high-flow states exist in the corresponding SKM [9,
13] (cf. following subsection). Note, that the parameter −b
has the meaning of a lower bound for the braking ability
of cars which hardly occurs in the simulations. Typically,
the deceleration of the cars has values around −1.6 m/s2.

Flow–density relation

To get started both models were simulated using periodic
boundary conditions, i.e., on a one-lane loop. In order to
measure the flow-density relation the loop was initialized
homogeneously at different global densities. After relax-
ation of the system mean density 〈ρ〉, mean velocity 〈v〉
and flow 〈q〉 were measured at a fixed location using 60 s
intervals for sampling. The local density for a car n pass-
ing the counting location is defined as

ρn = 1/(gn + lcar) (9)
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Fig. 2. Plotted is the “local” fundamental diagram for the
SKM (top) and SKA (middle) as function of the density in the
loop system. At each density the loop was initialized homoge-
neously by 1000 cars. Density and flow were measured locally
after the system became stationary. Local measurment means
that the plot is obtained by mimicking a loop detector, and the
time-averaging is done over 60 s. Bottom: In the same fashion,
a sequence of such measurements on the loop at fixed density
ρ = 35km−1 is plotted for the SKA. In that region jammed
and free flow do coexist.

Comparing the flow-density relations of the models (fig-
ure 2) they both display a high-flow state and a capac-
ity drop at intermediate densities.2 The latter indicates
slow-to-start behaviour. Note that there is no explicit rule
introducing this effect and it results from the the asymme-
try in the randomization process for small speeds. As can
be seen, this mechanism is not changed by the introduc-
tion of next-nearest-neighbour interactions. Moreover, the

2 The parameters used give a fairly small value of the capac-
ity drop in the SKM. However, this is only part of the expla-
nation, more interesting is the point that the system lives on
a loop. There, the state of the system between the jams is not
the outflow from the jam, but is larger. This is because the jam
ahead tends to compress the flow a little bit, thereby increasing
flow as well as density and making the capacity drop smaller.
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Fig. 3. Space-time-diagram for a typical evolution of the SKA.
Each car is coloured by its current velocity in m/s. Initially,
there are a lot of small jams (top) that coagulate into a double
jam state (bottom). However, when waiting for a very long
time, only one wide moving jam remains.

”optimized” driving strategy even leads to a stabilization
of the high-flow branch towards higher densities compared
to the SKM as already stated.

In the closed system the jam state co–exists with the
free–flow state for densities ρ ≥ 20km−1. Time-series at a
fixed density in that regime therefore display free-flow and
jammed states alternately (figure 2). At densities where
the homogeneous free-flow state is unstable, small clusters
of cars are generated due to intrinsic fluctuations. In the
long run, this number of jams decreases until only one
jam is left (figure 3). Recalling the arguments of [9] the
jamming transition in the SKA is a phase transition and
one finds a phase-separated system at equilibrium using
periodic boundary conditions.

In [13] a classification for stochastic traffic flow mod-
els is provided based on the breakdown mechanism. To be
more precise, in the density regime where the jam solu-
tion co–exists with the high–flow state one distinguishes
two classes. Models are said to have a “stable outflow” if
intrinsic fluctuations are not able to trigger the transition
from homogeneous flow to the congested phase. With re-
spect to the chosen parameters, the SKM belongs to that
class of models. In contrast, models like the VDR-model
[14] display real metastability in that density regime and
are said to have “unstable outflow”. In figure 4 the waiting
time until the first stopped car is found is shown versus
the system’s density. For each run a system with 5000
cars was initialised homogeneously. The values presented
are means of 20 realisation per density. As can be seen, at
ρc ≈ 31km−1 this time diverges, i.e., homogeneous states
corresponding to ρ ≤ ρc are stable. These state corre-
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Fig. 4. The average break-down time tb in seconds for the
SKA. For any density, a system with 5000 cars has been ini-
tialized with the homogeneous state. After waiting for at most
106 time-steps and repeating this for 20 different realizations,
the average time to breakdown can be approximated.

spond to the high-flow branch in the flow-density relation
(figure 2) and therefore , the SKA owns the same type of
bistability [13] as the SKM does.

By virtue of the anticipatory driving strategy, the max-
imum attainable flow in the SKA is unrealistically high,
which is a known feature for some extensions of the NaSch–
model as well[7]. In that case the high flows only occur,
if anticipatory driving as defined in [5] is switched on in,
e.g. the VDR–model [14], without changing the model’s
parameters.

Even though such states only appear for special ini-
tial conditions, i.e., highly ordered homogeneous configu-
rations, modifications are necessary to use it in reasonable
applications. However, it is a different question whether
these flows can be attained in a realistic settings with
macroscopic disturbances from lane-changing, on- and off-
ramps etc. Additionally, by introducing a diversified driver
behaviour also might lower the maximum flow to realistic
values. For example this might be done is by using a dis-
tribution p(τ) for the parameter τ so that each driver has
her individual τi drawn from that distribution. Another
way of doing it is to increase gc. Nevertheless, we will not
take into account such problem since we concentrate at
discussing the effects of anticipatory driving on the SKM.

Apart from these unrealistic high flows, it can be con-
cluded that the all–over macroscopic properties of the
SKA under periodic boundary conditions (i.e., the global
fundamental diagram, the spontaneous jam formation or
the existence of compact jams) are similar to the corre-
sponding SKM.

Time–headway distribution

Several empirical studies have analyzed single vehicle data
from counting loops [15–19]. Such measurements provide
information about the microscopic structure of traffic
streams. The investigation of the corresponding observ-
ables in stochastic traffic flow models can therefore justify
their quality.

The time-headway is the microscopic analogue of the
inverse flow. In real data, it is simply measured by the
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Fig. 5. Time headway distribution for the SKM (top) and
SKA (bottom) under free-flow conditions.

time-difference th = ti−1 − ti between the times of two
cars passing the observer. Since this model has a time-
step of ∆t = 1 s, a different approach has to be used to
measure the time headway between two cars. This is done
by using the relation

th = g/v.

The closed loop still serves as the computer-experimental
setup. It is initialized at different densities and the time-
headway distribution is measured after a sufficient relax-
ation time.

In figure 5 the time-headway distribution of the free
flow phase at different densities is presented. From empir-
ical investigation it is known that in free flow extremely
small time-headways exist (tmin

h ≈ 0.2 s). Moreover, the
maximum of the distribution and its shape at short times
are independent of the density [17–19].

Figure 5 (top) shows that the original SKM is not able
to reproduce such small time-headways in the free flow
phase. There exist a sharp cut-off at th ≈ ∆t = 1 s, i.e.,
the model’s dynamics leads to vt+∆t ≤ gt. The maximum
of the distributions is located at th ≈ 1.3 s. Since in free
flow 〈v〉 ≈ 34 m/s this corresponds to 〈g〉 ≈ 41.5 m, i.e.,
the SKM owns a fix point in its dynamics (for more details
see next subsection)

In contrast, the time-headway distribution of the SKA
shows a broader peak structure (figure 5 (bottom)) and
headways noticeable smaller than 1 s exist, just as in em-
pirical observations. Even more, the distribution at short
times is independent of the density. However, the broad-
ness of the peaks is not found in real–world observations.
The occurrence of short time-headways stems from the
introduction of the velocity anticipation. Drivers can op-
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Fig. 6. Time headway distributions for the SKM (top) and
SKA (bottom) in congested flow. Headways smaller than 1 s
stem from the free flow state, their share decreases with in-
creasing density.

timize their gap to the leading vehicle since they have an
idea about its future behaviour. Smaller gaps at v ≈ vmax

than in the SKM are therefore allowed.

Moreover, the broadness of the peaks indicates that
in the SKA a range of gaps can be taken by cars driving
at v ≈ vmax in the free flow phase, i.e., there is no such
strong fixed–point in the car-following dynamics as is in
the SKM (leaping ahead, this results from the fact that
in the SKA two consecutive cars share their common gap
g + g̃). With increasing density the peak in the distribu-
tion becomes more and more pronounced and is shifted
towards smaller time-headways. The position of the peak
correspond to the mean gap, given by the initial condi-
tions, 〈g〉 = 1 / ρ − lcar. Moving towards higher densities
along the free-flow branch of the flow–density relation the
possible range of gaps between cars decreases.

Comparing the time-headway distributions in the con-
gested state (figure 6), they are for both models almost
independent of the density. The exponential decay of the
distribution results from the fact that for large headways
cars can be regarded as almost independent from each
other, implying a Poissonian distribution. They have their
maximum around th ≈ 1 s which agrees with empirical
findings. Unlike reality the peak is fixed and not as broad.

From this we conclude that concerning the dynamics
inside jams both models behave similarly.

The appearance of th ≤ 1 in the case of the SKA is due
to the experimental setup. In the closed loop the system
is separated into two phases, one wide moving jam and
a region of free-flow (figure 3). As demonstrated before,
time–headways smaller than 1 s can be found in the free–

g

t

gn
gn+1
<g>

Fig. 7. Time series of the gaps between two consecutive cars in
the modeled chain of cars in a typical simulation. The leading
cars drives at V = 15ms−1. The mean gap 〈g〉 = (gn +gn+1)/2
varies hardly, since the two cars share a common gap ∝ 1/ρ.
The gaps of two consecutive cars are clearly anticorrelated.

flow phase. Therefore, cars that are not in the jammed
state generate these time-headways. Since the number of
cars in the free phase decreases with increasing density
the weight of small time–headways also reduces.

Optimal velocity curve

Neglecting fluctuations, the optimal velocity curve (OVC)
of both models can be derived analytically. This relation is
helpful in order to characterize the microscopic structure
of the traffic phases [17–19].

The OVC of the SKM results from its safety-condition
(2), i.e.

vsafe = −bτ +
√

b2τ2 + ṽ2 + 2bg = ṽ. (10)

Equation (10) is solved by ṽ = g/τ , therefore the OVC of
the SKM reads

V SK
opt (ρ) = min

{

1

τ

(

1

ρ
−

1

ρmax

)

, vmax

}

. (11)

From equation (11) it follows that tskh = τ for the de-
terministic case. The OVC asserts the results that time-
headways smaller than ∆t can not be modeled by the SKM
since τ ≥ ∆t is required due to safety constraints and the
stochasticity leads to a lowering of 〈v〉.

Regarding the SKA two cases have to be distinguished
(cf. equation (8)). The OVC is derived from the condition

v̂ = vsafe = (12)

− bτ +
√

b2τ2 + v2
anti + 2b(g + vantiτ − γc),

with

vanti = −bτ +
√

b2τ2 + v̂2 + 2bg̃. (13)

. In the case of vanti > gc, i.e. γc = gc, equation (12) is
solved by v̂τ = (g + g̃ − gc) and the OVC reads

V f
opt(ρ) = min

{

2

τ

(

1

ρ
−

1

ρmax

−
gc

2

)

, vmax

}

, (14)

vanti > gc.
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Fig. 8. The simulations performed with the stochastic version
of the SKA and for different values of gc are in qualitative
agreement with equation (23).

If vanti < gc, i.e., γc = vanti τ the known expression of the
SKM follows,

V j
opt(ρ) = V SK

opt , vanti < gc. (15)

Therefore, in the high density regime, the SKA behaves
like the SKM as already stated with respect to the flow-
density relation.

Follow–the–leader behaviour

Finally, we investigate the differences in the follow–the–
leader behaviour between the two models. For this purpose
we use a chain of 1000 cars that follow the first car whose
speed is fixed to V ≤ vmax. The system is initialized by
all cars standing (gi = vi = 0). The zeroth car accelerates
until the constant velocity V is reached. Since then the
system can be assumed to be stationary, quantities start
to be measured once for the last car of the chain x ≥
10000 · V . Before presenting the simulation results this
set-up will be analysed more closely.

In the following just the deterministic case will be re-
garded. Then, all the speeds can be eliminated to yield
an update equation just for the gaps. In order to keep
the equations concise we adopt the following notation: If
a quantity is labeled with a prime ′ it means timestep
t + ∆t, all others are to be taken at timestep t. For the
same reason τ = 1 is used in the following.

Assuming a lead car driving at constant speed v0 =
V , the behaviour of the SKM is then determined by the
equations

v′ = v = −b +
√

b2 + V 2 + 2bg

g′ = g = g + V − v′ (16)

Equation (16) has a fixed-point at v∗ = V and g∗ = V .
Since this result can be expanded to the full chain of cars
it follows that

gn+1 = gn. (17)

0
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g m
in

gc

ε = 0.1
ε = 0.5

ε = 1

Fig. 9. Minimal gap found in simulations of the loop taking
different values for gc ([m]) and ε.

The lower index denotes the position n of the car in the
chain.

The result explains the independence of the peak in the
time–headway distribution at low densities (cf. figure 5).
Moreover, it follows that the stochasticity of the SKM is
not able to destroy the fixed–point entirely. It is worth
to say that the robustness of the fixed–point in continu-
ous car–following models is hard to overcome and causes
problems to model the synchronized state.

Now, the same situation is investigated for the SKA.
Again, the lead car drives constantly with v0 = V which is
also vanti for the first following car. Regarding the deter-
ministic case, that car then drives with v∗

1 = V and with
constant headway g∗

1 = gc. This is because

v′1 = −b +
√

(b + V )2 + 2b(g1 − gc) (18)

and

g′1 = g1 + V − v′1, (19)

whose fixed–point g′

1 = g1 ≡ g∗1 is just gc.
For the second car this procedure can be carried out

to give

g′2 = b + V + g2 −
√

b2 + V 2 + 2bg2, (20)

where the stationary state of the first car v∗

1 = V and
g∗1 = gc has been assumed. This equation has a simple
fixed–point, namely g∗

2 = V . Obviously v∗

2 = V holds
alike.

For the third car the computation leads to

g′3 = b + V + g3

−
√

b2 − 2bgc + V 2 + 2bg2 + 2bg3, (21)

and g∗3 = gc, v
∗

3 = V . Generalized, the latter equation
reads

g′n+1 = b + V + gn+1

−
√

b2 − 2bgc + V 2 + 2bgn + 2bgn+1, (22)

leading to the following expression for the stationary state
g′n = gn, vn = V :

gn+1 = −gn + gc + V. (23)
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Fig. 10. Correlation functions c1(g, g) (top) and c0(g, v) (bot-
tom) for the follow—the–leader experimental setup in the
SKA. The correlations (value on the z-axis) have been cal-
culated for each car in the chain, i.e. the value on the y-axis
correspond to the car number n.

This result, equation (23), shows that asymptotically the
gaps of the n–th and (n+1)–th car are anti-correlated. In
figure 8 time series gn vs. gn+1 are displayed for different
values of gc. With increasing gc the corresponding line
moves away from the origin, therefore the corresponding
flow decreases.

The result helps to understand the plateau structure
found in the time–headway distribution of the SKA at low
densities (cf. figure 5). With respect to equation (23) the
time–headways of two consecutive cars cover the boun-
dary–points of the interval [gc/V, 1]. Compared to the dis-
tribution of time headways measured in simulation the
lower bound will hardly be reached due to stochasticity
in the latter case. As in the SKM stochasticity is not able
to destroy the fixed–point structure of the model, but two
cars can exchange their role in that structure, i.e., two cars
share a gap given by mean density but the share between
gn and gn+1 is not fixed. Figure 7 displays a time series
of two cars sharing a common gap.

Before the correlation structure of the models is inves-
tigated in more detail, the role of gc is shown. Looking at
equation (23) one could wonder why the anticorrelation
does not lead to states with g < 0.

Assume that a car (n + 1) has closed in on its prede-
cessor n. Recalling equation (22), the gap gn+1 develops
as

g′n+1 = b + V + gn+1

−
√

b2 − 2bgc + V 2 + 2bgn + 2bgn+1.
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Fig. 11. Correlation function c∆n(g, g) for single car data mea-
sured at the motorway junction Breitscheidt. Neither the traffic
in high flow states qhf nor in synchronized states qsc show the
strong anticorrelation found in the SKA.

Setting gn+1 = g and gn ≈ V the following approximation
of g′n+1 holds,

g′n+1 = b + V + g −

√

(b + V )2(1 +
2b

(V + b)2
(g − gc)

≈ b + V + g − |b + V |

(

1 −
b

(V + b)2
(g − gc)

)

=

(

1 −
b

V + b

)

g +
b

V + b
gc (24)

Equation (24) shows, that once gn = V = const, g tends
to zero, but is finally stopped at gc. A car that starts
with g < gc is drawn towards gc, which is the fixed-point.
Therefore, setting gc = 0 safe driving can not be assured.
This will get even more clear if one determines the minimal
gap that occurs over the full range of densities dependent
on the stochastic noise strength ε and gc, cf. figure 9. On
the one hand, it can be seen clearly that the minimal gap
found increases with increasing gc. On the other hand, the
dependence on ε is not so explicit. This results from the
fact, that ε does enter the model two–fold. Once, it acts
similar as in the SKM (cf. equation (3)) but it also deter-
mines vanti. With respect to the crash–free motion it can
nevertheless been stated that there is always a minimal
g∗c which assures safe driving if gc ≥ g∗c is chosen. But,
the value of g∗

c depends on the system parameters in a
complicated way. It has to be determined by simulation.

A closer look at the correlation function between two
arbitrary observables ξ and χ at car n, n+∆n respectively,

c∆n(ξn, χn+∆n) =
〈(ξn − 〈ξn〉)(χn+∆n − 〈χn+∆n〉)〉

σn
ξ σn+∆n

χ

(25)

finally explains the effects of anticipation on the system’s
state. In equation (25) σn

ξ stands for the standard devia-
tion of observable ξ taken at car n.

In figure 10 the correlation functions c1(g, g) and c0(g, v)
are shown. In contrast to the SKM3 there exist a pla-
toon of cars behind the leading car which display a strong

3 In SKM c1(g, g) ≈ 1. The same holds for c0(g, v).
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anticorrelation between two consecutive gaps, cf. equa-
tion (23). Note, that this structure is not destroyed if the
lead car also drives stochastically around 〈vleader〉. In the
regime of strong anticorrelation c0(g, v) ≈ 0 a car is some-
how free to choose a gap g independent of the speed of the
leading car. Therefore, this state reminds one of synchro-
nized flow[1,20–22], a traffic state that mostly occurs at
bottlenecks. However, further exploration of the simulated
data show that the velocity only displays fluctuations of
strength a/2 around its mean speed 〈vleader〉, therefore
anticipation alone is not able to generate a synchronized
state. Moreover, the strong anticorrelation found in the
SKA is not present in measured data, cf. figure 11.

4 Conlusions

The effects of anticipatory driving are investigated by means
of simulation as well as analytical calculations. As a refer-
ence for comparison a well–understood traffic flow model
[8–10] was enhanced by next–nearest–neighbour interac-
tion and investigated under certain aspects. Simulation
results show that the introduction of anticipation does
not lead to changes in the mechanism that generates wide
moving jams nor does the dynamics inside a jam changes.
However, one observes a stabilization of the flow in dense
traffic, which is ”crucial to overcome the difficulties in de-
scribing the empirically observed phases and their tran-
sitions” [23]. Moreover, as one could have been expect-
ing, the “optimized” driving strategy leads to very short
temporal headways under free flow conditions. Such short
headways are also found in measurements on streets. Their
existence can be explained quite general by exploring the
mechanism that is introduced in the model by next–nearest–
neighbour interaction.

In the present article it is shown that this general
mechanism works by coupling three cars together to share
their two respective headways: if one car is fairly close
to the car in front, then its follower has to hold a dis-
tance that is roughly equal to the average speed of the car-
ensemble. Obviously, this can be generalized to many cars
in front, leading in principle to a situation that has been
envisioned already by the automobile industry: platoons of
cars that are electronically coupled to optimize the energy
consumption by driving with very small headways at very
large speeds. There, this goal is achieved by very small
reaction times of the control system, while an approach
based on the ansatz chosen for car-following with antic-
ipation just needs communication to more than one car
ahead, but more human-like reaction times. Apparently,
the model’s enlargement to next-next-nearest neighbour
interactions is methodically not such stright-forward and
analytical relations as found for the presented case are
harder to obtain. Anyway, we are sure that the mecha-
nism of anticipation can stabilize the movement of a pla-
toon consisting of several cars leading to higher attainable
flows than just looking ahead one car. Though we could
not check, we believe that also in the case of next-next-
nearest neighbour (or even further) interactions leads to

a share of the common headways but anticorrelations will
disappear.

Surprisingly, despite the fact that the approach of shar-
ing headways sounds fairly natural, it is not easy to show
that it happens in reality also. Single-car data (figure 11)
show no sign of anticorrelation in car headways, whereas
all models working with anticipation display clearly. Be-
side the SKA we investigated the BL–CA [5] as a repre-
sentative for a cellular–automaton approach in the same
way in order to confirm that assertion. Therefore, antic-
ipation alone is not able to explain all traffic states and
their microscopic behaviour found in observations.

The authors like to thank Andreas Schadschneider for
useful discussions.
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