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Abstract. The Krauss-model is a stochastic model for traÆc ow which is continuous in space. For periodic
boundary conditions it is well understood and known to display a non-unique ow-density relation (funda-
mental diagram) for certain densities. In many applications, however, the behaviour under open boundary
conditions plays a crucial role. In contrast to all models investigated so far, the high ow states of the
Krauss-model are not metastable, but also stable. Nevertheless we �nd that the current in open systems
obeys an extremal principle introduced for the case of simpler discrete models. The phase diagram of the
open system will be completely determined by the fundamental diagram of the periodic system through
this principle. In order to allow the investigation of the whole state space of the Krauss-model, appropri-
ate strategies for the injection of cars into the system are needed. Two methods solving this problem are
discussed and the boundary-induced phase transitions for both methods are studied. We also suggest a
supplementary rule for the extremal principle to account for cases where not all the possible bulk states
are generated by the chosen boundary conditions.

PACS. 02.50.Ey Stochastic processes; 45.70.Vn Granular models of complex systems, traÆc ow; 05.40.-a
Fluctuation phenomena, random processes, noise, and Brownian motion

1 Krauss-model

The number of vehicles on highways and in cities is in-
creasing each year causing vehicular traÆc to su�er more
and more from jams. The phenomena related to traÆc
jams have attracted the attention of physicists and engi-
neers since almost half a century, trying to develop models
describing the features of the real traÆc. Generally there
are two di�erent approaches: microscopic and macroscopic
[1{3]. Whereas in microscopic models di�erent vehicles
and their dynamics can be distinguished, in macroscopic
models only densities are considered, similar to hydrody-
namcis.

However, the approach of a physicist is usually quite
di�erent from that of a traÆc engineer. One of the current
interests of statistical physicists are the so called "nonequi-
librium systems". In microscopic vehicular traÆc theories,
vehicular traÆc is treated as a system of interacting parti-
cles driven far from equilibrium and o�ers the possibility
to study various fundamental aspects of the dynamics of
truly nonequilibrium systems.

Empirical observations show that the average velocity
decreases with increasing vehicle density. So the average
current (or ow), which is the product of average velocity
and density, is a function of the density. The functional re-
lation between current and density is usually called funda-

mental diagram. Its generic form can be understood easily.
For small densities all vehicles can move with their desired
velocity vmax and the current increases monotonously. For
large densities the vehicles interact with each other and
the average velocity is much smaller than in the free ow
regime. This causes a decrease of the current, with a max-
imum at an intermediate value.

The traÆc model introduced in [4{6], called Krauss-
model in the following, is based on an approach by Gipps
[7] considering the braking distance of individual cars.
Starting from the assumption of safe driving an update
scheme can be formulated in the manner of the well-known
Nagel-Schreckenberg (NaSch) model [8,9]. In the Krauss-
model | unlike the NaSch model | the state variables,
i.e. space and velocity, are chosen to be continuous. To
make the model safe, i.e. free of collisions, a safe velocity
vsafe for each car is introduced, which is calculated in ev-
ery timestep taking into account that there is a maximum
acceleration and deceleration rate for each car. The vehi-
cles will be updated in parallel corresponding to discrete
time dynamics.

The model has been designed to reproduce the empirial
�ndings in traÆc jams [10{12]:

1. There is a density regime with non-unique ow-density
relation.
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Fig. 1. Classes of qualitatively di�erent behaviour in the
Krauss-model. In class I, the acceleration a and deceleration
b are realistic and all properties 1 � 4 of jams are present. In
class II decelerations are large and the properties 1,3, and 4
of jams are not reproduced. In class III accelerations are large
and no jams exist (from [5]).

2. TraÆc jams can develop and exist under \pure" con-
ditions, i.e. in the absence of any obstacles.

3. The ux out of a jam is not maximal.
4. The outow from jams is stable.
5. The outow from jams and the velocity of the down-

stream front do not depend on the inow conditions.

These properties are displayed by the model for a certain
range of parameters. The model equations proposed in [5]
even show a much richer behaviour depending on the re-
lation between the ac{ and deceleration capabilities [5,6].
Three di�erent domains can be distinguished (see Fig. 1):

{ Class I :
{ Accelerations and decelerations are realistic and
bounded.

{ All properties of jams are modeled correctly.
{ The jamming transition is a �rst order phase tran-
sition.

{ The interactions are e�ectively long ranged.
{ Class II :

{ Decelerations are unbounded, leading to e�ectively
short ranged interactions.

{ Properties 1, 3, and 4 of jams are not reproduced.
{ The jamming transition is no phase transition, but
a crossover.

{ Class III :
{ Accelerations are unbounded.
{ No structure formation at all.

Throughout this article only models of class I will be in-
vestigated, i.e. stable jams can occur and the ow-density
relation is not unique in a certain density regime (Fig. 2).
The stability of the jams is directly related to the fact
that the outow from a jam is smaller than the maximal
possible ow [13].

Recently an alternative classi�cation of stochastic traf-
�c models with respect to two properties has been sug-
gested [14]:

{ the stability of the high-ow states.

{ the stability of the outow interface of jams.

These stability criteria were introduced recently to obtain
a clearer characterization of traÆc ow models with the
focus on their stochastic properties. The Krauss-model of
class I exhibits stable high-ow states and a stable jam in-
terface [14]. Stability of high-ow states means that the in-
trinsic stochasticity of the model is not suÆcient to cause
a transition into the jammed regime. Therefore, the dy-
namics of the Krauss-models di�ers from the VDR-model
[15,16], for which an unstable interface was found. For the
latter, the high-ow states are truly metastable, i.e. for in-
creasing system length the probability for a transition into
the jammed state becomes equal to one. In order to em-
phasize the di�erence between the nature of the high{ow
states in the two models the term bistable is used in the
context of the Krauss-model.

1.1 Dynamical equations

To derive the underlying dynamical equations, two types
of motion of vehicles are considered. The �rst type is free
motion, the second the motion of a vehicle while interac-
tion with another vehicle takes place. Corresponding to
this, two main assumptions can be made. The free motion
is bounded by some maximum velocity vmax:

v � vmax : (1)

It is assumed that the system remains free of collisions
and that a driver always chooses a velocity that does not
exceed the maximum safe velocity vsafe which guarantees
the absence of collisions:

v � vsafe : (2)

vsafe is determined from the condition that the braking
distance d(v) needed to stop when moving with velocity v
satis�es

d(vf ) + vf � � d(vl) + g : (3)

The quantity on the left side is the braking distance of
the following car (velocity vf ) including a �nite reaction
time � . This distance has to be smaller than the braking
distance of the leading car (moving with velocity vl) plus
the gap g between the vehicles. Furthermore the model
takes into account that positive and negative accelerations
are bounded:

�b �
dv

dt
� a ; with a; b > 0: (4)

It is natural to implement these restrictions using a con-
tinuous space variable, but time is discrete with timesteps
�t. From the above restrictions the dynamics of the model
can be derived.

It will be assumed that, apart from random uctua-
tions, every vehicle moves at the highest velocity compat-
ible with the restrictions stated above. In this way the
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model can be formulated immediately, giving

vsafe(t) = vl(t) +
g�vl(t)

vf (t)+vl(t)

2b +�
;

vdes(t) = minfvmax; v(t) + a�t; vsafe(t)g ;

v(t+�t) = maxf0; vdes(t)� �g ;

x(t+�t) = x(t) + v�t :

(5)

Here the gap g = xl � xf � lcar is the spatial headway
between the leading car at xl and the following car at xf ,
where lcar denotes the length of a car. vl and vf are the
velocities of leading and following cars, respectively. The
safe velocity vsafe has to be determined in accordance with
condition (3). vdes is the desired velocity representing the
wish to drive as fast as possible through the acceleration
v + a�t, but also respecting the conditions (1) and (2).
The random perturbation � > 0 has been introduced to
allow for deviations from optimal driving, where � = ��
and � is a random number uniformly distributed in the
interval [0; 1].

In the following we set �t = � = 1. The other generic
parameters used in the simulations are

a = 0:1; b = 0:6; vmax = 5; � = 1:0; lcar = 1:0 : (6)

The unit of the space coordinates is the length lcar of
one car. Another parameter is the length L of the sys-
tem which has been choosen to be equal to 2001 (if not
stated otherwise).

1.2 Characteristics of the model

For the parameters chosen in (6) the Krauss-model be-
longs to class I and exhibits a bistable region with a stable
high ow branch which implies a non-unique ow-density
relation. Fig. 2 shows a fundamental diagram for a system
corresponding to class I .

The existence of a bistable regime is related to the oc-
curance of phase separation in the system. The distribu-
tion of the gaps and velocities of a system in the jammed
state has two peaks [5], i.e. there are two groups of cars
in the system. It separates into a macroscopic jam and a
free-ow region. According to the initial conditions there
exists another system state in which cars drive with veloc-
ities close to vmax and the distribution of gaps possesses
only one peak. These states belong to the high{ow branch
in the ambiguous part of the fundamental diagram.

2 Open boundary conditions

One of the most signi�cant di�erences between systems
with open and periodic boundary conditions is the car
density �, which in a periodic system is a conserved quan-
tity. Here the density and the initial conditions (in the
bistable regime) determine the stationary state completely,
which allows to study the density-dependence of the macro-
scopic parameters. In systems with open boundary condi-
tions (OBC) one has to deal with two di�erent tuning
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Fig. 2. Fundamental diagram of the Krauss-model with pe-
riodic boundary conditions and a = 0:1, b = 0:6, vmax = 5,
� = 1:0, lcar = 1:0. The density is a mean value of densities
measured in an interval of length L

3
located in the middle of a

system of length L = 2001. The ow q is measured locally in
the middle of the system. For densities 0:1 � � � 0:14 the ow
is bistable such that a stable high ow branch can be observed.

parameters, namely the injection rate � and the extrac-
tion rate �. So the car density in the bulk will be a re-
sult of these rates and the underlying model dynamics. In
general a nontrivial density pro�le will develop, i.e. the
average density in the system will depend on the position.

The inuence of � and � on the car density implies
that quantities like bulk density1, current (ow), and the
density pro�les show a di�erent behaviour than in peri-
odic systems, which were studied extensively for cellular
automata, optimal velocity models etc. (see e.g. [1{3] and
references therein).

On the other hand, for OBC most investigations deal
with simple one-component systems, especially the asym-
metric simple exclusion process (ASEP) [17{21]. In [22]
the NaSch model with vmax > 1 was studied with OBC
and the results compared to empirical data. Special bound-
ary conditions for this case were also studied in [23] 2.
For driven lattice systems which exhibit a metastable or
bistable regime for periodic boundary conditions not much
is known about possible phase diagrams in the case of open
boundaries (see, however, [16,24]), nor have systems been
studied with stable high ow branches.

2.1 ASEP with open boundary conditions

The asymmetric simple exclusion process (ASEP) is the
simplest prototype-model of interacting systems driven far
from equilibrium. It is a generic model for studying driven
systems and boundary-induced phase transitions [25{27].

The ASEP is a discrete particle hopping model. A par-
ticle can move forward one cell with probability p if the

1 Measured by averaging over an interval of length L

3
in the

middle of a system of length L.
2 See, however, the discussion of these results in [16].
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lattice site immediately in front of it is empty. If the �rst
cell, corresponding to the left boundary3, is empty a par-
ticle will be injected there with probability �. If the last
cell is occupied the particle will be removed with proba-
bility �. By varying the tuning parameters � and �, and
therefore the densities at the boundaries, one obtains a
surprisingly rich phase diagram.

One distinguishes three di�erent phases according to
the functional dependence of the current and the corre-
sponding stationary bulk density on the system parame-
ters. In the low-density phase the current is independent
of �. Here the current is limited by the input rate � which
then dominates the behaviour of the system. In the high-
density phase the behaviour is dominated by the output
rate � and the current is independent of �. In the maxi-
mum current phase the limiting factor for the current is
the bulk rate p and the current becomes independent of
both � and �.

In [28] a nice physical picture has been developed which
explains the structure of the phase diagram not only qual-
itatively, but also quantitatively. By considering the col-
lective velocity vc = q0(�) which is the velocity of the
center of mass of a local perturbation in a homogeneous,
stationary background of density � and the shock velocity
vs =

q2�q1
�2��1

of a `domain wall' between two stationary re-

gions of densities �1 and �2, one can understand the phase
diagram of systems with unique ow-density relation from
the fundamental diagram of the periodic system [28,29].
The idea behind is that these two velocities determine if
and how a perturbation will spread through the system.
For a detailed discussion see [29].

A general valid \rule" is found for systems with unique
ow-density relations, i.e. the current always obeys an ex-
tremal current principle [28,29]:

q = max�2[�+;��] q(�) for �� > �+;

q = min�2[��;�+] q(�) for �� < �+:
(7)

�� and �+ are e�ective densities at the left and right
boundary, respectively. The principle (7) states that the
phase diagram of the open system is completely deter-
mined by the fundamental diagram q(�) of the periodic
counterpart. Moreover, it implies that two models with
di�erent microscopic dynamics, but the same fundamen-
tal diagram, will have the same phase diagram for open
boundaries. In this sense the phase diagram is indepen-
dent of the microscopic dynamics.

2.2 Krauss-model with open boundary conditions

The aim of this paper is the study of the Krauss-model
with open boundary conditions, especially obtaining its
phase diagram, and furthermore to investigate its connec-
tion to the theory of boundary-induced phase transitions
(see section 2.1). As will be shown, the choice of appropri-
ate injection/extraction strategies at the boundaries of the

3 We assume that the particles move from left to right.

system plays a crucial role. Here it should be kept in mind
that the principle (7) is formulated in terms of e�ective
boundary densities which result from these strategies.

The rules speci�ed in the following sections have to be
such that the full range of possible bulk states (compare
Fig. 2) may be reached (at least theoretically). Especially,
we are interested in states of high ow. Therefore, one
might think of a strategy to inject cars with a initial ve-
locity of vmax and injection rate �. However, this will not
lead to a crash-free motion by itself.

Since the model is known to be crash{free from the
closed system, this is somehow surprising. The reason can
be found from the fact that under open boundary condi-
tions all kind of initial situations can occur due to the
stochastic feeding of cars. For the safety of the model
quantity �(t) = g(t) � vl(t) plays a cruicial role. Its evo-
lution for the deterministic Krauss-model (� = 0) is given
by [5]

�(t+�t) � �(t)

�
1�

1

�b + 1

�
; (8)

with �b = (v + vl)=2b. Equation (8) implies that if once
� � 0 (and as a result g � vl � 0) this will hold for all
future timesteps. Safety is therefore guaranteed if �(t =
0) � 0. The latter condition is not ful�lled automatically
if cars are fed with a rate �. In simulations we found that
a car which collides with its predecessor always had �(t =
0) < 0. Note that the opposite is not true, i.e. a car that
started with negative � does not have to be involved in
a crash 4. Due to the stochastic step in the update rules
(5), � can be pushed from negative to positive values but
not the other way around. Just choosing smaller initial
velocities reduces the probability that �(t = 0) < 0 leads
to a crash (even to negligible values) but the states of high
ow will not be reached 5.

We follow two di�erent strategies of injecting cars to
overcome the mentioned problems. One strategy is based
on the following idea: If there is enough space at the be-
ginning of the system, i.e. at least one carlength lcar, cars
are injected according to the injection rate �. As a conse-
quence one has to de�ne an initial velocity vinit = vf (t =
0) that is as high as possible (since in the high ow states
the average velocity v � vmax), but keeps the system free
of crashes. The problem here is, when using the formula
for vsafe from (5), that a velocity vf is already needed for
its calculation. Moreover one has to deal with the cases in
which �(t = 0) � 0. Using the safety condition (3) we will
derive a rule to determine vinit in section 3.

The other strategy investigated goes the opposite way.
The high-current states of the Krauss-model are charac-
terized by velocities close to vmax and more or less iden-
tical gaps g � lcar. This property can be used to de�ne a
rule which mimics the structure of the high current states,

4 From (8) follows that a crash is most probable for slow
moving leaders and small ginit.
5 That is another di�erence to the NaSch-like models in

which the choice of v � g always leads to collision-free mo-
tion.
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i.e. one de�nes a minimal gap ginit > lcar that has to be
respected at the left boundary and injects all cars with
vinit = vmax. It should be noted that in this case the injec-
tion rate does not equal � anymore, but becomes a mono-
toneously increasing function of �. Details and simulation
results are given in section 4.

3 An inow-oriented injection rule

In this section an injection method is introduced which is
similar to that for the ASEP. Cars are injected into the
system with inow rate � whenever there is at least one
carlength space in front of the system (ginit � lcar), using
any safe initial velocity vinit (depending on the system
con�guration). However, in order to reach large currents,
cars have to be injected with the maximum safe velocity
possible.

The rule, as stated up to now, leads the condition
�(t = 0) = �init < 0 which can cause accidents as seen
in section 2.2. Since we want to investigate a naive gen-
eralisation of the injection strategy of the ASEP and to
compare the results to it, it is necessary to think about
a rule which is mainly oriented on �. Moreover, in real-
world applications one has to understand the behaviour
of such a rule, since cars usually are inserted according to
a given inow at a link instead of particular strategies.

3.1 Boundary rules (rule 1)

In order to complete the rule we have to �nd the maximum
safe velocity vinit possible. We can not just use (3) since
vf is not known. Moreover, the velocity has to be such
that the dynamics of the system allows the transition from
�init < 0 to � � 0. As a solution we do not look only at
the �rst car in the system, but also at its predecessor.

The open boundary conditions for the inow{oriented
rule are de�ned in the following way:

Step 1: Injection
If there is at least one car length free space at the begin-
ning of the system, with probability � we inject a car with
velocity vinit:

vinit = min

(
vmax;

r
2bg +

b

bl
v2l + b2 � b

)
: (9)

This velocity is a function of vmax, the velocity vl of the
leading car, the deceleration rate b and an upper bound
bl for the actual deceleration of the leading car. The lat-
ter is calculated using the velocity of the car in front of
the leading car and therefore, gives a bound for the worst
case, i.e., the maximum deceleration of the leader in the
next timestep.

Step 2: First update
Performing the �rst update of a car injected at the cur-
rent timestep, we de�ne an own rule. Given vinit of step 1
we follow the update rules of the Krauss-model in case
of the leading car moving with vl > vcrit, where vcrit is a

constant velocity depending on vmax. If vl � vcrit, vsafe is
set equal to the gap g instead of using (5). This de�nes a
cuto� for which �init < 0 still leads to safe driving while
keeping ginit close to 1 for high values of �.

Step 3: Extraction
With probability 1� � a block is added at the end of the
road which causes the car at the end of the system to
slow down. Otherwise, with probability �, the cars simply
move out of the system.

Step 4: Update
Update with the Krauss-model update rules (see section 1).

In the following we use parameters as given in (6) and
vcrit = 1:6, ginit = lcar = 1:0. The value for vcrit has been
determind by means of simulation. Note that ginit is the
space that has to be free at least at the left border of the
system.

3.2 Fundamental diagram

In contrast to periodic boundary conditions, the funda-
mental diagram q(�) is not easy to �nd for the full range
of bulk densities. While for a closed system the density
� is given and conserved in open system it is a quantity
that results from the parameters � and �. Their inuence
on � or q is non{linear. Another diÆculty is that global
density and current should be measured in the stationary
state which is reached after quite long simulation times
for certain values of (�; �). A detailed discussion can be
found in [30]. Because of the complex relation between
(�; �) pairs and � or q, one can not �nd a value for the q
for each � and vice versa. It should be mentioned that �
and q are rather sensitive to changes in � or � [30].

Our strategy in �nding the fundamental diagram is as
follows: For each pair of parameters (�; �), the simulation
has to be run until the stationary state is reached. Then,
the ow q and bulk density � are measured in the middle
of the system. For the latter this has been done in an
interval of length L

3 . These two values �x a point in the
�{q plane. To make the data more reliable and to reduce
the inuence of noise, this has been repeated for several
times with di�erent random seeds.

In Fig. 3 the fundamental diagram of a system with
periodic boundary conditions and the same system with
open boundary conditions are compared. The high-ow
branch in the bistable density regime does not exist in
this case. There are also states missing in the fundamental
diagram of the system with open boundary conditions, i.e.,
certain densities can not be generated by the boundary
rules de�ned in section 3.1.

3.3 Phase diagram

The phase diagram as a function of � and � can be ob-
tained by studying the density pro�les of systems in the
stationary state. It is easy to distinguish between low- and
high-density phases. To �nd the maximum current phase
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Fig. 3. Comparison between the fundamental diagram of the
open system (�) and the one from the closed system (Æ). The
points are obtained from density pro�les in case of the open
system.

one should compare the (�, q) pair of the system with the
fundamental diagram of the same system with periodic
boundary conditions.

Using the density pro�les for systems with �; � 2 [0; 1]
with increments of 0:02, we have drawn a phase diagram in
Fig. 4. Di�erent phases, phase boundaries and the typical
density pro�les for each phase are shown. The maximum
current phase with q about 0:5 has been observed for sys-
tem with open right boundary (� = 1) and injection rate
between � = 0:48 and � = 0:57 (broken line). Note that
all stable high-ow states in the bistable region correspond
to some point in the maximal current phase.

This phase diagram looks di�erent from phase dia-
grams of similar models since one �nds two di�erent low
density regimes. Therefore, by varying � with � kept con-
stant, one observes a reentrance transition for large values
of �. It is natural to assume that this is related to the spe-
cial choice of input and output strategies. To verify this,
later on (Sec. 4) a di�erent injection strategy will be stud-
ied. The reason why this phase diagram looks unusual can
be understood studying the relations between �, � and
dynamic parameters of the system (see Sec. 3.4).

A similar phenomenon has been observed in [31] in a
simple one-component lattice gas with next-nearest neigh-
bour interaction. Here a reentrance transition to a second
high-density phase was found. Although the origin of this
transition is not entirely clear, the authors of [31] argued
that it is related to the complicated connection between
boundary rates and the e�ective boundary densities.

3.4 Dependence of dynamic quantities on �, �

The dynamics of a system with open boundary conditions
depends on the parameters � and �. When � = 1, i.e.
the outow is unrestricted, an increasing ow can be ex-
pected with increasing injection rate �. In Fig. 5 the ow
of the stationary state is plotted versus �. However, this
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Fig. 4. Phase diagram for the Krauss-model with open bound-
ary conditions and the inow-oriented injection strategy. The
inserts show typical density pro�les for each phase. The max-
imum current phase with ow q � 0:5 is only observed for
systems with open right boundary (� = 1) and injection rate
between � = 0:48 and � = 0:57 (broken line) and shows an
oscillating density pro�le.

is true only for � < 0:58. For larger values, a sharp de-
cline in the ow can be seen which can be related to the
injection strategy. Note that the second injection strategy
introduced in section 4 does not show that decline in the
�� q{relation.

For systems with � 6= 1 the right boundary introduces
an external disturbance which increases with decreasing
� (cf. step 3). With � 6= 1, the cars at the end of the
system are forced to slow down. Hence, the density at the
right boundary increases with decreasing � and jams are
formed. These jams grow backwards into the system. If
the jams can not dissolve due to high inow rates �, the
cars have a lower average velocity and the system's density
is high.

Because of the bistability, the system has quite a dif-
ferent behaviour for � = 1 in comparison to any other
�. Note that already small (external) perturbations might
force the breakdown of the stable high-ow states in the
open system. Once a jam has established in the system
the high-ow states will not be reached again due to the
reduced outow from jams, (�; qout) = (0:11; 0:51), which
is smaller than the maximal possible ow. As an example
for the behaviour of the system under a weak disturbance,
the �� q-relationship for � = 0:95 is shown in Fig. 5.

On the other hand, one can study the relationship be-
tween q and �, using a constant value of � (not shown).
It is obvious that for very small values of �, the current
should vanish. In a system with closed right boundary
(� = 0), all cars are forced to stay in the system which
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Fig. 6. Average velocity as a function of � and �. The contour
line (- - -), given by v > vmax=2, separates the free ow phase
(average v close to vmax) from the jammed phase (v much
smaller then vmax=2).

means a vanishing average velocity v = 0 and density
� = 1. For each �, one expects the highest value of cur-
rent for � = 1.

In Fig. 6 the average velocity as a function of � and � is
shown. The contour in the �{�{plane shows the line where
v = vmax=2. In [5] this line was choosen to distinguish
between jam and free ow, i.e. states with v < vmax=2 are
in the jammed phase.

Before we will examine the connection to the extremal
principle the e�ects of rule 1 are investigated in more de-
tail. In order to measure the impact of that rule on ow
and density we let the system run for di�erent values of �.
In each timestep only three cars are left in the system by
taking out the rest without taking care on their position
or velocity, i.e., the rest of the system is cutted o�. The
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Fig. 7. Simulation of the left boundary rules given in sec-
tion 3.1 (Rule 1) and 4.1 (Rule 2). In each timestep only the
leftmost three cars are simulated while the rest of the system is
cutted o�. The dots represent the fundamental diagram taken
from the closed system. After a relaxation of 100000 timesteps
the points (�; q) are measured over another 100000 steps for
di�erent values of �. The arrow indicates the direction of in-
creasing �.

resulting relation between the density and ow at the left
boundary is shown in Fig. 7. Following the line starting
from � = 0:1 the left border stays on the free ow branch
of the fundamental diagram up to � = 0:6. For bigger
values the system switches to just one state that belongs
to the jammed branch. The drop in the ow is therefore
not alone a result of jams moving backwards to the left
boundary, but an arti�cial e�ect of the rule itself. If the
predeccessing vehicles are moving slow (v < vcrit)

6 the
safe velocity of the inserted cars become g due to step 2 of
rule 1. And, g will be very small in case of high injection
rates. These e�ect will play a role for the interpretation of
the phase diagram in the context of the extremal principle.

3.5 Extremal principle

Since we could not observe the full range of states (cf.
Fig. 3) due to the cuto� in rule 1 at a certain inow we
examined the extremal principle (see Sec. 2.1) only for a
subset of system states. Since the extremal principle (7)
is formulated in terms of boundary densities these have to
be determinded from the stationary density pro�les. For
small injection rates it is not easy at all to �nd the left
boundary density ��, due to the oscillations in density
pro�les. This is no problem for models that have vmax =
lcar (= particle size).

For the parts of the phase diagram that look similar
to other models, i.e., all except for the second low density
regime � > 0:6, � > 0:6 (cf. Fig. 4), it should just be
stated that the principle was ful�lled for all these pairs of
(�; �).

6 which results e.g. from jam formation around the left
boundary
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Fig. 8. Density pro�le for the system with (�; �) = (0:8; 0:8)
which lies in the second low density phase of Fig. 4. The inserts
show a close up at the boundaries. The densities at the left
and right boundary are �� = 0:65 and �+ = 0:17 respectively,
the bulk density is �b = 0:04. A stationary ow q = 0:21 is
measured.

A di�erent behaviour is found for the second low den-
sity regime. The results of section 3.4 suggest that this
is due to the fact that for rule 1 we do not have a mono-
tonic increase of inow with �. Consider the point (�; �) =
(0:8; 0:8) which lies in the second low density phase. Fig. 8
shows the corresponding stationary density pro�le. Using
the formulation (7) one �nds an apparent violation of the
extremal principle, as will be demonstrated. From the den-
sity pro�les we �nd �� = 0:65 and �+ = 0:17 and since
�� > �+ the maximum of q(��) and q(�+) will be chosen
according to (7), i.e., q(pred) = 0:48. Instead we measure
a stationary ow of q = 0:21.

Before we present an alternative interpretation of the
results in the second low density phase we recall some
�ndings in the context of the ASEP. All the results have
been obtained for models with vmax = 1 = �t. There-
fore, in these models the ow obtruded to the system by
the boundary rules does play no role. A stopped particle
can accelerate to vmax = 1 in one timestep. Then, the
formulation as given in (7) is suÆcient to determine the
system state. For models with vmax > 1 (cf. [16]) the left
boundary rule has to be de�ned in a speci�c way to ob-
tain results compatible with the extremal principle. The
rule used in [16] always allows the injection of cars with
vmax. Hence large ows can be reached and the problem
that acceleration to the maximum velocity takes several
timesteps does not occur.

In our case the left boundary density is large due to
the high injection rate (�� / �) but the ow is restricted
to q = 0:21 due to the cuto� in step 2 of rule 1 (cf. Fig. 7).
Therefore, the system has to choose a state that matches
with that ow. Since the exit allows a higher ow no stable
growing jam can develope in the system and the state on
the free ow branch is choosen. Indeed the pro�le shows
a sharp decrease in the density leading to a bulk density
�b = 0:04 for which q(�b) = 0:21 (cf. Fig. 2). This in-

dicates that the extremal principle (7) formulated only in
terms of boundary densities ��, �+ is not suÆcient. More-
over, one has to check if there is a restriction due to the
inow and outow rules (denoted by q�=+). (7) then only
applies for q � q�=+. Otherwise the system state is chosen
by

qb = minfq�(�); q+(�)g (10)

with a density �b satisfying q(�b) = qb. Predicting the sta-
tionary system state according to (7) together with (10)
one �nds good agreement for all pairs of (�; �). The re-
sults given for another injection strategy as formulated
in section 4 will con�rm this interpretation. We believe
that similar extensions of the extremal principle will be
necessary for other multicomponent models.

4 High-velocity-oriented injection rule

As seen in the last section it is not easy to de�ne left
boundary conditions that allow the system to reach states
belonging to the stable high-ow branch and { at the same
time { ensure safe motion of the injected car under any
circumstances. In the following a rule is formulated that
tries to inject cars with vmax of the model.

4.1 Boundary rules (rule 2)

In order to generate the high-ow states we have a closer
look at the bistable regime of the corresponding periodic
system. They are characterized by velocities close to vmax

and approximately identical gaps g � lcar. Therefore, in-
stead of driving with initial speed vinit to achieve safety,
whenever there is an empty space of one carlength lcar
in front of the system7, we try to inject cars (with prob-
ability �) with an initial velocity vmax. To guarantee a
system free of crashes, we have to introduce a minimum
safety gap ginit to the preceding car (cf. also the discus-
sion in section 2.2). Therefore not all injection trials will
be successful (see below).

Step 1 and step 2 of rule 1 are replaced by above strat-
egy while the de�nition of the right boundary conditions
is not changed. Using this strategy, it might happen that
no car will be injected for several timesteps because of
the lack of free space (ginit) at the beginning of the sys-
tem. This implies that the actual injection rate is smaller
than � and also the existence of a maximal density 1

ginit+1

which can be reached at the left boundary.
For the choice of the initial gap ginit three criteria are

formulated:

(i) ginit should leave the system crash-free.
(ii) High currents (comparable to those found in the bistable

regime of the periodic system) should be reached.
(iii) ginit should be as small as possible.

7 Depending moreover on the inow rate �.
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Fig. 9. The relation between the current q and � for several
values ginit 2 [1; 3:5], � = 1 and the parameters equal to (6).

The last criterion increases the maximum reachable
density at the system's entry so that a larger range of
boundary densities can be investigated.

To �nd an appropriate value for the initial gap, we
made several simulations with di�erent values for ginit,
and measured the current q for � = 1 to test criterion (ii).
For the values of ginit which satisfy (ii) we then checked
in simulations whether the system is free of crashes. This
could be done best using � � 0. After �ltering out unsuit-
able values of ginit we chose the minimum of the remaining
values.

In Fig. 9 the relation between q and � for several val-
ues of ginit and � = 1 is shown. The current increases as �
increases and either reaches a constant value or decreases
and then reaches a constant value, depending on ginit. For
5 > ginit � 2 the current reaches a constant value greater
than 0:6, which is in the bistable region of a system with
periodic boundary conditions. For ginit � 5 q decreases
drastically. This is obvious, since it will be impossible to
reach a density in the regime of maximum current in that
case. The maximum current in terms of the periodic sys-
tem will be reached for a system with � = 1 and density
of 0:15.

In simulations for systems with � = 1 and � � 1
we have observed crashes for ginit < 2. Therefore, the
only values of ginit meeting the criteria (i), (ii) are val-
ues 5 > ginit � 2. Because of the criterion (iii) we decided
to take ginit = 2 in order to reach a maximum possible left
boundary density.

In the following we present results of simulations using
this injection rule, parameters as given in (6) and ginit =
2; vinit = vmax. As long as the methods and interpretations
correspond to section 3 the presentation will be kept brief.

4.2 Fundamental diagram

The fundamental diagram obtained for this system is very
similar to the system with periodic boundary conditions.
The high-ow states in the bistable regime can be reached
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Fig. 10. Fundamental diagram of the system with open bound-
aries and boundary conditions de�ned by rule 2. The maxi-
mum current and the high-ow states in the bistable region
are reached for systems with � = 1. The fundamental diagram
is similar to the fundamental diagram of the system with pe-
riodic boundary conditions (see section 1).

using rule 2, see Fig. 10. With the present injection strat-
egy, increasing � does not cause the decrease of the current
in the way we saw in section 3. The high-ow states are
only reached for systems with � = 1 (cf. next section)

4.3 Dependence of dynamic quantities on �, �

In this section we give a brief overview of the dependence
of the current q, average velocity v and the density �,
measured in the middle of the system, on (�; �).

In Fig. 11 the relation between q, � and � is shown.
The current increases strongly for � values close to 1. The
contours are the lines of the constant current.

Fig. 12 shows the dependence of the density on (�; �).
The density used here is measured in the middle of a sys-
tem in the stationary state, which is the density corre-
sponding to the plateau in the density pro�le for most
pairs (�; �). One cleary sees a sharp transition from low
to high values which will be interpreted as the phase tran-
sition line between high and low density phases.

Finally in Fig. 13 the dependence of the average ve-
locity on (�; �) is presented. Using again the criterion
v = vmax=2 to distinguish between free ow and jam one
�nds the same results for the phases as in Fig. 12.

4.4 Phase diagram

In Fig. 14 the phase diagram and di�erent phases are
shown. The diagram has been derived from the density
pro�les. The full �{�{plane was scanned in steps of size
0:1. The maximum current phase has been observed for
systems with open right boundary (� = 1). It is reached
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for � � 0:5. As one can see from Fig. 7 at this value
cars are fed in the system with the ow out of jam, i.e.,
jin(� = 0:5) = 0:51 = jout

8.
This phase diagram is similar to that of the much sim-

pler driven lattice gas discussed in [24]. The results com-
pare as well to the phase diagram found for the VDR{
model [16]. Therefore, we will only briey discuss the ma-
jor di�erences found.

For the driven lattice gas of [24] the maximum current
phase is only found for very short system. The reason is
the true metastable nature of the high-ow states, i.e. in-
trinsic uctuations are able to destroy these states even
without an external disturbance. Since the probability for
such uctuations grow with the system length the max-
imum current phase will vanish above a typical system

8 Using � = 0:5 and � 2 [0; 1] one obtains the full high
density branch of the fundamental diagram.
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Fig. 14. Phase diagram of the Krauss-model with open bound-
ary conditions and maximum-velocity-oriented injection rule
(rule 2). The maximum current phase has been observed for
systems with open right boundary (� = 1) and � � 0:5. The
inserts show (from left to right) typical density pro�les for low,
high and maximum current phase.

size. In our case, we do not �nd such a disappearance,
even for very large systems 9, since the high-ow states of
the Krauss-model are stable (as found in [14]).

The fact that we �nd the maximum current phase only
for � = 1, while in the case of the VDR-model it exists
for a slightly bigger range of �, can be related to the fol-
lowing. The interaction in the VDR-model is very short-
ranged due to the unbounded deceleration capability in
that model (the interaction horizon is g � vmax). Instead,

9 We checked this for systems up to L = 50000.
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for the Krauss-model of the investigated class I , cars do
already interact for g � v2max.

4.5 Extremal principle

We examined the validity of the extremal principle for this
model for every � and � 2 [0; 1] with 0:1 steps. After mea-
suring the boundary densities �� and �+ we have used (7)
to determine the current q(pred) predicted by the extremal
principle. This value has then been compared to the cur-
rent q measured in the open system. For all parameters
the results are in excellent agreement with q(pred). This is
in accordance with our suggestion (see section 3.5) that as
long as the boundary rules do not restrict the ow in an
arti�cial way, the system will choose its bulk state accord-
ing to the extremal principle as formulated in (7). We also
checked our formulation with the addition given in (10).
For all pairs of (�; �) the correct bulk state was predicted.

5 Conclusions

In this article we investigated the properties of a traf-
�c ow model introduced by Krauss et al. [4{6] under
open boundary conditions. It is a discrete map in time
while | in contrast to cellular automata approaches |
space is continuous. For the parameter range discussed,
the Krauss-model shows a non-unique relation between
ow and density. This property of the fundamental di-
agram is responsible for the stability of jams found in
empirical observations. It is important to note that the
corresponding high-ow states have been shown to be sta-
ble [14] (subject to the model's dynamics). In contrast in
cellular automata models as the VDR-model [15,16] they
usually show metastable behaviour.

For application purposes open boundary conditions
play a cruicial role. But also for purely theoretical pur-
poses the investigation of the Krauss-model's behaviour
under open boundary conditions is valuable. In general,
driven interacting particle systems show boundary-induced
phase transitions. For systems with unique ow-density
relation, e.g. the ASEP as the prototype of such mod-
els, there exists a quite general theory for the stationary
state the system realized with open boundary conditions
(cf. section 2). These results are well established for sim-
plesystems with unique ow-density relation [27{29]. In
contrast, not much is known about for systems with a
non-unique fundamental diagram. Moreover, the models
investigated so far have vmax = 1 (i.e. vmax can be reached
within one timestep). Only recently also discrete models
with higher velocities (e.g. models of Nagel-Schreckenberg
type [22]) and non-unique ow-density relation [16,24]
have been investigated. Here for the �rst time a continu-
ous model with vmax 6= 1 and fundamental diagram with
bistability, i.e. stable high-ow states, has been studied
with respect to boundary-induced phase transitions.

In order to guarantee that the system remains free of
crashes, one has to �nd a strategy to inject cars into the
system. In this article two methods are discussed. The

�rst one is orientated on the inow rate �, i.e. with prob-
ability � a car is always inserted if there is enough space
at the left boundary. In this case one has to �nd an ini-
tial velocity which guarantees a crash-free motion of each
inserted car at any timestep (cf. section 3). The second
method �xes a minimum free space ginit at the beginning
of the system (ginit > lcar) and cars are injected with the
constant velocity vmax (cf. section 4).

For both rules the phase diagram has been derived
from computer simulations and, as expected, boundary{
induced phase transitions were found. From the ASEP
three di�erent phases are known, distinguished by the
functional dependence of the current through the system
on � and �. These are the low{density, the high{density
and the maximum{curent phase. All these phases are ob-
served in the Krauss-model with open boundary condi-
tions.

In contrast to the �ndings in the ASEP [17{21] the
maximum current phase was only observed for an open
right boundary (� = 1). This reects the high sensitivity
of the Krauss-model to an external disturbance at the sys-
tem's exit which results from the long interaction horizon
of the model. However, in contrast to [24] the maximum
current phase in the Krauss-model exists for arbitrary sys-
tem lengths due to the stability of the high-ow states.

Moreover, the extremal principle (7) [29,28] has been
checked for both rules. For systems with vmax = 1 it was
found that the selection of the system's state does not
primarily depend on the parameters (�; �), but on the re-
sulting densities �� and �+ at the left and right boundary,
respectively. Furthermore, the selected state is completely
determined by the ow-density relation of the correspond-
ing periodic system. In that sense the extremal princi-
ple states implies the independence of the system state
from the speci�c injection/extraction rule at the bound-
aries. For the second rule we found absolut agreement for
the Krauss-model (recall that here several timesteps are
needed to accelerate to vmax).

However, for the �rst rule deviations were found from
the principle. An unusual reentrance transition to a second
low-density phase occurs for high insertion and extraction
rates. Its existence could be ascribed to the behaviour of
the rule which shows a cuto� in the maximum ow for
� � 0:6. This ow is lower than the one that is allowd
by the right boundary conditions. In other words, for a
model with vmax 6= 1 the selection of the system's state is
not independent of the speci�c boundary rules. We there-
fore argue that the extremal principle as given in [28,29]
can only be applied in this strict form to models with
vmax = 1. Here the provided maximum ow by the rule
plays no role, since a stopped car can always accelerate to
vmax in one timestep. Therefore any ow limitation due
to the insertion rule does not play a role. This is di�erent
in the case of our model which has vmax > 1 and �nite ac-
celeration capability. However, if one takes an additional
rule into account, i.e. that the ow in the system can not
exceed the ow allowed by the boundary rules, one can
also predict the system state with open boundary condi-



12 A. Namazi et al.: Boundary-induced phase transitions in a space-continuous traÆc model

tions for our �rst rule (cf. section 3) from the knowledge
about the periodic system.

We will close with a brief outlook. Due to our �nd-
ings more work on boundary{induced phase transitions
for models with vmax > 1 seems to be necessary. The fo-
cus should be on �nding a compact formulation of the ex-
tremal principle that is independent of vmax. Since in the
Krauss-model crash-free motion is not included as a rule
per se (as, through hard-core exclusion, in the cellular au-
tomata approaches) it would be helpful to develop a model
formulation that does not show such safety problems un-
der open boundary conditions. This would be important
for applications in traÆc ow simulation. To take into ac-
count next-nearest-neighbor interactions as suggested by
the �ndings of section 3 seems to be promising [32].
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