
Simple and EÆcient Bilayer Cross Counting

Wilhelm Barth1, Michael J�unger2, and Petra Mutzel1

1 Institut f�ur Computergraphik und Algorithmen, Technische Universit�at Wien
Favoritenstra�e 9{11, A-1040 Wien, Austria

{barth|mutzel}@ads.tuwien.ac.at

http://www.ads.tuwien.ac.at/
2 Institut f�ur Informatik, Universit�at zu K�oln

Pohligstra�e 1, D-50969 K�oln, Germany
mjuenger@informatik.uni-koeln.de

http://www.informatik.uni-koeln.de/ls juenger/

Abstract. We consider the problem of counting the interior edge cross-
ings when a bipartite graph G = (V;E) with node set V and edge set E is
drawn such that the nodes of the two shores of the bipartition are drawn
as distinct points on two parallel lines and the edges as straight line seg-
ments. The eÆcient solution of this problem is important in layered graph
drawing. Our main observation is that it can be reduced to counting the
inversions of a certain sequence. This leads to an O(jEj+ jCj) algorithm,
where C denotes the set of pairwise interior edge crossings, as well as to a
simple O(jEj log jVsmallj) algorithm, where Vsmall is the smaller cardinal-
ity node set in the bipartition of the node set V of the graph. We present
the algorithms and the results of computational experiments with these
and other algorithms on a large collection of instances.

1 Introduction

Let G = (N;S;E) be a bipartite graph with disjoint node setsN and S and let all
edges in E have one end node in N and one in S. Furthermore, let LN ; LS 2 IR2

be two disjoint parallel lines, a \northern" and a \southern" line. A bilayer

drawing BLD(G) assigns all nodes ni 2 N = fn0; n1; : : : ; np�1g to distinct
points P (ni) on LN and all nodes sj 2 S = fs0; s1; : : : ; sq�1g to distinct points
P (sj) on LS. The edges ek = (ni; sj) 2 E = fe0; e1; : : : ; er�1g are assigned
to straight line segments with end points P (ni) and P (sj), see Fig. 1 for an
example.

Given a bilayer drawing BLD(G) of a bipartite graph G = (N;S;E), the
bilayer cross count is the number BCC (BLD(G)) of pairwise interior intersec-
tions of the line segments corresponding to the edges. The example in Fig. 1 has
a bilayer cross count of 12. It is a trivial observation that BCC (BLD(G)) only
depends on the relative positions of the node points on LN and LS and not on
their exact coordinates. Therefore, BCC (BLD(G)) is determined by permuta-
tions �N of N and �S of S. Given �N and �S , we wish to compute BCC (�N ; �S)
eÆciently by a simple algorithm. For ease of exposition, we assume without loss
of generality that there are no isolated nodes and that q � p.

2

n0 n1 n2 n3 n4 n5

s0 s1 s2 s3 s4

e0

e1

e2 e3
e4

e5 e6

e7 e8 e9

e10

Fig. 1. A bilayer drawing

In automatic graph drawing, the most important application of bilayer cross
counting occurs in implementations of Sugiyama-style layout algorithms [11].
Such a procedure has three phases. In the �rst phase, the nodes are assigned to
m parallel layers for some m 2 IN such that all edges join two nodes of di�erent
layers. Edges that connect non-adjacent layers are subdivided by arti�cial nodes
for each traversed layer. In the second phase, node permutations on each layer are
determined with the goal of achieving a small number of pairwise interior edge
crossings. In the third phase, the resulting topological layout is transformed to a
geometric one by assigning coordinates to nodes and edge bends. See Fig. 2 for
a typical Sugiyama-style layout in which an arti�cial node is assumed wherever
an edge crosses a layer. In this example, the arti�cial nodes co��ncide with the
edge bends.

10

0 1 11

5 2 6

4 7 3

8 9

L0

L1

L2

L3

L4

Fig. 2. A typical Sugiyama-style layout

In phase two, popular heuristics approximate the minimum number of cross-
ings with a layer by layer sweep. Starting from some initial permutation of the
nodes on each layer, such heuristics consider pairs of layers (L�xed; Lfree) =
(L0; L1); (L1; L2); : : : ; (Lm�2; Lm�1); (Lm�1; Lm�2); : : : ; (L1; L0); (L0; L1); : : :
and try to determine a permutation of the nodes in Lfree that induces a small bi-
layer cross count for the subgraph induced by the two layers, while keeping L�xed

3

temporarily �xed. These down and up sweeps continue until no improvement is
achieved. The bilayer crossing minimization problem is NP-hard [4] yet there
are good heuristics and it is even possible to solve this problem very quickly
to optimality for instances with up to about 60 nodes per layer [6]. A common
property of most algorithmic approaches is that a permutation of the nodes of
the free layer is determined by some heuristic and then it must be decided if
the new bilayer cross count is lower than the old one. This is the bilayer cross

counting problem that we address in this paper. It has been observed in [12] that
bilayer cross counting can be a bottleneck in the overall computation time of
Sugiyama-style algorithms.

Of course, it is easy to determine if two given edges in a bilayer graph with
given permutations �N and �S cross or not by simple comparisons of the relative
orderings of their end nodes on LN and LS . This leads to an obvious algorithm
with running time O(jEj2). This algorithm can even output the crossings rather
than only count them, and since the number of crossings is �(jEj2) in the worst
case, there can be no asymptotically better algorithm. However, we do not need
a list of all crossings, but only their number.

The bilayer cross counting problem is a special case of a core problem in
computational geometry, namely counting (rather than reporting) the number
of pairwise crossings for a set of straight line segments in the plane. Let C be
the set of pairwise crossings. The best known algorithm for reporting all these
crossings is by Chazelle and Edelsbrunner [2] and runs in O(jEj log jEj + jCj)
time and O(jEj+ jCj) space; the running time is asymptotically optimum. The
best known algorithm for counting the crossings is by Chazelle [1] and runs
in O(jEj1:695) time and O(jEj) space. For the bilayer cross counting problem,
a popular alternative in graph drawing software is a sweep-line algorithm by
Sander [10] that runs in O(jEj + jCj) time and O(jEj) space. This algorithm is
implemented, e.g., in the VCG tool [9] or the AGD library [5].

A breakthrough in theoretical and practical performance is an algorithm by
Waddle and Malhotra [12] that runs in O(jEj log jV j) time and O(jEj) space,
where V = N [S. The authors report on computational experiments that
clearly show that the improvement is not only theoretical but leads to dras-
tic time savings in the overall computation time of a Sugiyama-style algorithm
that is implemented in an internal IBM software called NARC (Nodes and ARC)
graph toolkit. Their algorithm consists of a sweep-line procedure that sweeps the
bilayer graph once, say from west to east, and maintains a data structure called
accumulator tree that is similar to the range tree data structure that is common
in computational geometry, e.g., when a �nite set of numbers is given and the
task is to determine the cardinality of its subset of numbers that lie in a speci�ed
interval, see Lueker [8]. The sweep-line procedure involves complicated case dis-
tinctions and its description takes several pages of explanation and pseudo-code.

In Section 2 we give a simple proof of the existence of O(jEj log jV j) al-
gorithms for bilayer cross counting by relating the bilayer cross count to the
number of inversions in a certain sequence. This observation immediately leads
to a bilayer cross counting algorithm that runs in O(jEj+ jCj) time and O(jEj)

4

space like the algorithm by Sander [10] and another algorithm that runs in
O(jEj log jV j) time and O(jEj) space like the algorithm by Waddle and Mal-
hotra [12]. In Section 3, we present an even simpler algorithm that runs in
O(jEj log jVsmallj) time and O(jEj) space, where Vsmall is the smaller cardinality
set of N and S. This algorithm is very easy to understand and can be imple-
mented in a few lines of code. The question how the old and the new algorithms
perform in direct comparison is addressed empirically in Section 4. It turns out
that the algorithm presented in detail in Section 3 outperforms the others not
only in terms of implementation e�ort, but in most cases also in terms of running
time.

2 Bilayer cross counts and inversion numbers

In a sequence � = ha0; a1; : : : ; at�1i of pairwise comparable elements ai (i =
0; 1; : : : ; t � 1), a pair (ai; aj) is called an inversion if i < j and ai > aj . The
inversion number INV (�) = jf(ai; aj) j i < j and ai > ajgj is a well known
measure of the degree of sortedness of the sequence �.

In a bilayer graph with northern layer permutation �N = hn0; n1; : : : ; np�1i
and southern layer permutation �S = hs0; s1; : : : ; sq�1i let �E = he0; e1; : : : ; er�1i
be sorted lexicographically such that ek = (nik ; sjk) < (nil ; sjl) = el in �E i�
ik < il or ik = il and jk < jl. In Fig. 1, the edges are sorted like this. Let
� = hj0; j1; : : : ; jr�1i be the sequence of the positions of the southern end nodes
in �E . In our example, we have � = h0; 1; 2; 0; 3; 4; 0; 2; 3; 2; 4i. Each inversion
in � is in a 1-1 correspondence to a pairwise edge crossing in a bilayer graph
drawing BLD(G) according to �N and �S . Therefore, BCC (�N ; �S) is equal to
the number of inversions in �.

It is well known that the number of inversions of an r-element sequence �
can be determined in O(r log r) time and O(r) space, e.g., Cormen, Leiserson,
and Rivest [3] suggest an obvious modi�cation of the merge sort algorithm in
exercise 1-3d. Since the lexicographical ordering that leads to � can be com-
puted in O(jEj) time and space, this implies immediately the existence of an
O(jEj log jV j) time and O(jEj) space algorithm for bilayer cross counting. More
precisely, the (modi�ed) merge sorting algorithm requires O(r logRUN (�)) time
and O(r) space, where RUN (�) is the number of runs, i.e., the number of sorted
subsequences in �. This appears attractive when RUN (�) is expected to be small.
We will test this empirically in Section 4. The number of inversions of a sequence
� can also be determined with the insertion sort algorithm with O(r+ INV (�))
time and O(r) space consumption, and this immediately gives an O(jEj + jCj)
time and O(jEj) space algorithm for bilayer cross counting. We will work out
this idea in detail in the following section, and develop another algorithm with
O(jEj log jVsmallj) running time. An algorithm for counting the inversions of an
r-element sequence � with elements in f0; : : : ; q � 1g, q � r, with running time
better than O(r log r) would immediately improve the bilayer cross counting ap-
proaches based on counting inversions. We do not know if such an algorithm
exists.

5

3 A simple O(jEj log jVsmallj) algorithm

Our task is the eÆcient calculation of the number of inversions of the sequence
� coming from a bilayer graph drawing according to �N and �S as described in
Section 2.

We explain our algorithm in two steps. In step 1, we determine the bilayer
cross count by an insertion sort procedure in O(jEj2) time, and in step 2, we
use an accumulator tree to obtain O(jEj log jVsmallj) running time. We use the
example of Fig. 1 to illustrate the computation. Here is step 1:

(a) Sort the edges lexicographically according to �N and �S by radix sort as
described in Section 2. This takes O(jEj) time. In Fig. 1, this step has already
been performed and the edges are indexed in sorted order.

(b) Put the positions of the southern end nodes of the edges into an array in
sorted order of (a). In the example, we obtain h0; 1; 2; 0; 3; 4; 0; 2; 3; 2; 4i.

(c) Run the insertion sort algorithm (see, e.g. [3]) on the array and accumulate
the bilayer cross count by adding the number of positions each element moves
forward. In the illustration on our example in Fig. 3 we also show the nodes
of N and the edges of E. This additional information is not needed in the
algorithm, it just helps visualizing why the procedure indeed counts the
crossings. In our example, the answer is 2 + 4 + 2 + 1 + 3 = 12 crossings.

The correctness of this algorithm follows from the fact that whenever an
element is moved, the higher indexed elements are immediately preceding it
in the current sequence. This is the important invariant of the insertion sort
algorithm. So the total number of positions moved is equal to the number of
crossings.

Insertion sort takes linear time in the number of edges plus the number
of inversions, and since there are

�
jEj
2

�
inversions in the worst case, we have

described an O(jEj2) algorithm for bilayer cross counting. Now in step 2 of
our explanation we use an accumulator tree as in [12] in order to obtain an
O(jEj log jVsmallj) algorithm. Namely, let c 2 IN be de�ned by 2c�1 < q = jSj �
2c, and let T be a perfectly balanced binary tree with 2c leaves whose �rst q are
associated with the southern node positions.

We store the accumulator tree T in an array with 2c+1�1 entries in which the
root is in position 0 and the node in position i has its parent in position b i�1

2
c.

All array entries are initialized to 0. Our algorithm accumulates the number of
the associated southern nodes in each tree leaf and the sum of the entries of its
children in each internal tree node. It builds up this information by processing
the southern end node positions in the order given by �. For each such position,
we start at its corresponding leaf and go up to the root and increment the entry
in each visited tree position (including the root) by 1. In this process, whenever
we visit a left child (odd position in the tree), we add the entry in its right sibling
to the number of crossings (which is initialized to 0). In Fig. 4, we demonstrate
this for our example: Inside each tree node, we give its corresponding tree index,
and to the right of it, we give the sequence of entries as they evolve over time. An

6

n0 n1 n2 n3 n4 n5

s0 s1 s2 s0 s3 s4 s0 s2 s3 s2 s4

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

2

n0 n1 n2 n3 n4 n5

s0 s0 s1 s2 s3 s4 s0 s2 s3 s2 s4

e0 e1

e2 e3

e4 e5 e6 e7 e8 e9 e10

4

n0 n1 n2 n3 n4 n5

s0 s0 s0 s1 s2 s3 s4 s2 s3 s2 s4

e0
e1

e2 e3
e4

e5
e6

e7 e8 e9 e10

2

n0 n1 n2 n3 n4 n5

s0 s0 s0 s1 s2 s2 s3 s4 s3 s2 s4

e0
e1

e2 e3
e4

e5 e6

e7 e8 e9 e10

1

n0 n1 n2 n3 n4 n5

s0 s0 s0 s1 s2 s2 s3 s3 s4 s2 s4

e0
e1

e2 e3
e4

e5 e6

e7 e8 e9 e10

3

n0 n1 n2 n3 n4 n5

s0 s0 s0 s1 s2 s2 s2 s3 s3 s4 s4

e0
e1

e2 e3 e4

e5 e6
e7 e8 e9 e10

Fig. 3. Counting crossings via insertion sort

entry v
j
indicates that value v is reached when the j-th element of the sequence �

is inserted. The bilayer cross count becomes 2, 6, 8, 9, and 12, when the southern
end node positions of e3, e6, e7, e8, and e9, respectively, are inserted.

By our reasoning above, the correctness of the algorithm is obvious and,
if we assume without loss of generality that jSj � jN j, i.e., Vsmall = S, we
have a running time of O(jEj log jVsmallj). Fig. 5 displays a C-program fragment
that implements the algorithm. The identi�er names correspond to the notation
we have used above, or are explained in comments, respectively. The identi-

7

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14
s0 s1 s2 s3 s4

0 1

0

2

1

3

2

4

3

5

4

6

5

7

6

8

7

9

8

10

9

11

10

0 1

0

2

1

3

2

4

3

5

4

6

6

7

7

8

8

9

9

0 1

5

2

10

0 1

0

2

1

3

3

4

6

0 1

2

2

4

3

7

4

8

5

9

0 1

5

2

10

0

0 1

0

2

3

3

6

0 1

1

0 1

2

2

7

3

9

0 1

4

2

8

0 1

5

2

10

0 0 0

Fig. 4. Building the accumulator tree and counting the crossings

�er southsequence points to an array corresponding to the sequence � of the
southern end node positions after the radix sorting (not shown here) has taken
place.

/* build the accumulator tree */

firstindex = 1;

while (firstindex<q) firstindex *= 2;

treesize = 2*firstindex - 1; /* number of tree nodes */

firstindex -= 1; /* index of leftmost leaf */

tree = (int *) malloc(treesize*sizeof(int));

for (t=0; t<treesize; t++) tree[t] = 0;

/* count the crossings */

crosscount = 0; /* number of crossings */

for (k=0; k<r; k++) { /* insert edge k */

index = southsequence[k] + firstindex;

tree[index]++;

while (index>0) {

if (index%2) crosscount += tree[index+1];

index = (index - 1)/2;

tree[index]++;

}

}

printf("Number of crossings: %d\n",crosscount);

free(tree);

Fig. 5. C program fragment for simple bilayer cross counting

8

4 Computational Experiments

In order to obtain an impression of how old and the new algorithms for bilayer
cross counting perform in direct comparison, we made an empirical study.

We implemented the following algorithms in the C programming language as
functions and used them in various computational experiments:

SAN is the algorithm by Sander [10] that runs in O(jEj+ jCj) time and O(jEj)
space,

WAM is the algorithm by Waddle and Malhotra [12] that runs in O(jEj log jV j)
time and O(jEj) space,

MER is a merge sorting algorithm (Section 2) that runs in O(jEj logRUN (�))
time and O(jEj) space,

INS is a plain insertion sorting algorithm (Section 3, step 1) that runs in O(jEj+
jCj) time and O(jEj) space,

BJM is the algorithm of Section 3, step 2, that runs in O(jEj log jVsmallj) time
and O(jEj) space.

In order to make the comparison as fair as possible, all C-functions have the
same parameters:

int p: p is the number of nodes in the northern layer,
int q: q is the number of nodes in the southern layer (q � p),
int r : r is the number of edges,
int� NorthNodePos: NorthNodePos [k] 2 f0; 1; : : : ; p � 1g is the position of the

northern end node of edge k 2 f0; 1; : : : ; r� 1g in the northern permutation
�N ,

int� SouthNodePos: SouthNodePos [k] 2 f0; 1; : : : ; q � 1g is the position of the
southern end node of edge k 2 f0; 1; : : : ; r� 1g in the southern permutation
�S .

No assumption is made about the ordering of the edges, e.g., MER and BJM
start by computing southsequence by a two phase radix sort. Likewise, the other
algorithms compute the internally needed information from the given data that
should be readily available in any reasonable implementation of a Sugiyama-style
layout algorithm. Furthermore, the functions are responsible for allocating and
freeing temporarily needed space. We made an e�ort in implementing all �ve
algorithms as well as we could.

All experiments were performed under Linux on a SONY VAIO PCG-R600
notebook with an 850 MHz INTEL Mobile Pentium III processor and 256 MB
of main memory. The software was compiled by the GNU gcc compiler with
optimization option O3. All uniformly distributed random numbers needed in our
experiments were generated by the C-function gb unif rand of Donald Knuth's
Stanford GraphBase [7]. In all subsequent plots, data points are averages for 100
instances each.

The crossing minimization phase of a Sugiyama-style layout algorithm typ-
ically starts with random permutations of the nodes on each layer, and in the

9

course of the computation, the edges become more and more untangled. This
means that a bilayer cross counting algorithm is likely to be initially confronted
with random permutations �N and �S and later with permutations that induce
signi�cantly less crossings. In our experiments, we take this phenomenon into
account by running each layer pair twice { �rst with random permutations and
then with permutations generated by a crossing minimization algorithm. The
fastest method with good practical results we know is the so-called MEDIAN
crossing minimization algorithm [4]. While the node permutation in one of the
two layers is temporarily �xed, the nodes of the other layer are reordered accord-
ing to the median positions of their neighbors in the �xed layer. The MEDIAN
heuristic can be implemented to run in O(jEj) time and space. After some ex-
perimentation, we decided that four iterations (reorder southern, then northern,
then southern, and �nally northern layer) give reasonable results. The second
run is performed after such a reordering.

In our �rst experiment, we consider sparse graphs with 1,000 to 30,000 nodes
on each layer and 2,000 to 60,000 randomly drawn edges. The average running
times are plotted in Fig. 6. Here and in the subsequent �gures, the suÆx \RAN"
indicates that the running times are for the instances with random permutations
of the two layers and the suÆx \MED" indicates that the running times are for
the MEDIAN-ordered instances.

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

5000 10000 15000 20000 25000 30000

R
un

ni
ng

 ti
m

e
in

 1
/1

00
 s

ec

Number of nodes on each layer

BJMRAN
MERRAN
WAMRAN
SANRAN
INSRAN

BJMMED
MERMED
WAMMED
SANMED
INSMED

Fig. 6. Running time for sparse graphs

The �rst observation is that SAN and INS are unpractical for large instances
while all other procedures have very reasonable running times. This behavior
extends to very large graphs as can be seen in Fig. 7 for instances up to 500,000
nodes on each layer and 1,000,000 randomly drawn edges. BJM dominates all
other methods for up to about 50,000 nodes both for the \RAN" and for the
\MED" instances, for larger instances BJM leads in the \MED" case and MER
leads in the \RAN" case. However, the di�erences are so small that they can

10

possibly be attributed to system or implementation peculiarities, just like the
slight peak for 350,000 nodes in Fig. 7.

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

R
un

ni
ng

 ti
m

e
in

 1
/1

00
 s

ec

Number of nodes on each layer

BJMRAN
MERRAN
WAMRAN
SANRAN
INSRAN

BJMMED
MERMED
WAMMED
SANMED
INSMED

Fig. 7. Running time for large sparse graphs

Now we study the behavior of the algorithms for instances of increasing
density with 1,000 nodes on each layer. The number of edges grows from 1,000
to 100,000. Fig. 8 shows the results.

0

1

2

3

4

5

6

7

8

9

10

11

12

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

R
un

ni
ng

 ti
m

e
in

 1
/1

00
 s

ec

Number of edges

BJMRAN
MERRAN
WAMRAN
SANRAN
INSRAN

BJMMED
MERMED
WAMMED
SANMED
INSMED

Fig. 8. Running time for graphs with increasing density

As before, SAN and INS are not competitive. Up to about 30,000 edges, BJM
is the best method and beyond, WAM is slightly better.

11

Finally, we ran the algorithms on a selection of real-world graphs compiled
from the AT&T directed graph collection by Michael Kr�uger of the Max-Planck-
Institut f�ur Informatik in Saarbr�ucken. We used the �rst phase of the AGD
Sugiyama implementation in order to obtain layerings with the Longest-Path
and Co�man-Graham options from which we extracted the resulting layer pairs
as test instances. Thus, we compiled two collections of 30,061 instances and
57,300 instances, respectively. For each instance, we applied 10 random shu�es
of the northern and southern layers, each followed by a MEDIAN-ordered run
as explained above. So we ran a total of 601,220 and 1,146,000 instances of the
Longest-Path generated layer pairs and the Co�man-Graham generated layer
pairs, respectively.

In the Longest-Path case, the number of northern nodes varies between 1 and
6,566, with 63 on the average, the number of southern nodes varies between 1
and 5,755, with 57 on the average, and the number of edges varies between 1 and
6,566, with 64 on the average. For the random shu�es, the number of crossings
varies between 0 and 10,155,835, with 24,472 on the average and for the MEDIAN
ordered layers, the number of crossings varies between 0 and 780,017, with 182
on the average.

In the Co�man-Graham case, the number of northern nodes varies between 1
and 3,278, with 142 on the average, the number of southern nodes varies between
1 and 3,278, with 137 on the average, and the number of edges varies between
1 and 3,276, with 141 on the average. For the random shu�es, the number of
crossings varies between 0 and 2,760,466, with 47,559 on the average and for the
MEDIAN ordered layers, the number of crossings varies between 0 and 2,872,
with 4 on the average.

B
JM

M
E

R

W
A

M

S
A

N

IN
S

B
JM

M
E

D

M
E

R
M

E
D

W
A

M
M

E
D

S
A

N
M

E
D

IN
S

M
E

D

0

50

100

150

200

250

R
un

ni
ng

 T
im

e
in

 s
ec

 Longest Path

 Coffman−Graham

Fig. 9. Running time for AT&T graphs

The total running times are reported in Fig. 9. The low crossing numbers in
the MEDIAN case explain why INS and MER are the clear winners. With very
few inversions and very few runs, INS and MER have almost nothing to do while
the other methods do not pro�t much from this fact. We doubt, however, that

12

we picked \typical real world data". Further experiments may lead to hybrid
methods that choose the algorithm according to the problem characteristics.
Nevertheless, our experiments indicate that WAM, MER, and BJM are safe
choices. It should be kept in mind that the running times of a MEDIAN step
and a bilayer cross counting step with one of the fast algorithms are similar, in
fact, the latter is asymptotically slower. Therefore, bilayer cross counting may
dominate the work in the second phase of a Sugiyama-style layout algorithm
signi�cantly, unless WAM, MER, BJM, or a method of comparable performance
is used.

References

1. B. Chazelle, Reporting and counting segment intersections. Journal of Computer
and System Sciences 32 (1986) 156{182.

2. B. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting line seg-
ments in the plane. Journal of the ACM 39 (1992) 1{54.

3. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms. MIT
Press, Cambridge, MA, 1990.

4. P. Eades and N. Wormald, Edge crossings in drawings of bipartite graphs. Algo-
rithmica 11 (1994) 379{403.

5. C. Gutwenger, M. J�unger, G. W. Klau, S. Leipert, and P. Mutzel, Graph
Drawing Algorithm Engineering with AGD. in: S. Diehl (ed.), Software Visu-
alization, International Dagstuhl Seminar on Software Visualization 2001, Lec-
ture Notes in Computer Science 2269, Springer, 2002, pp. 307{323, see also:
http://www.mpi-sb.mpg.de/AGD/

6. M. J�unger and P. Mutzel, 2-layer straight line crossing minimization: performance
of exact and heuristic algorithms. Journal of Graph Algorithms and Applications
1 (1997) 1{25.

7. D. E. Knuth, The Stanford GraphBase: A platform for combinatorial computing.
Addison-Wesley, Reading, Massachusetts, 1993

8. G. S. Lueker, A data structure for orthogonal range queries. Proceedings of the
19th IEEE Symposium on Foundations of Computer Science, 1978, pp. 28{34.

9. G. Sander, Graph Layout through the VCG Tool. in: R. Tamassia and I. G. Tollis
(eds): Graph Drawing 1994, Lecture Notes in Computer Science 894, Springer,
1995, pp. 194-205, see also:
http://rw4.cs.uni-sb.de/users/sander/html/gsvcg1.html

10. G. Sander, Visualisierungstechniken f�ur den Compilerbau. Pirrot Verlag & Druck,
Saarbr�ucken, 1996.

11. K. Sugiyama, S. Tagawa, and M. Toda, Methods for visual understanding of hier-
archical system structures. IEEE Transactions on Systems, Man, and Cybernetics
11 (1981) 109{125.

12. V. Waddle and A. Malhotra, An E log E line crossing algorithm for levelled graphs.
in: J. Kratochv��l (ed.) Graph Drawing 1999, Lecture Notes in Computer Science
1731, Springer, 1999, pp. 59{70.

