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Abstract

Motivation: The selection of target speci�c probes is a
relevant problem in the design of DNA chips. Given a set
S of genomic sequences, the task is to �nd at least one
oligonucleotide, called probe, for each target sequence in
S. This probe will be attached to the chip surface, and
must be chosen in a way that it will not hybridize to any
other sequence but the intended target. Furthermore,
all probes on the chip must hybridize to their intended
targets under the same reaction conditions, most impor-
tantly at the temperature T at which the experiment is
conducted.

Results: We present an eÆcient algorithm for the probe
design problem. Melting temperatures are calculated for
all possible probe-target interactions using an extended
nearest-neighbor model, allowing for both non-Watson-
Crick base-pairing and unpaired bases within a duplex.
To compute temperatures eÆciently, a combination of
suÆx trees and dynamic programming based alignment
algorithms is introduced. Additional �ltering steps dur-
ing preprocessing increase the speed of the computation.
Also, an algorithm to select the actual probes from the
set of candidates is presented.

The practicability of the algorithms is demonstrated
by two case studies: The computation of probes for the
identi�cation of di�erent HIV-1 subtypes, and �nding
probes for 28S rDNA sequences from over 400 organisms.

Availability: The software is available to academic
users on request from the authors.

Contact: fkaderali,schliepg@zpr.uni-koeln.de

Supplementary Information: http://www.zaik.uni-
koeln.de/bioinformatik/arraydesign.html
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Introduction

Both in medicine and biology eÆcient diagnostic tests
to probe genetic information and measure tissue- or
cell-speci�c expression of hereditary information are
required. The availability of sequences of complete
genomes permits interesting questions to be asked and
answered at the genome level rather than at the level
of the individual gene. Unfortunately, traditional tools
such as the polymerase chain reaction (PCR) and diverse
blotting techniques do not scale well enough to eÆciently
support the size of assays required for such tasks. For
this reason, DNA chips have gained wide use in biological
research.
For DNA chip experiments to succeed, appropriate

probes have to be selected for each individual spot on
the chip surface. Given a set of genomic sequences, the
target sequences, we have to �nd at least one probe for
every target sequence in the set. These probes will then
be attached to the chip surface. Each probe on the chip
should hybridize only to the intended target, and not to
any other sequence in the target set, i.e., a probe must
have a high speci�city in detecting the target. The prob-
lem is further complicated as all probes must work under
the same hybridization conditions, most importantly, at
the same temperature. The problem can be formalized
as follows:
Given n target sequences t1; t2; :::; tn, �nd a tempera-

ture T and n probe sequences p1; p2; :::; pn such that

TM (pi; ti)� � > T > TM (pi; tk) + � (1)

for all k 6= i; i = 1; :::; n; where TM (x; y) is the temper-
ature below which the two strands x and y are bound,
and above which they denature. T is the temperature at
which the chip experiment should be carried out. The
additional temperature margin � compensates for exam-
ple for model errors and imprecisions.
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Melting Theory and Nearest Neighbor Model

The computation of TM for a given duplex is based on
the assumption that we deal with two-state transitions:
Either the DNA is in the double helical state, or it is
in the random coil, denatured state. We consider the
two-state reversible equilibrium annealing reaction of two
DNA single strands (compare (Owczarzy et al., 1997))

S1 + S2
KD*) D: (2)

where KD is the equilibrium constant.
TM is de�ned as the temperature at which 50% of the

strands are in the double stranded and 50% in the ran-
dom coil, denatured state. It can be shown that (com-
pare (Freier et al., 1986; Kaderali, 2001; Ornstein &
Fresco, 1983; Owczarzy et al., 1997; Rychlik & Rhoads,
1989))

TM =
�H

�S +R lnCT =4
; (3)

where �H and �S are enthalpy and entropy changes
of the nucleation reaction, R is the Boltzmann constant,
and CT = [S1] + [S2] + 2[D] is the total molar concen-
tration of strands.

This concentration dependence of TM induces some
problems to our ansatz of calculation, as target DNA
concentration is unknown in DNA array experiments.
Thus the calculation cannot be accurate. However,
(Li & Stormo, 2000) report that TM is still suÆciently
precise for probe evaluation. They suggest using a
constant of 1� 10�6M for CT .

Interactions between bases in nucleic acids are of two
kinds (Cupal, 1997):

� Base pairing in the plane of the bases due to hydro-
gen bonding between base pairs in the two opposing
strands, and

� Base stacking perpendicular to the plane of the
bases due to London dispersion forces and hy-
drophobic e�ects.

Both quantum chemical calculations and thermodynamic
measurements suggest that base pairing contributions to
total energy depend exclusively on base pair composi-
tion, while stacking contributions depend on base pair
composition and base sequence along the chain. Ob-
viously, models based solely on base composition ne-
glect stacking contributions, and yield less precise re-
sults (Rychlik & Rhoads, 1989).
As the major contribution to the overall stabilizing en-

ergy of nucleic acid structures results from short-range
interactions, we assume that the stability of a base pair

(and its contribution to enthalpy and entropy of the du-
plex) depends only on the identity of its immediate up-
and downstream neighbors (Cupal, 1997). This assump-
tion leads to the Nearest Neighbor (NN) Model. In this
model we assume that �H and �S of the melting reac-
tion can be calculated by summing up the contributions
of the individual neighboring pairs as follows:

�H =

n�1X
i=1

�Hxi;xi+1=yi;yi+1 ; and (4)

�S =

n�1X
i=1

�Sxi;xi+1=yi;yi+1 ; (5)

where xi denotes the i-th base in strand one read in 5'-
3' direction, whereas yj refers to the j-th base of strand
two read in 3'-5' direction. �H and �S can then be used
with equation (3) to calculate the melting temperature
of the strands.
Usually, thermodynamic parameters for the nearest

neighbor model are determined from UV-absorbance-
vs-temperature pro�les of a number of di�erent, short
oligonucleotides. By �tting the measured curves to the
model, parameters can be obtained that according to
SantaLucia on average �t �G, �H , �S, and TM within
4%, 7%, 8% and 2 degrees Celsius, respectively (San-
taLucia Jr. et al., 1996). Parameters are available
for DNA-DNA (Allawi & SantaLucia, 1997; Allawi &
SantaLucia, 1998a; Allawi & SantaLucia, 1998b; Allawi
& SantaLucia, 1998c; Breslauer et al., 1986; Gotoh &
Tagashira, 1981; Peyret et al., 1999; Quartin & Wet-
mur, 1989; SantaLucia Jr. et al., 1996; SantaLucia, 1998;
Sugimoto et al., 1996), RNA-RNA (Freier et al., 1986;
SantaLucia Jr. & Turner, 1997; Xia et al., 1998) and
DNA-RNA (Gray, 1997) duplexes; by using the appro-
priate set of parameters, the nearest neighbor model can
be applied to all these cases.

Algorithm

To select optimum probes, melting temperatures be-
tween the complements of all substrings of all target se-
quences (as the probe candidates) and all targets have
to be computed. To apply the NN model, an alignment
of the probe and the target sequence is required, and the
alignment resulting in the highest TM is desired. Fur-
thermore, as it is possible that the probe{target-duplex
contains secondary structure, all combinations contain-
ing loops et cetera should be considered as well.
By excluding bad probe candidates as early as possi-

ble, running time can be reduced considerably, as then no
alignments have to be computed for that candidate. Note
also, that pre�xes shared between di�erent substrings are
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quite common in DNA. Hence, additional running time
can be saved by avoiding to recompute entropy and en-
thalpy values for duplexes involving such pre�xes.

DNA Target Sequences

Probe Candidate Regions Target DNA Sequences

Construct Generalized
Suffix Tree containing

Watson-Crick Complements

Compute Thermodynamic Alignment
(all against all)

Additional Constraints
(Hybridization Conditions,

Probe Length, ...)

Display Probes and possible
Conflicts

Preselect Regions for
possible Probe Candidates

Select Probes / Suggest good Candidates

Figure 1: Method overview for probe selection algorithm

Figure 1 gives an overview of the probe design algo-
rithm. Given the DNA target sequences (we speak of
DNA here and in the following, although the algorithm
works just as well for RNA, if the appropriate parameter
sets are used), our goal is to exclude infeasible probe can-
didates as early as possible. Infeasible probes are probes
that are too short or too long, occur more than once in
di�erent probes, or do not ful�ll other relevant criteria.
Thermodynamic conputations will only be done for the
remaining probes.
The algorithm begins by constructing a generalized

suÆx tree from the inverse complements of all target
sequences. A suÆx tree is a data structure allowing
for fast recognition of repetitive subsequences in strings.
This property is used to identify non-unique probes, i.e.,
probes forming perfect duplexes with more than one tar-
get, which are subsequently removed from the probe can-
didate set. Also, some other criteria are used to remove
infeasible probes, such as the probe length and the melt-
ing temperature of the probe with its perfect Watson-
Crick complement. We will come back to this point later.
Note, that additional criteria can be included easily, and
that it is possible to remove entire regions based on, for
example, some biological background knowledge on the

sequences under consideration.

Given the target DNA sequences and probe candi-
dates, the algorithm computes melting temperatures for
all combinations of probe{target interactions, i.e., melt-
ing temperatures between all probe candidates paired
with all target sequences. As DNA is known to be highly
repetitive (compare (Gus�eld, 1997), page 286), much
time can be saved by avoiding recomputation of melting
temperatures for subdomains of probes with some given
target that have already been considered. The probes
are stored in a generalized suÆx tree in the preselection
step, and this suÆx tree is used further in the algorithm
to avoid such redundant computations.

Finally, probes and melting temperatures are output,
and chip probes can be picked from suggestions made or
evaluated further by sorting output data and, for exam-
ple, graphically visualizing crosshybridization conicts.

Thermodynamic Alignment

To apply the nearest neighbor model, we need to know
which bases are going to form basepairs in the duplex.
Unfortunately, this is not clear at all if the strands
are not perfectly complementary to one another in the
Watson-Crick sense. Worse yet, bases may remain un-
paired within a duplex, and the duplex will still be quite
stable (Ke & Wartell, 1995; LeBlanc & Morden, 1991;
Turner, 1992). Hence, an alignment of the two sequences
is required, where gaps should be allowed. The align-
ment and TM are interdependent: We cannot compute
TM without knowing the alignment, and the alignment
should maximize TM . Enumerating all possible align-
ments and computing their respective melting temper-
atures to choose the maximum thereof is infeasible, as
the number of alignments grows exponentially with se-
quence length and the problem would quickly become
computationally intractable.

The problem of aligning two sequences given a weight
function w(�; �) is one of the standard bioinformatics
problems. A dynamic programming algorithm due to
Needleman-Wunsch (Durbin et al., 1989; Gus�eld, 1997;
Waterman, 1995) can be used to �nd an alignment max-
imizing w(�; �). The general idea is to consecutively ex-
tend the alignment, starting with an alignment of pre-
�xes of the two sequences x and y. This is done by creat-
ing a table A, writing x on one axis and y on the other.
Element Ai;j of the table stores the optimum score for an
alignment of the pre�xes x[1::i] and y[1::j], the pre�xes
consisting of the �rst i and j characters of x and y, re-
spectively. As the weight of an alignment is an additive
function of the individual base-pair weights, the simple
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recursion

Ai;j := max

8<
:

Ai�1;j�1 + w(xi; yj)
Ai�1;j + w(xi;�)
Ai;j�1 + w(�; xj)

(6)

allows to compute all values in table A correctly (pro-
vided the \border" A0;� and A�;0 has been initialized
properly). The weight of the optimum alignment can be
found in Ai;j .
We have modi�ed this algorithm to calculate �H and

�S at every position in the dynamic programming table,
choosing the pre�x-alignment resulting in the highest lo-
cal melting temperature: Our cost function is the TM
function from equation (3), and instead of storing TM
in the dynamic programming table, we store values for
�H and �S at every position in the table. Then, our
recursion becomes:

�Hi;j =

8<
:

�Hi�1;j�1 +��H(xi; yj) if t = 0
�Hi�1;j +��H(xi;�) if t = 1
�Hi;j�1 +��H(�; yj) if t = 2

(7)

�Si;j =

8<
:

�Si�1;j�1 +��S(xi; yj) if t = 0
�Si�1;j +��S(xi;�) if t = 1
�Si;j�1 +��S(�; yj) if t = 2

(8)

and t 2 f0; 1; 2g is to be chosen such that

TM =
�Hi;j

�Si;j +R lnCT =4
(9)

is maximal. Note, that ��H(xi; yj) and ��S(xi; yj)
denote the values from the nearest neighbor parameters
for enthalpy and entropy changes, respectively, when the
i-th base of x, xi and the j-th base of y, yj are paired
in the alignment. \{" stands for a gap in the align-
ment, representing an unpaired base in the duplex. Note
also, that ��H and ��S depend not only on the cur-
rent basepair, but also on the one before (the nearest
neighbor). However, implementing this dependency is
straightforward. We neglect this issue here for the sake
of simplicity.
By initializing the border of the dynamic programming

table with zeros, we assure that initial gaps do not lower
TM ; by looking for the result not just in cell (jxj; jyj), but
in cells (s; jyj) and (jxj; t) for all s = 1::jxj and t = 1::jyj
and choosing the maximum value found, the same is true
for terminal gaps.
Unfortunately, as the melting temperature equation

(9) is not linear, the alignment algorithm is not guaran-
teed to return the optimum alignment with the highest
TM possible. To assess the quality of the approxima-
tion (using the parameters listed in (Kaderali, 2001)),
we have enumerated all perfect Watson-Crick duplexes
of length up to 15 nucleotides, and shown that the al-
gorithm �nds the optimum alignment in all these cases.

Furthermore, for over 100,000 random Watson-Crick du-
plexes of length up to 250, not a single error was made
either. In the case where the most stable duplex contains
one single unpaired nucleotide, the greedy approach may
fail. Consider, for example, the duplex

0 1 2 3 4 5 6 7 8 9 a b

$ G T G T G C A A A A $

- $ C C A C G T T T T $

. . M M M M M M M M M M

with a melting temperature TM = 27:2ÆC, whereas the
alignment algorithm �nds

0 1 2 3 4 5 6 7 8 9 a b

$ G T G T G C A A A A $

$ C - C A C G T T T T $

. M . M M M M M M M M .

with TM = 15:4ÆC. The di�erence is caused when the
algorithm is forming the G/C pair in position 3. It
has to decide between either the $GT/$C- alignment or
the $GT/-$C alignment. The alignment resulting in the
higher local melting temperature is chosen | but unfor-
tunately, when more bases are added after the G/C pair,
it turns out that the wrong choice has been made.
To be able to estimate the magnitude of the error for

more distant sequences, two experiments involving ran-
domly generated sequences have been performed:

1. Generate two random sequences of random lengths
between minlen and maxlen nucleotides; note that
the two sequences generated may be of di�erent
length. Run the thermodynamic alignment algo-
rithm to calculate the alignment melting tempera-
ture T align

M . In parallel, enumerate all possible align-
ments, calculate their respective melting tempera-
tures, and save the maximum T enum

M thereof.

2. Generate one random sequence of length between
minlen and maxlen. Then construct a second
sequence as the inverse Watson-Crick complement
thereof (meaning that this second sequence forms a
perfect duplex with the former one), and introduce
at most maxmut insertions, deletions or substitu-
tions. Again, run the thermodynamic alignment
algorithm to calculate the alignment melting tem-
perature T align

M . In parallel, enumerate all possible
alignments, calculate their respective melting tem-
peratures, and save the maximum T enum

M thereof.

Experiment 1 has been carried out with minlen = 10
and maxlen = 15 for 2500 random sequences. The re-
sults are reassuring. For 1241 alignments or 49.64%,
T align
M and T enum

M were equal. For another 272 align-
ments (= 10.88%), an error of at most three degrees Cel-
sius was made, which is about the average error inherent
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in the nearest neighbor model. For 79.76% of the align-
ments, the error was no more than 10 degrees Celsius.
Figure 2 depicts the di�erence T enum

M � T align
M (rounded

up to the next integer) versus the number of sequences
with that error. The average error made was 3.13 degrees
Celsius, the maximum error observed was 35.46 degrees.

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40

Number of Sequences

Error

Figure 2: The diagram shows the error made (rounded up
to the next integer) vs the number of alignments with an
error of that magnitude, for 2500 alignments of random
sequences of lengths between 10 to 15 nucleotides.

The case where the calculated temperature is too low
when the sequences forming the duplex have only little
similarity is not really a problem | the actual melting
temperature of the duplex will be too low to play a role in
probe design anyways. Therefore, the results of experi-
ment 2 are even more interesting. Again, the experiment
was conducted for 2500 alignments with at most one mu-
tation. In that case, no error was made in 87.12% of the
cases. An error of not more than three degrees was made
in 90.12% of the alignments, and an error of at most 10
degrees was made in 93.84% of the alignments. The av-
erage error made was 1.27ÆC, the maximum error was
34.3 degrees Celsius.
Using dynamic programming, the thermodynamic

alignment algorithm realizes a considerable reduction of
running time by avoiding enumeration of all possible
alignments for two given sequences. However, under cer-
tain circumstances we lose optimality.

SuÆx Trees

The algorithmic idea introduced in this section will re-
duce running time as well. Nothing is lost in terms of
result quality, all we need is a little more memory and
an additional data structure.
The underlying idea is straightforward. Assume we

have just computed the dynamic programming table
for the two sequences \GATTACA" and \CTAAGGT".
Further assume we need to align \GATTACA" and
\CTAATGA" sometime thereafter. Then, the two dy-

namic programming tables share the subtable for \GAT-
TACA" and \CTAA". We need not recompute this part
of the dynamic programming table for the latter align-
ment, but may use the subtable from the former align-
ment and compute only the remaining, di�erent entries.
To identify common pre�xes of substring pairs of all the
di�erent sequences under consideration, we use a gener-
alized suÆx tree. This tree is then used in both probe
preselection and alignment.

A suÆx tree for the sequence \TACTACA" is shown
in Figure 3. Note that, by appending the unique char-
acter \$" at the end of the string, we guarantee that
every suÆx ends at a leaf. Otherwise, the suÆx \A" of
\TACTACA", i.e., the suÆx consisting of only the last
character of the original sequence, would end within the
\AC" edge. This problem arises whenever a suÆx of the
string is a pre�x of another suÆx.

Although suÆx trees appear to be quite complex at
�rst sight, they can surprisingly be constructed in lin-
ear time in the length of the given string. Esko Ukko-
nen (Ukkonen, 1995) devised a straightforward O(n) al-
gorithm in 1995. An excellent description of that algo-
rithm can be found in (Gus�eld, 1997).

Input: TACTACA A

C
$

A

A

A

C

$

$T
A

C
A

$

T

A

C

$
T

A
C

A
$

T
A
C

A
$

$

Figure 3: SuÆx tree for the sequence \TACTACA".
Note how all the suÆxes \TACTACA", \ACTACA",
\CTACA", \TACA","ACA","CA", \A" and the empty
suÆx are described by a unique path from the root node
to one of the leaves, and how every leaf uniquely yields
one such suÆx. The symbol \$" denotes the end of a
string.

SuÆx trees represent all suÆxes of one given string.
A Generalized SuÆx Tree is a suÆx tree containing all
suÆxes of a �nite number of strings. Only slight modi�-
cations are required to construct generalized suÆx trees
with Ukkonen's algorithm, and the resulting algorithm
still runs in linear time.
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Probe Preselection

As mentioned before, we need to compute melting tem-
peratures (and alignments) between all probe candidates
and all sequences in the target set. Therefore, it seems
worthwhile to put some e�ort into reducing the num-
ber of probe candidates as early as possible. There are
several criteria that help exclude infeasible probes:

� Probe Length: Usually, there are some restrictions
to probe length. These may be due to technical
limitations in the process of chip manufacturing, as
well as limitations given by the user or other exter-
nal causes. Without going into more detail at this
point, we assume that we have variablesminlen and
maxlen with minlen � jprobeij � maxlen, where
jprobeij is the length of probe i, and all feasible
probes have to satisfy that inequality. Clearly, it
makes no sense to align a probe p to any target se-
quence if p is too long. Similarly, if jpj < minlen,
the probe can be skipped as well.

� Unique Probes: If a given probe is the perfect
Watson-Crick complement to substrings of two or
more target sequences, that probe will hybridize to
both targets with the same melting temperature.
Therefore, such probes cannot be used for chip ex-
periments, as both targets would hybridize against
the same spot on the chip. We will allow only probes
that are complementary to exactly one substring of
all target sequences.

� Probe Melting Temperature: Last but not least,
one can impose some constraints on the minimum
temperature that a probe{target duplex should
be able to withstand. The chip experiment will
be carried out at some temperature T , therefore
TM (target; probe) > T must hold. Of course, the
problem of determining T and the probes to be used
are not independent from one another. However, we
assume some bound TB � T to be given that can be
used to exclude probes with TM (probe; target) < TB
from further consideration.

The algorithm to preselect probes starts with the set of
complements of all substrings of all the target sequences.
Every substring of a string is a pre�x of a suÆx of that
string. Therefore, a generalized suÆx tree can be used to
represent all substrings. By following a unique path from
the root to another node, either leaf or internal, all sub-
strings can be retrieved from the tree (the path may end
somewhere within an edge, i.e., it need not necessarily
terminate at a node). Similarly, each substring corre-
sponds to one such path starting at the root node. Note,
however, that one path may correspond to two (equal)
substrings from the same or di�erent sequences.

After the generalized suÆx tree containing the com-
plements of all target sequences has been constructed,
applying the above criteria and removing all infeasible
probes from the tree is straightforward. During prepro-
cessing, we insert additional nodes in the tree to assure
that every probe candidate corresponds to a leaf. When
preprocessing is done, the suÆx tree has been converted
to a keyword tree (Gus�eld, 1997) containing all the
feasible probe candidates, where each candidate corre-
sponds to the path-label of a leaf node.

Thermodynamic Tree Alignment

Recall, that our objective is to determine a probe for each
of the n genomic sequences that will hybridize only to its
respective target, and not to any of the other sequences.
Hence, we need to compute the melting temperatures of
the most stable duplex formed between each probe left
after preprocessing and each target. The �nal step of
selecting probes from the output of the thermodynamic
tree alignment algorithm will be described in the next
section.
To compute the melting temperatures, begin with the

complements of all substrings of the n target sequences.
This is done by constructing a generalized suÆx tree con-
taining the complements of all target sequences. Then,
all substrings are contained in that tree. The second step
is to reduce the number of substrings stored in the tree,
and to assure that all probe candidates remaining in the
tree correspond to a leaf. These steps are taken care of as
described in the previous section on probe preselection.
Finally, all that remains to be done is the computa-

tion of the melting temperatures of the duplexes formed
between all substrings left in the tree and all target se-
quences; i.e., each substring and each target have to be
aligned using the thermodynamic alignment algorithm
described above, and the maximum melting tempera-
ture must be determined. Doing so is extremely time-
consuming. We will therefore use the modi�ed suÆx
tree from the preprocessing step to reduce running time.
Repetitive subsequences in DNA are quite common.

Thus, whenever calculating alignments of two strings,
we may be able to reuse parts of the dynamic program-
ming table from a previously computed alignment, if the
strings from that prior alignment share pre�xes with the
actual strings.
Fortunately, we can use the tree constructed dur-

ing preprocessing to identify such common pre�xes of
probes. The tree induces an ordering of the probes,
grouping probes with common pre�xes together. This
helps to calculate such groups at a time and to avoid the
storage of di�erent subtables, which reduces the overall
memory requirements of the program.
Special care must be taken to initialize the tables up-
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..GCTCAGTTGATCGTCGTG..

T
A

Target Sequence

DFS-Path in
Probe Tree

alignment
submatrix

T
A

C
A

T
A

G
TA

Figure 4: Alignment of the target sequence with probe
::TATACATA::. Note that if the alignment of the se-
quence TAGTA and the same target has been computed
before, the upper part of the dynamic programming table
can be reused.

per and left border properly when a new target sequence
is introduced. Initial gaps in a sequence should not be pe-
nalized. Hence the upper and left border of the dynamic
programming table should be set to zero. Similarly, ter-
minal gaps should not be penalized either. Hence, when
we retrieve the maximum melting temperature from the
alignment table, we look up all entries in the last row
and last column of the dynamic programming table, and
choose the maximum thereof.

Probe Picking

The thermodynamic tree alignment algorithm deter-
mines probe candidates according to certain criteria, and
returns melting temperatures TM (probe; target) for all
(probe candidate; target) pairs, i.e., all probe candidates
and all target sequences.

Given the output list from the thermodynamic tree
alignment algorithm, our objective now is to select a
temperature T and one probe from the list for each of
the target sequences, such that the chip experiment can
be carried out at temperature T , and the probes selected
will hybridize only to their intended target sequence, and
not to any of the other sequences. This problem can be
formalized as follows:

PSP: Given n DNA or RNA target sequences
t1; t2; ::; tn, given furthermore for each target sequence
ti a �nite set of probe sequences Pi, where Pi

T
Pj = ;

for all i; j; i 6= j. Furthermore given for all target se-
quences ti and all probe candidates pj 2

Sn
k=1 Pk the

melting temperatures TM (ti; pj) at which target ti and
probe pj dissociate.

Find a temperature T and, for each target sequence

ti, select one probe pk 2 Pi s.t.

TM (ti; pk) � T > TM (tj ; pk) (10)

for all j 6= i.

The temperature T is a temperature that must hold
for all probes selected; the inequality above must be
satis�ed by all probes selected for all targets with the
same temperature T . This implies that for two selected
probes pi for target ti and pj for target tj , the inequal-
ities TM (ti; pi) > TM (tj ; pi), TM (ti; pi) > TM (ti; pj),
TM (tj ; pj) > TM (ti; pj) and TM (tj ; pj) > TM (tj ; pi)
must hold: All \desired" hybridizations have melting
temperatures higher than all \undesired" cross-hybridi-
zations.
This problem can be solved in polynomial time. The

idea is to sort the probes for each target according to
their melting temperature. Then, starting with the high-
est temperature T, consecutively lower T, and remove
all probes that will crosshybridize at the new tempera-
ture. This is iterated until either a feasible, unambiguous
probe is found for every probe, or until all probes have
been removed. Figure 5 illustrates the procedure.

Ta
rg

et
 1

Ta
rg

et
 3

Ta
rg

et
 2

TM

Probe 1.1

Probe 1.2

Probe 1.3

Probe 2.1

Probe 2.2

Probe 3.1

Probe 3.2

Figure 5: Probe picking. The X-axis represents the melt-
ing temperature, the Y-axis the di�erent probes. Probe
indices are of the form t:p, where t refers to the target
sequence the respective probe is intended for, and p is
the number of the probe for that target. For each probe,
the right end of the dark bar shows TM of the perfect du-
plex formed between the probe and its respective target,
the light gray bar shows the temperature range where
the probe will crosshybridize. For the temperature rep-
resented by the line vertically crossing all probes, probes
1.2, 2.1 and 3.2 would yield a feasible set of probes. The
algorithm starts with the maximum melting temperature
found for some duplex, and decreases T until such a set
is found.
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Implementation

The algorithms presented here have been implemented
in C++. The Probesel program combines probe pre-
selection and the thermodynamic alignment algorithm
and calculates melting temperatures between probe can-
didates and all target sequences. The Pickprb program
implements the Probe Selection Problem (PSP) Algo-
rithm to select one probe for each target sequence from
the output generated by Probesel.
The program code has been tested on Intel-PCs un-

der Windows NT 4.0 with Microsoft's Visual C++ 6.0,
on Sun Ultra Enterprise 4000 running Solaris 7 with
the GNU g++ compiler, and on DEC Alpha / Compaq
Tru64 UNIX V5.1 with Compaq's cxx compiler, version
6.20.

Discussion

Identifying HIV-1 Subtypes

Besides running on randomly generated sequences of dif-
ferent lengths, the algorithm has been used to identify
optimum probes to be used for the identi�cation of dif-
ferent HIV-1 subtypes. The complete HIV-1 reference
subtypes database from Los Alamos National Labora-
tories, USA (LANL, 1999) has been processed. This
database contains 58 sequences of average length around
9300 nucleotides. All probes of length 20 with a melt-
ing temperature above 70ÆC have been evaluated. The
entire computation took 8.7 hours for the probesel pro-
gram and a couple of seconds for pickprb on a Compaq
Tru64 machine with four DEC Alpha EV6.7 processors
each operating at 667 MHz, and equipped with an alpha
internal oating point processor. The machine has a to-
tal of 6017M RAM. Note that the present version of the
program runs single-threaded and hence makes no use of
the multiple processors available.
All possible duplexes with a temperature above 0ÆC

have been written to a �le by probesel, which was
then processed by pickprb. Probes were found for all
58 sequences, with melting temperatures between 73:4Æ

and 84:8Æ Celsius. The highest temperature for which
crosshybridizations are predicted is 53:3Æ Celsius, which
gives a margin of more than twenty degrees. The pro-
gram suggests conducting the experiment at a tempera-
ture of 63:5 degrees Celsius.

Application to 28S rDNA Sequences

The algorithms presented here have been applied to a
database of 1230 28S rDNA sequences from di�erent or-
ganisms (Markmann, 2000). Those 1230 sequences are
of length between 160 and 6198 bases, with an average

length of 676 nucleotides. As the database contains se-
quences with very high similarity (> 95%), it was �l-
tered before starting the Probesel program. To do so,
pairwise alignments of all sequences were computed, us-
ing edit distance as distance function. Then, for each
aligned pair of sequences, all matches between the two
sequences were counted. This was set in relation to the
length of each of the sequences in the alignment, includ-
ing internal gaps, but not counting initial and terminal
gaps. Whenever some sequence was over 95% similar
to another sequence according to that metric, it was re-
moved. If both sequences had relative similarity of over
95% to one another, the shorter one was removed.
487 sequences remained in the database after this

preprocessing step. Then, the probesel algorithm was
started with probe length 29-30 and minimum probe-
target melting temperature 60ÆC. No unique probes
could be found for 44 Sequences, which Probesel reported
after approximately 2 minutes. These sequences were re-
moved from the target set, and the program was started
again.
The calculation of all melting temperatures |

including the preprocessing step| took 60.6 hours, or
two and a half days. Then, probe picking was completed
in less than a minute. The algorithm suggests conduct-
ing the chip experiment at a temperature of 70.3 degrees
Celsius, and �nds probes for 396 of the 443 targets, when
a margin of �ve degrees is enforced between the highest
crosshybridization temperature and the lowest tempera-
ture at which intended hybridizations occur. The lowest
\intended hybridization" TM was 72.8 degrees, whereas
the highest temperature calculated for crosshybridiza-
tions was 67.7 degrees celsius.
Experimental evaluation of the probes selected by the

algorithm is under way. Results will be published else-
where.
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