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Summary. This paper is concerned with n-person games which typically occur in
mathematical conict models [cf. [4], [7],[8]]. These games are so called cost-games,
in which every actor tries to minimize his own costs and the costs are interlinked
by a system of linear inequalities. It is shown that, if the players cooperate, i.e.,
minimize the sum of all the costs, they achieve a Nash Equilibrium. In order to
determine Nash Equilibria, the simplex method can be applied with respect to the
dual problem. An important special case is discussed and numerical examples are
presented.

1. Introduction

The conferences of Rio de Janeiro 1992 and Kyoto 1997 demand for new
economic instruments which have a focus on environmental protection in the
macro and micro economy. An important economic tool being part of the
treaty of Kyoto in that area is Joint-Implementation. It is an international
program being part of the treaty of Kyoto which intends to strenghten inter-
national cooperations between enterprises in order to reduce CO2-reductions.
A sustainable development can only be guaranteed if the instrument is em-
bedded in an optimal energy management. Optimal energy management ac-
cording to Joint-Implementation means in this context that it must work on
a micro level with minimal costs and it should be protected against misuse
on a macro level.
For that reason, the TEM model (Technology-Emissions-Means model) was
developed, giving the possibility to simulate such an extraordinary market
situation.
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2. The TEM model

Technology-Emissions-Means model

The realization of Joint-Implementation (JI) is determined by technical and
�nancial constraints. In a JI Program the reduced emissions resulting from
technical cooperations are registrated at the Clearing House. The TEMmodel
integrates both the simulation of the technical and �nancial parameters. For
that reason we want to give a short introduction into the TEM model at
the beginning. In Pickl (1999) the TEM model is treated as a time-discrete
control problem. Furthermore, the analysis of the feasible set is examined in
Pickl (2000). In the following, after having introduced the TEM model we
want to present a new

GAME

The presented TEM-model describes the economical interaction between
several actors (players) which intend to maximize their emissions reduced (Ei)
caused by technologies (Ti) by means of expenditures of money (Mi) or �nan-
cial means, respectively. The index stands for the i-th player, i 2 f1; : : : ; ng.
The players are linked by technical cooperations and the market, which
expresses itself in the nonlinear time-discrete dynamics of the Technology-
Emission-Means model, in short: TEM model.

Ei(t+ 1) = Ei(t) +
nX
j=1

emij(t)Mj(t) (1)

Mi(t+ 1) = Mi(t)� �iMi(t)[M
�
i �Mi(t)]fEi(t) + 'i�Ei(t)g

(2)

We want to explain in the following the TEM model. Let us begin with
a description of the following parameters. ( For a deeper insight see Pickl
(1999)):

Ei emissions reduced of actor i in percent

Mi �nancial means of actor i

emij e�ectivity measure parameter

describes the e�ect on the emissions of the i-th player

if the j-th actor invests money for his technologies

'i memory parameter

�i growth parameter

Here, emij describes the e�ect on the emissions of the i-th actor, if the j-th
actor invests money. We can say that it expresses how e�ective technol-
ogy cooperations are (like an innovation factor), which is the central
element of a JI Program.



Furthermore, we are able to determine the emij-parameter empirically.
In the �rst equation the level of the reduced emissions at the t-th time-
step depends upon the last value plus a market e�ect. This e�ect expresses
itself in the additive terms which might be negative or positive. In general,
Ei > 0 implies that the actors have reached yet the demanded value Ei = 0
(normalized Kyoto-level). A value Ei < 0 expresses that the emissions are
less than the requirements of the treaty. In the second equation we see that
for such a situation the �nancial means will increase whereas Ei > 0 leads to
a reduction of Mi(t + 1):

Mi(t+ 1) = Mi(t) � �iMi(t)[M
�
i �Mi(t)]fEi(t) + 'i�Ei(t)g

The second equation contains the logistic functional dependence and the
memory parameter 'i which describes the e�ect of the preceeding investment
of �nancial means. The dynamics does not guarantee, that the parameter
Mi(t) lies in the interval, which can be regarded as a budget for the i-th actor.
For that reason we have to add restrictions to the dynamical representation.

0 �Mi(t) �M�
i ; i = 1; : : : ; n and t = 0; : : : ; N:

Then it is easy to show that

��iMi(t)[M
�
i �Mi(t)] � 0 for i = 1; : : : ; n and t = 0; : : : ; N:

We have guaranteed that Mi(t + 1) increases if Ei(t) + 'i�Ei(t) � 0 and
decreases if Ei(t) + 'i�Ei(t) � 0. Applying the memory parameter 'i we
have developed a reasonable model for the money expenditure - emission -
interaction, where the inuence of the technologies is integrated in the em-
matrix of the system.

We can use the TEM model as a time-discrete model where we start with
a special parameter set and observe the resulting trajectories. Normally, the
actors start with a negative value, i.e., they lie under the baseline mentioned
in Kyoto Protocol, see Kyoto (1997). They try to reach a positive value of
Ei . If we add control parameters, we enforce this development by an additive
�nancial term. For that reason the control parameter are added only to the
second equation.

Mi(t+ 1) = Mi(t) � �iMi(t)[M
�
i �Mi(t)]fEi(t) + 'i�Ei(t)g+ ui(t)

ui(t) control parameter

In the sense of environmental protection, the aim is to reach a state which
is mentioned in the treaty of Kyoto by choosing the control parameters such
that the emissions of each player become minimized. The focal point is the
realization of the necessary optimal control parameters via a played cost
game, which is determined by the way of cooperation of the actors.



3. The Cost-Game in the TEM Model

If we regard the nonlinear time-discrete dynamics of the TEM-model

Ei(t + 1) = Ei(t) +
nX

j=1

emij(t)Mj(t) (1)

Mi(t + 1) = Mi(t) � �iMi(t)[M
�
i �Mi(t)]fEi(t) + 'i�Ei(t)g

we can also formulate

Ei(t + 1) = Ei(t) +
nX

j=1

emij(t)Mj(t) (2)

Mi(t + 1) = Mi(t) � �iMi(t)[M
�
i �Mi(t)]fEi(t) + 'i

nX
j=1

emij(t)Mj(t)g

considering that �Ei(t) = Ei(t + 1)� Ei(t)

In order to reach steady states, which are determined in Pickl (1999), an
independent institution may inuence the trade relations between the actors.
In practice, the imposing of taxes or the giving of incentives means that in the
TEM-model the em-parameter will change. Now, the principle of JI implies
that technical cooperation will be bene�tted:

0
@ em11 em12 + � em13

em21 + � em22 em23

em31 em32 em33

1
A

Actor 1 and Actor 2 do cooperate

0
@ em11 + ! em12 + ! em13 + !

em21 + ! em22 + ! em23 + !

em31 + ! em32 + ! em33 + !

1
A

All players do cooperate

According to ( 1) and ( 2) let us begin with the construction of the cost-
game in the TEM-model

vt(K) :=
X
j2K

Mj(t)

| {z }
WithoutCooperation

� M (K)| {z }
Cooperation

(3)

= (K�
1 (t) K�

2 (t) K�
3 (t) )

0
@ 0 � �

� 0 

�  0

1
A
Ind(K)

0
@M1(t)
M2(t)
M3(t)

1
A



with K�
i (t) = 'i ~Mi(t); ~Mi(t) := [M�

i � Mi(t)]; (i = 1; : : : ; n) and K 2
Pot(N ) .
In the sequel, we have

(B)Ind(K) := A;with

�
aij = bij , if i 2 K and j 2 K

aij = 0

For the time-dependent grand coalition we get:

vt(N ) :=
X
j2N

Mj(t)

| {z }
WithoutCooperation

� M (N )| {z }
Cooperation

= (K�
1 (t) K�

2 (t) K�
3 (t) )

0
@ 0 ! !

! 0 !

! ! 0

1
A
0
@M1(t)
M2(t)
M3(t)

1
A

For ~Mi(t)'iMi(t) � 0 (i; j 2 f1; : : : ; ng) the di�erence between the co-
operative and the non-cooperative case is always positive. So we have con-
structed a reasonable cost-game. Now we want to steer the system in a cost-
minimal way in order to reach the states Mi(t̂) = 0 and Ei(t̂) = 0 (i =
1; : : : ; n), for some t̂ � 0.

The method is that at each time step, the amount of our cost-game is
put into a central fund, which can also be used as feasible set for our control
process. In the following we want to analyse a special allocation principle.

This minimization problem leads directly to the following allocation prob-
lem which we will solve in the next section. Using linear programming tech-
niques and the simplex method Nash Equilibria are determined. Together
with the basic theory [5] then we are able to simulate and analyse an eco-
nomical Joint-Implementation Program [7] with the TEM model in the sense
of Gustav Feichtinger [2], [3].



4. The Allocation Problem

In connection with the TEM-Model [7] which is based on a general conict
model [6] the following allocation problem is in the center of interest. In
order to develop a Joint-ImplementationProgram we begin with the following
formulation:

Given n players who pursue n goals which are given by an n-vector

b = (b1; : : : ; bn)
T with bi � 0 for i = 1; : : : ; n:

In order to achieve these goals every player has to put in a certain amount
of money, say xi � 0 for the i-th player. The share of the player j at the goal
bi (where bj is his own goal) when he spends one unit is assumed to be cij
where (for good reasons)

cii > 0 for i = 1; : : : ; n . (4)

If i 6= j, however, cij � 0 is also allowed for. In such a case player j can
be considered as an opponent of player i. The requirement to achieve all the
goals is expressed by the following system of linear inequalities

nX
j=1

cij xj � bi for i = 1; : : : ; n . (5)

In the sequel we assume that there is a vector x = (x1; : : : ; xn) with xi � 0
for i = 1; : : : ; n for which the inequalities (2) are satis�ed.

Then, for every i, the i-th player, of course, is interested in minimizing his
own contribution xi. In general, this will not be possible simultaneously. So
the players will have to cooperate. Let us assume that they choose x̂ 2 IRn

with (2) and xj � 0; j = 1; : : : ; n; for a x = x̂ such that

s(x) =
nX
j=1

xj (6)

for x = x̂, is as small as possible. Now let, for i 2 f1; : : : ; ng, xi � 0 be chosen
such that

nX
j=1

j 6=i

ckj x̂j + cki xi � bk for all k = 1; : : : ; n , (7)

then
nX

j=1

x̂j �
nX

j=1

j 6=i

x̂j + xi =) x̂i � xi (8)

which implies that x̂ is a Nash equilibrium.



5. On the Determination of Nash-Equilibria

The problem of minimizing (3) subject to (2) and

xj � 0 for j = 1; : : : ; n (9)

is a typical problem of linear programming whose dual problem consists of
maximizing

t(y) =
nX
i=1

bi yi (10)

subject to

nX
i=1

cij yi � 1 for j = 1; : : : ; n (11)

and

yi � 0 for i = 1; : : : ; n . (12)

If we put yi = 0 for i = 1; : : : ; n, then we obtain a solution of (11) and (12).
Under the above assumption that there exists a solution of (5) and (7) we can
apply a well known duality theorem and conclude that there exists a solution
x̂ 2 IRn of (5) and (9) which minimizes (6) and a solution ŷ 2 IRn of (11)
and (12) which maximizes (10) and that s(x̂) = t(ŷ) which is equivalent to

x̂j > 0 =)
nX
i=1

cij ŷi = 1

and

ŷi > 0 =)
nX
j=1

cij x̂j = bi . (13)

On introducing slack variables

zj � 0 for j = 1; : : : ; n (14)

the inequalities (11) can be rewritten as equations in the form



zj +
nX
i=1

cij yi = 1 for j = 1; : : : ; n . (15)

The dual problem is then equivalent to the minimization of

nX
j=1

0 � zj +
nX
i=1

bi yi (16)

subject to (12), (14), and (15). This problem can be solved immediately by
the simplex method starting with the basic solution

zj = 1 for j = 1; : : : ; n and yi = 0 for i = 1; : : : ; n . (17)

5.1 A Special Case

Now let us assume that for some j 2 f1; : : : ; ng it is true that

cij � 0 for all i = 1; : : : ; n , i 6= j , (18)

i.e., the player j can be considered as an opponent of all the other players. If
x̂ 2 IRn is a solution of (5) and (9) that minimizes (6), it follows that

nX
k=1

cjk x̂k = bj . (19)

For otherwise (x̂1; : : : ; x̂j�1; x�j ; x̂j+1; : : : ; x̂n) with

x�j =
1

cjj
(bj �

nX
k=1
k 6=j

cjk x̂k) < x̂j

also solves (5) and (9) and it follows that

x�j +
nX

k=1

k6=j

x̂k <

nX
k=1

x̂k

contradicting the assumption that
nP

k=1

x̂k is minimal.

Now let us assume that

cij � 0 for all i 6= j , (20)

i.e. all players can be considered as opponents to each other. Then, for every
solution x̂ 2 IRn of (5) and (9) that minimizes (6), it follows that



nX
j=1

cij x̂j = bi for all i = 1; : : : ; n . (21)

If we assume (20) and

nX
j=1

cij > 0 for all i = 1; : : : ; n , (22)

then (1) is satis�ed and the matrix C is inverse monotone, i.e., the inverse
C�1 exists and is positive (see [1]). In this case the solution of (21) is given
by

x̂ = C�1 b (� �n ) ; �n n-dimensional zero-vector .

If x = (x1; : : : ; xn)T is any solution of (5) and (9), then it even follows that

x � C�1 b = x̂; i.e. xi � x̂i for all i = 1; : : : ; n .

This means that, if all players oppose each other but every player's contribu-
tion to achieving his own goal is larger than the negative sum of his opponents,
then everybody can reach an absolutely minimal amount of money.

6. Inverse Monotony

Let C be inverse monotone and let C� � C. If x 2 IRn is a solution of (5)
and (7), then x also solves

C� x � b (1)

and, if x� 2 IRn solves (7) and (1) and minimizes (6), then

s(x�) � s(x̂) ,

if x̂ 2 IRn solves (5) and (7) and minimizes (6).



Moreover, if

C� x� = b , (2)

then

C x� � C� x� = b � C x̂

which implies x� � x̂. The last considerations can be interpreted as follows:
If C is inverse monotone, then the players can achieve the best possible
individual results by solving the linear system

C x̂ = b .

If they replace C by a matrixC� with C� � C such that there exists x� 2 IRn

with (9) and (2), then x� � x̂, i.e., every player gets a better result x� which
is a Nash equilibrium.

6.1 The General Case

We assume that there is a solution of (4) and (5) which implies that the dual
problem has a solution. If this is obtained by r � n steps of the simplex
method, the result can be assumed to be of the following form0

BBBBBBBB@

y1
...
yr
zr+1
...
zn

1
CCCCCCCCA

=

0
BBBBBBBB@

d1
...
dr
dr+1
...
dn

1
CCCCCCCCA

+ ~D

0
BBBBBBBB@

z1
...

�zr
�yr+1

...
�yn

1
CCCCCCCCA

~D =

0
BBBBBBBB@

d11 : : : d1r d1r+1 : : : d1n
...
dr1 : : : drr dr+r1 : : : drn
dr+11 : : : dr+1r dr+1 r+1 : : : dr+1n
...

...
...

...
dn1 : : : dn1 dnr+1 : : : dnn

1
CCCCCCCCA

rP
j=1

bj yj =
rP

j=1
bj dj +

rP
k=1

(
rP

j=1
djk bj) (�zk) +

nP
k=r+1

(
rP

j=1
djk bj) (�yk)

where dj � 0 for j = 1; : : : ; n and
rP

j=1
djk bj � 0 for k = 1; : : : ; n .



The solution of the dual problem reads ŷj = dj for j = 1; : : : ; r and
ŷj = 0 for j = r + 1; : : : ; n .
Let us assume that

CT
r =

0
B@

c11 : : : cr1
...

...
c1r crr

1
CA

is invertible. Then

Dr =

0
B@

d11 : : : d1r
...

...
dr1 : : : drr

1
CA = (CT

r )
�1 = (C�1r )T .

If we put

xr =

0
BBBBB@

rP
j=1

dj1 bj

...
rP

j=1
djr bj

1
CCCCCA = DT

r br with br =

0
B@

b1
...
br

1
CA ,

then xr � 0 and Cr x
r = br . Further we obtain

dr =

0
B@

d1
...
dr

1
CA = (CT

r )
�1 er with er =

0
B@

1
...
1

1
CA ,

hence,

CT
r dr = er and (dr)T br = (er)T C�1r br = (er)T xr .

All this implies that

x̂j = xrj for j = 1; : : : ; r ,

x̂j = 0 for j = r + 1; : : : ; n

minimizes s(x) subject to (4) and (5).
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