
Complexity Results on a

Paint Shop Problem

Th. Epping a W. Hochst�attler a

aDepartment of Mathematics, BTU Cottbus

P. Oertel b;1

bFord Werke AG, Cologne

Abstract

Motivated by an application in the automobile industry, we present results and con-
jectures on a new combinatorial problem: Given a word w and restricted reservoirs
of colored letters, synthesize w with a minimal number of color changes.

We present a dynamic program that solves this problem and runs in polynomial
time if we bound both, the number of di�erent letters and colors. Otherwise, the
problem is shown to be NP-complete. Additionally, we focus on upper bounds on the
minimal number of color changes, simultaneously giving results for special instances,
and posing open questions.

Key words: Dynamic Programming, NP-completeness, Paint Shop, Sequencing
1991 MSC: 90B30, 90B35, 90C39

1 Motivation

European car manufacturers are faced with a continously increasing demand
for individually furnished cars. To avoid the need for large depots, cars are
therefore generally built to order. This leads to a daily changing variety of car
body types that have to be produced. The �nal stage of production planning

Email addresses: epping@math.tu-cottbus.de (Th. Epping),
hochstaettler@math.tu-cottbus.de (W. Hochst�attler), poertel@ford.com (P.
Oertel).
1 Supported by Alfried Krupp von Bohlen and Halbach Stiftung

Preprint submitted to Elsevier Science 3 May 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/141726202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

typically is the sequencing stage, where a build sequence is determined for the
orders to be manufactured on a given day.

Sequencing has great impact both on production quality and costs, since each
order has to pass through various production phases, including a press and
a body shop, a paint shop, and assembly lines. We focus on the paint shop,
which is divided into several booths in which a car body is cleaned and gets
its cathodic immersion painting, its prime color, and its enamel color (see [1]).
Within the enamel booth, a color change occurs whenever two consecutive car
bodies have to be colored in di�erent colors. For each color change the color
jets of the spray robots have to be cleaned, giving rise to non-negligible costs
and water pollution. Therefore, the automotive industry has been constantly
striving to reduce the number of color changes within the enamel booth.

Present technology is to apply sorting heuristics which use temporary storage
systems placed in front of the paint shop to group car bodies that can be
colored alike. A popular approach is the installation of a line storage system
(see [2]). These systems allow sorting by spreading an input sequence on a
certain number of sorting belts and merging the contents of the sorting belts
to a new output sequence. However, it it reasonable to conform a car body se-
quence not only to the minimization of color changes within the paint shop, as
preceeding and succeeding production phases may require di�erent sequences
to optimize their speci�c objective function. We therefore drop the usage of
color storage systems and consider the car body sequence to be an external
parameter. Also, there is a trend that heads for the detachment of car bodies
and their features and allows more production exibility. This concept can be
realized by the use of on-line programmable micro chips attached to the car
bodies and allows us to uncouple enamel colors and car bodies.

These realities yield a new type of combinatorial problem that we study from
an algorithmical and a mathematical point of view.

The paper is organized as follows. In the next section, we introduce the ba-
sic mathematical model of the problem. In Section 3 we present a dynamic
programming algorithm and analyze its complexity. Then we show that the
problem is NP-complete if either the number of colors or the number of car
body types is unbounded. Finally, we give results and conjectures on the min-
imal number of color changes for special instances and end with a collection
of open questions.

Our notation is fairly standard as in [3].

2

2 Problem formulation

We will now give a formal de�nition of the sequencing problem as it may be
encountered in production sequencing. Given a set of orders we must determine
a sequence that minimizes the number of color changes during production. To
simplify the de�nition, we assume that an arbitrary order sequence has been
�xed beforehand. We associate with each car body type a letter of an alphabet
�, and represent a sequence of car body types by a word w. A vector f of the
same length as w represents a sequence of colors, with fi denoting the color
of wi for all i. We say that we have a color change in f whenever fi 6= fi+1.

Our problem then consists in �nding a permutation that minimizes the number
of color changes in f while leaving the sequence of letters in w unchanged.

Problem 1 Paint Shop Problem for Words (PPW)

Given a �nite alphabet �, a word w = (w1; : : : ; wn) 2 ��, a �nite color set
F , and a coloring f = (f1; : : : ; fn) of w with fi 2 F for i = 1; : : : ; n, �nd a
permutation � : f1; : : : ; ng ! f1; : : : ; ng such that w�(i) = wi for i = 1; : : : ; n,
and the number of color changes within �(f) = (f�(1); : : : ; f�(n)) is minimized.

We denote the minimal number of color changes for an instance of PPW
by (w; f). Note that the initial coloring of w serves only to determine the
reservoirs of colored letters. We therefore can deal with these reservoirs instead
of an explicit color vector (see Figure 1). We denote the reservoir of letter i
in color j by R(i; j), i. e. , R(i; j) denotes the number of copies of letter i in
color j.

A B

A C D A B C C E D B A E

A A B C

C C D D E E

CA C D A B C E D B A E

Fig. 1. An optimal resp. suboptimal colored instance with j�j = 5 and jF j = 2.

3 Solution by dynamic programming

Any instance of PPW can be solved by dynamic programming as follows. We
pass through the given word w letter by letter from the left to the right. We

3

record each optimal coloring up to the current position, that uses a subset of
the letter reservoir and ends with a speci�c color, in a di�erent state.

Each state is given as

sp = sp(l
1
1; : : : ; l

1
jF j; l

2
1; : : : ; l

2
jF j; : : : ; l

j�j
1 ; : : : ; l

j�j
jF j; f) with p =

X
lij;

where lij counts the occurences of letter i in color j, and f denotes the color
that has been used to color the letter wp. We denote by (sp) the minimal
number of color changes of the partial coloring of w up to position p with the
recorded colors. Note that given a state sp the letter i that has to be colored
next is determined by i = wp+1. We then apply the dynamic program depicted
in Figure 2.

Informally speaking, the pass through w yields a directed graph of feasible
colorings. The nodes of the graph correspond to speci�c states. Edges occur
between states sp�1 and sp if these states have matching values of lij except

for one li0j0 , and are weighted with 0 or 1 depending on the occurence of a color
change when progressing from sp�1 to sp. The dynamic program searches for
a shortest path within this graph.

(1) For all f 2 F do:

Create s0(0; : : : ; 0; f) and set (s0(0; : : : ; 0; f)) = 0.
(2) For p = 1; : : : ; n do:

For all existing states sp�1(: : : ; l
wp

f ; : : : ; g) do:
For all f 2 F do:

If (R(wp; f)� l
wp

f) > 0, create sp(: : : ; l
wp

f + 1; : : : ; f) and set

(sp(: : : ; l
wp

f + 1; : : : ; f)) =

min
k 6=f

f(sp�1(: : : ; l
wp

f ; : : : ; f)); (sp�1(: : : ; l
wp

f ; : : : ; k)) + 1g:

Fig. 2. The dynamic program for PPW.

Theorem 2 The dynamic program depicted in Figure 2 solves an instance of
PPW with a space and time complexity of O(jF jnjF jj�j).

PROOF. We proceed by induction on p and show that (sp) is the minimal
number of color changes that appear if we use the color reservoir recorded in
sp for a coloring of the �rst p letters of w. Clearly, the initialization (s0) = 0
for p = 0 is correct. If p > 0, the letter that has to be colored next for creating
a state sp is wp. We can color wp in color f only if there is at least one letter
wp in color f left. Thus R(wp; f) � l

wp

f has to be positive. Then (sp) is the
minimum of (sp�1), where in state sp�1 the letter wp�1 has been colored with
the same color as wp, and (sp�1) + 1, where in state sp�1 the letter wp�1

4

has been colored with a di�erent color as wp, increased by one due to the
additional color change.

As every lij is bounded from above by lij � n, we directly get n(jF jj�j) as an
upper bound for the number of states that can be created. The computation
of (sp) requires O(jF j) steps. 2

Note that the dynamic program can be easily extended to �nd an optimal
coloring of w. Note further that it is suÆcient to record lij only for jF j � 1
colors. We can therefore improve on the complexity of the dynamic program.

Corollary 3 The dynamic program can be implemented to run with a space
and time complexity of O(jF jn(jF j�1)j�j).

Typical values in practice are 6 � j�j � 8 and 3 � jF j � 15, where most
colors appear with low, and only few colors appear with high frequency. The
dynamic program is thus unlikely to be applicable in practice. A comparable
result holds for a dynamic program that assumes the use of temporary storage
systems in front of the paint shop (see [4]).

4 Complexity results

The dynamic program presented in the last section shows that Problem 1 is
polynomial if we restrict the size of both, the number of colors and the size
of the underlying alphabet. In this section, we will argue that this result is
best possible from a complexity point of view. More precisely, we will show by
reduction from 3SAT resp. pseudo-polynomial reduction from 3-PARTITION
that Problem 1 is NP-complete if we bound one parameter, i. e. the size of
the color set F or the size of the alphabet �, even if we bound it to jF j = 2
or j�j = 2.

Theorem 4 PPW is NP-complete for jF j = 2.

PROOF. We give a reduction from 3SAT (see [3]). Let C = fc1; : : : ; cmg
denote the set of clauses and V = fv1; : : : ; vng denote the set of variables of
an instance of 3SAT. We construct an instance of PPW as follows. The word
w is a sequence of n variable blocks. We explain the construction of a single
variable block for a �xed variable vi in detail, assuming that F contains the
colors red and blue. In this proof, we use the terms characters and letters to
distinguish between colored elements (the characters) and uncolored symbols
of the alphabet (the letters).

5

We assume that vi appears in clauses ci1 ; : : : ; cik as literals li1; : : : ; lik and
wlog. literals are sorted, such that lij = vi for j = 1; : : : ; r and lij = �vi
for j = r + 1; : : : ; k. Note that we can always assume r � 1 and sort the
literals independently for each variable block. The variable block of vi then is
a sequence of k literal blocks bi1 ; : : : ; bik . The characters we use for building
the variable block are given as follows.

� First, we provide 4k variable characters using 2k variable letters Li
j (j =

1; : : : ; 2k), each once in red and once in blue. Variable letters di�er for each
variable block. In the following, we drop their superscript whenever it is
clear which variable we refer to.

� Second, we introduce 3m satisfaction testers usingm letters Ts (s = 1; : : : ; m),
each once in red and twice in blue. Each letter Ts is associated with a clause
cs. We use the satisfaction testers Tij (j = 1; : : : ; k), one of each, within the
variable block.

� Finally, we introduce a separator letter Z, available only in blue. We use
k + 1 separator characters within the variable block considered.

We arrange the letters of the variable block as follows. For each literal block
we provide four variable letters, as indicated in Figure 3. We precede the �rst
variable letter of a literal block bij with ZTij for j = 1; : : : ; r and precede the
third variable letter of a literal block bij with ZTij for j = r+1; : : : ; k. Finally,
we add a separator Z behind the last variable letter of a variable block.

ZTi1

v1z }| {
L1L2

�v1z }| {
L2L3| {z }

Literal block bi1

: : : ZTirL2r�1L2rL2rL2r+1| {z }
bir

v1z }| {
L2r+1L2r+2 ZTir+1

�v1z }| {
L2r+2L2r+3| {z }

bir+1

: : : L2k�1L2kZTikL2kL1| {z }
bik

Z

Fig. 3. The structure of a variable block.

As each variable letter Lj (j = 1; : : : ; 2k) is available only once in each color,
it is guaranteed that the two variable characters L2j (j = 1; : : : ; k) in each
literal block bij will have di�erent colors. We claim that we can get by with
two color changes for every literal block and prove the following:

There exists a satisfying truth assignment for v1; : : : ; vn if and only if there
exists a coloring of w with exactly 6m color changes.

Given a satisfying truth assignment, let cs = fls1; ls2; ls3g be a clause and
assume that ls1 satis�es the clause. We then color the associated satisfaction
tester Ts in the literal block of ls1 red (and have to color the satisfaction testers
in the literal blocks of ls2 and ls3 blue). Additionally, we color the variable
letters of the variable block alternatingly (red, red, blue, blue, . . .), if the

6

variable related to the variable block is set to True in the truth assignment;
if the variable is set to False, we use the alternating color scheme (blue, blue,
red, red, . . .).

If our coloring starts with two blue variable characters and we come across a
color change between two literal blocks, we always account it to the number of
color changes within the preceeding one (including the color change between
the last variable character and the �nal separator). Otherwise, if our coloring
starts with two red variable characters and we come across a color change
between two literal blocks, we always account it to the number of color changes
within the succeeding one. In both cases, this approach results in exactly two
color changes within any literal block. Thus, we end up with 6m color changes
altogether for a coloring of w.

Now, suppose that we are given a coloring with exactly 6m color changes.
First note that counting in a similar way as above we have at least two color
changes per literal block. As we know that we have a total of 3m literals, we
must have exactly two color changes per literal block. This is only possible if
the variable letters within each variable block are colored in connected blocks
of size two, resulting in a coloring sequence of either (red, red, blue, blue, . . .)
or (blue, blue, red, red, . . .).

We then assign the value True to variables whose variable block starts with
two red variable characters, and False otherwise and show that we get a
satisfying truth assignment. Let cs = fls1; ls2; ls3g be a clause and assume that
the associated satisfaction tester Ts in the literal block of ls1 has been colored
red. In order not to give rise to more than two color changes in this literal
block, the satisfaction tester must be followed by a red letter. This implies
that ls1 is positive if and only if its variable has been set to True. Thus, the
formula is satis�ed. 2

If we bound the size of the alphabet � instead of the number of colors we get
a similar result.

Theorem 5 PPW is NP-complete for j�j = 2.

PROOF. We give a pseudo-polynomial reduction from 3-PARTITION (see
[3], Lemma 4.1, pp. 101). Let A = fa1; : : : ; a3mg denote the set of elements
with size s(a1); : : : ; s(a3m) 2 Z

+ and B 2 Z+ denote the bound of an instance
of 3-PARTITION.

We construct an instance of PPW as follows. For each element ai of size s(ai)
we provide s(ai) times the letter L in color f(ai), where f(ai) 6= f(aj) if i 6= j.
Additionally, we provide m � 1 times the letter Z in color f0. The word w

7

then consists of m partition blocks b1; : : : ; bm of size B that contain the letter
L and are separated by the letter Z (see Figure 4).

L : : : L| {z }
B

Z L : : : L| {z }
B

Z : : : Z L : : : L| {z }
B

Fig. 4. The general structure of w.

Clearly, there exists a partition of A into m disjoint sets S1; : : : ; Sm such thatP
a2Sj s(a) = B for j = 1; : : : ; m if and only if there exists a coloring of w with

4m� 2 color changes. 2

5 k-regular instances

We now turn to upper bounds on the minimal number of color changes for an
instance of PPW. It is easy to construct instances w of length n requiring n�1
color changes, thus in general, there is no non-trivial upper bound. Therefore,
we study instances of a highly regular nature. Dealing with this challenging
(and mostly unsolved) task �rst, may lead to new ideas for more general cases.
Recall that for an instance of PPW we denote the initial reservoir of letter i
in color j by R(i; j) and the minimal number of color changes by (w; f).

De�nition 6 Given a �xed integer k � 1, we call an instance of PPW k-
regular, if R(i; j) = k = n

j�jjF j
for all letters i and colors j (see Figure 5).

A C B C B AB C A C A B

Fig. 5. A 2-regular instance with j�j = 3 and jF j = 2.

Further, we denote the number of occurences of a letter l within a word w by
jwjl. We give an upper bound for (w; f) in the simplest case �rst.

Lemma 7 Suppose that we are given a k-regular instance of PPW with j�j =
jF j = 2. Then (w; f) � 2 holds.

PROOF. We suppose that � = fx; yg and consider a sequence of consecutive
letters ws = (ws; ws+1; : : : ; ws+n

2
�1) of w with jwsj = 2k = n

2
, and 1 � s �

n
2
+ 1. Since jw1jx + jw

n
2
+1jx = 4k, there must exist a 1 � t � n

2
+ 1 such that

jwtjx = k. As j�j = 2, it follows that jwtjy = k as well. We therefore can color
all letters of wt with one color, and all letters of w n wt with the other. Note
that (w; f) = 1, if t = 1 or t = n

2
+ 1, and (w; f) = 2 otherwise. 2

8

We now consider the case of k-regular instances with bounded size of the
alphabet �, and use Lemma 7 to prove Theorem 8 by induction on the size of
the color set F .

Theorem 8 Suppose that we are given a k-regular instance of PPW with
j�j = 2. Then (w; f) � 2(jF j � 1) holds.

PROOF. Lemma 7 shows that Theorem 8 is true for jF j = 2. We assume that
Theorem 8 is true for all values strictly smaller than jF j. We again suppose
that � = fx; yg and consider a sequence of consecutive letters ws of w with
jwsj = 2k = n

jF j
, and 1 � s � n � n

jF j
� 1. Again there must exist a t with

jwtjx = jwtjy = k, so that we can color all letters of wt with a single color. The
remaining uncolored letters form a k-regular instance w0 = w n wt of length
jw0j = 2k(jF j � 1). By our assumption we can color the letters of w0 with
the remaining jF j � 1 colors, so that (w0; f) � 2(jF j � 2). We therefore get
(w; f) � 2(jF j � 2) + 2 = 2(jF j � 1) for a coloring of w. 2

Bounding the size of the color set F instead, we were not able to show an
upper bound for an optimal coloring like in Theorem 8. The examples we
encountered suggest the following:

Conjecture 9 Suppose that we are given a k-regular instance of PPW with
jF j = 2. Then (w; f) � j�j holds.

A straightforward induction argument shows that Conjecture 9 is true for
k = 1. Combining Theorem 8 and Conjecture 9 suggests the more general

Conjecture 10 Suppose that we are given a k-regular instance of PPW. Then
(w; f) � j�j(jF j � 1) holds.

The following example proves that the bound given in Conjecture 10 is tight
if the conjecture is true.

Example 11 Suppose that we are given a k-regular instance of PPW with a
color set F and an alphabet � = fb1; : : : ; bj�jg of the form

w = (b1 : : : b1| {z }
kjF j

b2 : : : b2| {z }
kjF j

: : : bj�j : : : bj�j| {z }
kjF j

):

Then (w; f) = j�j(jF j � 1) holds.

9

6 Concluding remarks

The minimization of color changes within a �xed sequence of colored letters is
a new combinatorial problem. The complexity of the general problem seems to
be suÆciently resolved. From a mathematical point of view even the structured
cases of k-regular instances still seem to be surprisingly diÆcult. In addition to
the conjectures proposed in Section 5 we pose the following problems, whose
answers might provide a deeper insight into the structure of the problem.

Problem 12 Given a k-regular instance (w; f) of PPW, can one optimize or
approximate (w; f) in polynomial time? How about the case k = 1?

We �nally take a look at 1-regular instances with jF j = 2. This case looks quite
simple, but we do not have any idea how to optimize or even approximate it
within a constant factor. All we have is a formulation as an integer quadratic
program (see Figure 6).

Minimize
1

2

n�1X

i=1

(1� vivi+1)

subject to vivj = �1 , if wi = wj , and

vi 2 f�1; 1g for i = 1; : : : ; n:

Fig. 6. The integer quadratic program for 1-regular instances with jF j = 2.

Although this formulation is clearly inspired by the well known integer quadratic
program for MAX CUT (see [5]), we were not able to deduce an approximation
algorithm for our minimization problem.

Indeed, besides the dynamic program mentioned in Section 3 we do not know
any eÆcient way to compute an optimal coloring for instances of PPW. One
might expect that the natural greedy approach (when coloring w from the left
to the right, keep the actual color as long as possible) should produce good
results. Example 13 shows that in general this is not the case.

Example 13 Suppose that we are given a 1-regular instance of PPW with
jF j = 2 and � = fb1; : : : ; bj�jg (with j�j even) of the form

w = (b1 : : : bj�j=2| {z } bj�j=2 : : : bj�j| {z } bj�j b1bj�j=2+1| {z } b2bj�j=2+2| {z } : : : bj�j=2�1bj�j�1| {z }):

Tbe greedy algorithm colors w with j�j = n
2
= O(n) color changes, while the

minimal number of color changes is always (w; f) = 3.

Likewise, an obvious improvement algorithm does not seem to exist. A natural
improvement strategy based on an initial coloring could be the color exchange

10

between single letters or consecutive letter blocks (with regard to letter permu-
tations). Example 14 shows that it is not suÆcient to consider only consecutive
letter blocks.

Example 14 Suppose that we are given the 1-regular instance of PPW with
jF j = 2 of the form w = (ABCBDDACEE) and f = (0; 0; 1; 1; 0; 1; 1; 0; 0; 1).
The exchange strategy does not improve on (w; f) unless we consider one of
the non consecutive letter blocks CE, CDE or BCE.

Acknowledgements

The authors would like to thank an anonymous referee for valuable comments.

References

[1] S. Spieckermann and S. Vo�: Paint Shop Simulation in the Automotive Industry.

ASIM Mitteilungen 54 (1996), pp. 367{380.

[2] Th. Epping and W. Hochst�attler: Abuse of Multiple Sequence Alignment in a

Paint Shop. Technical report zaik2001-418, Center of Applied Computer Science,
2001.

[3] M. R. Garey and D. S. Johnson: Computers and Intractability. A Guide to the

Theory of NP-Completeness. Freeman, 1979.

[4] Th. Epping and W. Hochst�attler: Storage and Retrieval of Car Bodies by the

Use of Line Storage Systems. Technical report btu-lsgdi-001.02, BTU Cottbus,
2002.

[5] M. X. Goemans and D. P. Williamson: Improved Approximation Algorithms for

Maximum Cut and Satis�ability Problems Using Semide�nite Programming. J.
Assoc. Comput. Mach. 42 (1995), pp. 1115{1145.

11

