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Abstract

The successful application of Branch and Cut methods to the TSP has drawn attention also to the
polyhedral properties of the symmetric capacitated vehicle routing problem, which is the capacitated
counterpart of the TSP. We investigate three classes of valid inequalities for the CVRP, multistars,
pathbin inequalities and hypotours and give computational results we obtained with a Branch and
Cut implementation.

1 Introduction

The symmetric capacitated vehicle routing problem (CVRP) with homogeneous vehicle fleet combines
ingredients of the Traveling Salesman Problem (TSP) and the Bin-Packing Problem (BPP). While the
TSP is well suited for the polyhedral approach of the Branch and Cut algorithm [JRR95], the BPP has
been treated much more successfully by intelligent direct enumeration of the solution space [MT90]. This
difference in behavior 1s mirrored by the numerical results currently obtained when applying Branch and
Cut to the CVRP. While the method is basically suited to obtain exact solutions for the problem, the
instances that can be solved are magnitudes smaller than those of the TSP. Trivial TSP instances turn
out to be a real challenge as soon as a capacity restriction is introduced.

Nevertheless the CVRP is practically repulsive to all exact methods, like Lagrangian relaxation [FJ81] or
set partitioning approaches [YKH89, HCM95], which have been applied to it. So far, the largest instances
have been solved with Branch and Cut [ABB*95], so it seems worth following this path. This requires a
thorough knowledge of the polyhedral properties of the problem and also improvements of the separation
heuristics for the inequalities known so far.

A general survey on the vehicle routing problem is given in the book [BMMN95]. Results on facets of
the CVRP have first been published by Araque [AHM90, Ara90] for the unit demand CVRP and by
Cornuéjols and Harche [CH93] for the general demand case. A survey on Branch and Cut for the CVRP
can be found in [NRO1]. Many valuable contributions on valid inequalities for the CVRP have been made
by Augerat (see [NRO1]). A survey on linear relaxations of the CVRP is given in [Lap92].

In this paper we make both theoretical and computational contributions to the Branch and Cut approach
by inspecting three classes of valid inequalities. In the first part we develop an exact identification routine
for violated multistar inequalities in the undirected CVRP and derive a new compact and strong linear
relaxation for the CVRP from this separator. We will also introduce a generalization of the multistar
inequalities. In Section 4 we review the pathbin inequalities presented by Augerat. We introduce a special
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case of these inequalities which is much easier to handle in practice than the general form. We will also
prove a sufficient condition for the pathbin inequalities to define facets of the Graphical Vehicle Routing
Problem (GVRP).

In Section 5 we propose several improvements of a heuristic suggested in [ABBT95] to identify violated
hypotour inequalities. Furthermore, we suggest a method to combine hypotour inequalities to new valid
inequalities. We give numerical results obtained with our separation routine and close the paper by
presenting computational results of our Branch and Cut implementation. We were able to solve two of
the difficult 76-node benchmarks from Eilon [CE69] to optimality.

2 Basic Definitions

An instance of the symmetric Capacitated Vehicle Routing Problem (CVRP) with homogeneous vehicle
fleet is given by

1. a set of customers V with demands d; € N (i € 1,...,|V4]), and a depot vy, V := Vo U {wo},
2. a vehicle capacity ¢' € Ny, a number k € N, denoting the number of routes,

3. and a symmetric distance function ¢;; € Ny on the edge set £ C V x V.

We assume the underlying undirected graph G := (V, E) to be complete. A tour is either a simple cycle
in G containing vy or a closed walk of the form (vg, v, vg) if there is only one customer v € Vj served by
the vehicle.

The objective is to find a set of & nonempty tours, of minimal total length, such that each tour contains
the depot, each customer is served by exactly one tour and the total demand of the customers in each
tour does not exceed the vehicle capacity C'.

A solution of the CVRP can be represented by a family of edges and 1s called a simple k—tour. We will
relax notation by dropping the word simple in the following. Non-simple tours will be considered only in
Section 4.

As usual, if M is a set,  : M — R is a function, and S C M, we use the notation z(S) := 3 s @, If
S C V we, furthermore, use y(S) := {(u,v) € F : u,v € S} and denote its coboundary by §(S) := {e =
(i,j) e E:ie€SFj}. For S;T CV wedenote (S:T):={e=(i,j)€ E:i€S,j €T} For notational
reasons we define dy := 0.

We use r(S) to denote the minimum number of bins of capacity C' needed to pack all demands in S,
which is a natural lower bound for the number of tours needed to serve the customers in S C V.

The symmetric CVRP can then be modeled by the following integer program.

min(c* z) (1)

2(8(v)) =2 Yo € Vg (2)

z(d(vo)) = 2k (3)

s.t. z(d(9)) > 2r(S) vS C Wy (4)
2. €[0,1] Ve € Vo x Vo (5)

z. € [0,2] Ve € §(vp) (6)

x integer (7)
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Clearly, the feasible solutions  of this program coincide with the incidence vectors of the sets of edges of
k—tours. Equalities (2) and (3) are the degree-constraints for each customer and for the depot. Inequalities
(4) are called capacity constraints. They are a tightening of the subtour elimination constraints “x(6(S)) >
2” known from the TSP to the CVRP guaranteeing that the vehicle capacity is not exceeded in any tour.

The GVRP is the relaxation of the CVRP which is obtained when the tours are not required to be
simple cycles but can be arbitrary closed walks, which may use edges multiply and which can also revisit
customers or visit customers which are not assigned to that tour. Still each customer must be assigned
to exactly one tour and the capacity restriction only affects the customers which are actually served
by the tour. It is known that the C'V RP-polyhedron is a face of the GV RP-polyhedron and that the
optimal solutions of a GVRP instance are from this face as long as the underlying graph is complete
and the triangle inequality holds ([CFN85]). The GVRP is the capacitated version of the GTSP. The
investigation of the GTSP (e.g. [CFN85]) has helped to gain insight into the facial structure of the TSP,
since it simplifies the analysis considerably. In a similar way the GVRP is used for the analysis of the

CVRP.

3 Multistar Inequalities

3.1 Formulation

The multistar constraints were originally introduced in [Gav84] for the directed capacitated minimal
spanning tree problem and then transferred to the directed [Gou95] and to the undirected CVRP [LE96].
In this section we will review and generalize them. The corresponding separation problem i1s modeled as
a network flow problem yielding a polynomial time separation routine. A careful analysis of the network
and its capacities leads to a new linear relaxation for the CVRP.

The multistar inequalities can be formulated as follows:

d(S) d;
2(8(8)) z 2=+ 2y oo VS C Vo. (8)

igs
JES

The rationale behind them is that a vehicle visiting the customers in S and using an edge (¢,j) with
i ¢ S,j € S must have sufficient free capacity for S U {v;}. The same consideration can be applied if
more than only one vehicle visits customers in S. We denote by C'V RPprs the polytope obtained from

(2), (3), (5), (6) and (8).

Replacing the vertices in the neighborhood of S = Sy by sets of vertices we derive a generalization of the
multistar inequalities as follows:

Lemma 3.1. Let Sy, ..., S; be pairwise disjoint nonempty subsets of Vo with d(S;) < C fori=1,...,t.
Then the setbased multistar inequality
d(So) | .5~ d(S) .
#(8(S0)) 2 2=+ 2; o (@ (S0 Si) + 292 (3(5)) (9)

1s valid for the CV RP.

Proof. Let « be a feasible solution for the CVRP, i.e. x satisfies (2) to (7) and Si,...,S: be as in the
assumptions of the theorem. Assume w.l.o.g. that Si,...,.S; are those sets out of S7,...,5; for which
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2x(Sp : S;) ©x(0(S;)) > 0. Then we obtain (9) from the following inequalities, explained below:

2(8(S0)) = #(So : B\ USZ')—l—ZJ:(SO:Si) (10)

5

=z(5(|J ) Z +Z ) 4 (S US +Zx(50;5i) (11)

i=0

S(L S+ D | 2650 8i) < (5(8:) + (S« [ 9)) (12)

i=0 i=1 j=1

5(U Si)) +Z(2x(5’o 0 5i) < (8(51))) (13)
> 22 +2|{ 1,...,52(S0: Si) = x(6(S)} (14)

> 22 Z 0 Si) e (d(SH)) (15)

> 2 (go +22 )2+ (So : Si) =x(5(Sh)))- (16)

The first equalities are seen by counting edges, (14) makes use of the fact that any cut in the Eulerian
graph induced by a k—tour has even cardinality, whereas (15) exploits integrality only. Finally we get
(16) from

2x(Sp 1 S;) <x(d(S;)) <0
=3 2¢(Sy 1 S;) ©x(d(S5;)) < <2
= x(So: Si) +2<x(0(5;)) <0.

The setbased multistar inequalities are useful in practice in the following special case.

Corollary 3.2. Let © be a vector satisfying (2), (3), (5) and (6) that violates a multistar constraint but
does not violate a subtour elimination constraint. Fori=1,... t let S; C Vi denote the mazimal node
sets satisfying x(5(S;)) = 2. Let G/S denote the graph obtained by shrinking each of S;,i = 1,...,t
to a single vertex adjusting the demand function to d(S;). Then the vector x|q;s violates a multistar
constraint in G/S. This violated inequality in the shrunk support graph corresponds to a violated setbased
multistar constraint in the original graph.

Proof. Let x be such a vector that violates a multistar constraint with respect to the set S. Choose such
an S such that | S| is as large as possible. Since # does not violate a subtour elimination constraint all §(S;)
are mincuts. Therefore, as unions and intersections of mincuts are mincuts again (see e.g. [AMO93]),
the maximal node sets .S; C V; satisfying «(d(S;)) = 2 must be pairwise disjoint and, thus, partition V;.
Furthermore, by the choice of S, all S; are either disjoint from or a subset of S. Let Sy be the set of
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(super) nodes in GG/8 corresponding to vertices from S. Then
#ja/s(6(50)) = z(d(9))
d(s d;
< 2 ( ) + 2 Z 5]$kj

C =
Jjgs
< 2@—1—25;:@ @(r(é’o 1S+ 22 (8(S))) -

3.2 Separation

We will now show that a violated multistar constraint can be identified using a network flow algorithm.
This approach is similar to the one already known for capacity constraints of the form

2(3(5) 2 2250 (17)

We will therefore start by shortly reviewing the corresponding separation routine (see [NRO1] for refer-
ence).

3.2.1 Separation of Capacity Constraints

The basic idea of the algorithm to identify violated capacity constraints of the type (17) presented by
Harche and Rinaldi [ABB195, NRO1] can be described as follows. First consider the case of the directed
CVRP. When =z is a feasible point then it is possible to simultaneously route, through a network of
capacity C'z, d; units of flow from the depot to each node. The flow on each arc corresponds to the load
of the vehicle. In the case of the undirected CVRP we construct a network D by introducing for each
undirected edge (ij) € E two directed arcs of capacity u;; = u;; = %C’xij. Again it must be possible to
simultaneously route d; units of flow to each node. In order to model this as a maximum flow problem,
we add to D a sink node ¢ and an arc (it) of capacity d; from every node to the sink.

The value of a maximum flow in this network is ) . i d; if and only if x satisfies (17) for all S C V4.
Otherwise we find a (vg,t)-cut (V \ S : S) of smaller capacity and the violated inequality #(6(S)) >

3.3 Separation of multistars

Generalizing this idea, the separation problem for the polytope C'V RPyrs can be reduced to a network
flow problem by a modification of the arc capacities in D. We will first restrict our attention to the
formally easier case where all demands satisfy d; < %C’. In this case we change the capacities to u;; =
uj; = (%C@dz)x” for each arc in the network not connected to t. The capacities for the sink arcs remain
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unchanged. Now assume we have a (vg,t)-Cut V' \ S : S of value strictly smaller than d(V4). Then

0 > u(V\S:89) > d (18)
i€V
1
1EV\S 1€S;i#t i€V
Jgs
1
= ' Z (50 C}dj) Tji C}} Z d;. (20)
1ES;iAL 1ES;iAL
Jgs

Such a cut thus yields a violated multistar inequality for the set S\ {¢} and each violated multistar
inequality yields a cut with capacity less than d(Vy). The capacities in this network would be negative
when d; > %C’ for some node 7 and thus the network must be modified. Informally, we can regard this
modification as an initial flow, which distributes the “overflow” max{0, d; @%C’} to each node adjacent
to i in the network defined by the support graph of the current point . For d € [0, C] we define d resp. d
as the fraction of d being smaller resp. larger than %C’:

I=%

= min{%C’, d}

2l

=d <d.

The new capacities in the network are given by

(%C@dl C}E]) Tij V(i,j) € Ei,j # v, t

wi; = %vauj + max{0, Zkeé(j);k#m (d i@ %)%k} Vz: = vo,_]: eW (1)
d; + max{0, Zkeé(i);k#mt(@d + d )i } VieVy,j=t
0 if (4,7) = (vo,1).

It is crucial to note that no capacities can become negative. It is easy to check that the factors
1 .1 .1
50 @mm{§C’, d;i} < (d; @mm{§C’, d;})

are positive as long as d; + d; < C holds. When this condition is violated the corresponding variable can
be fixed to zero in a preprocessing since the two customers can not be served in the same tour.

Again we compute the value of a v, t-cut V'\ .S : S with ¢t € S. For simplicity we define S’ := S\ {t}.

w(V\S:S) =u(Vo\ S :8) +u(vg : ') +u(Vp \ S : 1)
=u(Vo\ S :9) +u(vg : S u(S" t) +u(S 1 t) +u(Vo\ S : 1)
=u(Vo\ S : ) +u(vo : 8"y eu(S 1) +u(Vy : 1)
= Z (%C od; C}E]) xij +

i€VO\ S’
jes’

1 - —
Z §Cl‘voj C}dj + Z (d] C}dl)l‘ﬂ + U(VO : t)

jES’ i€8(5),i#vo,t
:—C’x(V \ S8 ed(S) e Z diz;j + const.
ieVo\S'

jes’
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The constant u(V; : ¢) is independent from the cut under consideration. Again a cut with a value lower
than this constant corresponds to a violated multistar inequality, and vice versa any violated inequality
induces such a cut.

Thus the multistar inequalities can be separated by computing a minimum vg, ¢-cut in this network. We
thus have the result

Corollary 3.3. The multistar inequalities for the C'V RP-polytope can be separated in polynomial time.

Remark 3.4. The preceding mincut-algorithm does not make use of the degree-inequalities. It can thus
be modified in order to separate the multistar-inequalities also wn the case of the symmetric capacitated
minimum spanning tree problem. In this case the capacities from the depot to each node and the sink-arcs
have to be modified. Since this requires some formalism we will not go into the details.

It should be noted that the multistar inequalities dominate the inequalities (17). Nevertheless they are not
directly useful in a Branch and Cut framework since they are rarely supporting for the C'V RP polytope.
In our implementation of a cutting plane algorithm for the CVRP we have therefore used the multistar
separator only as part of a heuristic to identify violated capacity constraints of the form

£(8(8)) > 2 [@w . (22)

Given a violated multistar inequality with set S we first check whether (22) is violated. If this is not the
case we enlarge S by a shrinking heuristic as described in [ABBT95] in order to find a violated capacity
constraint. This heuristic successively adds the node v which maximizes (v : S) to the initial set S.

Using Corollary 3.2 the separation routine can be improved by shrinking, in a preprocessing step, all
maximal subsets Sp,...,5; of V with 2(d(S;)) = 2. This can be done in polynomial time since this
amounts to finding successively all minimum cuts in the support graph separating the depot from some
node v with maximum sized shore on the v side. In this shrunken network the algorithm finds violated
valid inequalities of the form (9) with the S; being the nodes of the shrunk graph. Clearly there is a
violated multistar inequality in the shrunk graph whenever there is one in the original graph.

3.4 LP Formulation

The separation-algorithm described in the preceding section motivates a linear relaxation of the polytope

CVRP.

The standard linear programming formulation of the network flow problem from the last section, with
flow variables y;; has the following form:

min(c” z)
2(8()) =2 Vievo (23)
s.t. z(d(vo)) = 2k (24)
Z Yji ©Yi; = di + max{0, Z (<:‘EZ + Ek)l‘ik}, Viev, (25)
FEs(D) k€d(i);kZvo
1 - = .
Yuoj < 5(chvoj + max{0, Z (dj <:>dk)l‘jk} V(UOJ) EF (26)
k€S (j);kAvo
1 — ..
0<y. Ve €
ze €[0,1] Ve & 6(vo)

z. €[0,2] Ve € §(vp)
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| Name | CVRPp, | CVRPyspy) | LB CV RP.qp | Best Sol. |

E-n101-k8 757.48 768.92 796.424 817
E-n22-k4 335.29 349.97 375 375
E-n23-k3 521.85 545.36 569 569
E-n30-k3 431.2 448.74 508.5 534
E-nb1-kb 489.48 499.43 514.524 521
E-n76-k10 735.91 7107 789.451 835
E-n76-k7 630.08 644.3 661.361 682
E-n76-k8 667.43 690.47 711.213 735
F-n135-k4 979.23 1009.21 1158.25 1165
F-n45-k4 584.54 611.84 724 724
F-n72-k4 203.27 205.05 232.5 238
M-n101-k10 744.55 769.78 > 819 820

Table 1: Lower bound from some LP-relaxations of the CVRP.

From the last section it can be readily concluded, that the x < wvalues of the feasible points of that
program must satisfy all multistar inequalities. Vice versa, a maximal flow in the network from the last
section shows, that all points of CV RPyrs can be extended to feasible points for this program. In order
to eliminate the maximum operator, and thus to obtain a linear program the flow equalities (25) are
solved for y,,; (see (34)) and these variables are substituted in (26).

With these operations we obtain the following lift of CV RPysg:

2(0(1)) =2 Viev, (27)
z(d(vo)) = 2k (28)
1 - =
Z Yji SYij > d; ¢>§Cl‘vu,i + Z (ed; + di) ik, Yieve (29)
jes(iys#ve Kes(i)k#vo
1 - ..
wy < (50 0d =1, (i, ) ¢ b(vo) (30)
0<ye Ve€ E (31)
ze € [0,1] Ve ¢ 6(vo) (32)
ze € [0,2] Ve € §(vg). (33)

Note, that in the latter program there may exist feasible points (#,y) such that

Yvo,i ‘=d; + max{0, Z (edi + di)wir} < Z Yji =vi; < 0. (34)
kEd(i);k#vo JE€(1):5#vo0

By standard network flow techniques it is easy, though, to construct a feasible point (z,§) satisfying
gvg,i Z 0.

Table 1 compares the bounds derived from this relaxation, shown in column three, to two other LP-
bounds. The second column lists the optimal value of the relaxation of the LP introduced in Section 2
where r(S) has been replaced by @. In column four the latter was replaced by [@] These values
were computed by an exact enumeration. (We note that these values may be slightly biased as they have
been computed within our cutting plane code which fixes edges to zero due to reduced cost arguments and
logical implications.) The instances are taken from [Aug], a compilation extending the vehicle routing

instances found in the TSPLIB of Reinelt [Rei91].
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4 Pathbin Inequalities

Beyond subtour elimination constraints, comb inequalities are the second class of facet defining inequal-
ities used in successful Branch and Cut codes for the TSP. Laporte and Norbert [LN84] have developed
capacitated versions of the comb inequalities by replacing the various subtour elimination constraints,
used to derive them, by their capacitated counterpart. This approach has helped to incorporate the depot
into the formulation but it did not yield any strong capacitated comb inequalities when the depot is not
touched. The class of pathbin inequalities introduced by Augerat ([NRO1] and references therein) contains
a stronger capacitated version of the comb inqualities as a special case. In this section we investigate this
special case in more detail and give a suffient condition for it to define a facet of the GV RP.

Here, we give a slightly less general description of the pathbin inequalites than Augerat’s original one in
order to avoid notational difficulties. The inequalities are defined by a handle H C Vj teeth 77, ... 7T C
Vo and spots Tsy1,..., 754+ € H. Each tooth must intersect the handle without being a subset of
it. All teeth and spots are pairwise disjoint and satisfy d(7;) < C for i = 1,...s +¢. The number
v (H|T1, ..., Ts4¢) is defined as the solution of a constrained bin packing problem with one item for each
tooth or spot T} of height d(7}) and one item for each node from v € H \ |JiZ] T; of height d({v}). The
bin capacity is C'. The solution of the bin packing problem must satisfy the additional constraint, that
each bin contains at most two items corresponding to a tooth from 77,...75.

Then the pathbin inequality

s+t
z(6(H)) + Zx(é(ﬂ)) >2r'(H|Th, ..., Tsgt) +2(s +1) (35)

1s valid for the CV RP.

We will from now on assume that there are no spots, i.e. t = 0. A drawback of the pathbin inequalities
results from the difficulty of determining »'(H |74, ..., Ts4¢). A relaxed version can be obtained from the
following construction. Consider a graph Fj; with one node for every tooth and an edge between any two
nodes which represent teeth T;, T; with d(T; UT;) < C.

Theorem 4.1. Let C := {H,T\,...Ts} be a family of node sets with a handle H and teeth Ty, ... T
satisfying the above conditions and s > 3. Let the graph F, be defined as above and let M be a mazimum
cardinality matching in F,. Then the inequalities

P(B() + 3 e(6(T)) > 45 2| M| (36)
i=1
are valid for the CVRP.
Proof. The number s <|M]| is a lower bound for +'(H|T1,...,Ts). Thus the inequalities are dominated
by the pathbin inequalities. [l

Inequality (36) reduces to the inequality of Lemma 5.1 in [Ara90] in the case of unit weights. Araque
introduces the term “large teeth” for those teeth which can not be served together with any other tooth
by one tour. The formulation with matchings in the graph Fj, is slightly more general and in some cases
also stronger.

Remark 4.2. If H CJ;_, T} (which impliest = 0) then (35) and (36) are identical.

4.0.1 A facet result for pathbin inequalities

As noted in Section 2 the CV RP defines a face of the GV RP. In contrast to the GV RP, which always

has dimension |E|, the dimension of this face is not known in advance but depends on the customer
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demands. Most facet results for the non unit-demand case are therefore obtained only for the GV RP.
In [CH93], Cornujoels and Harche gave sufficient conditions when facets of the GV RP also define facets
of the C'V RP but these conditions only apply when the C'V RP instance has the maximal dimension
|E| <|V]. They are thus extremely restrictive and technical.

Araque has proven for his “Combs with large teeth” that they may define facets of the unit demand
CVRP. In this section we will give sufficient conditions for (36) to define a facet for the general demand
GV RP. We restrict ourselves to the case where the graph F, has no edges, although we assume that a
more general result in the spirit of Proposition 5.4 from [Ara90] can also be obtained. Our proof technique
follows the proof of Theorem 3.2 in [CH93].

In order to simplify the proof as far as possible in the remainder of this section we will relax the number
of vehicles, 1. e. the number of nonempty tours k can take any value. This will allow us to consider partial
solutions on certain “relevant” subsets of vertices without having to bother wether or not they can be
extended to a k—tour for some fixed &.

As an other simplification we will assume Z := H \ |J, Ti # § and d(Z) = 0. The second assumption is
motivated by remark (4.2), i. e. it guarantees that (36) is not dominated by another pathbin inequality.
In order to clarify the structure of the solutions in Figure 2, we always require some node with zero
demand in Z, though. The following condition is needed for the proof.

Condition 4.3. Let C be a family of node sets with a handle H and teeth T', ... ,T; satisfying the above
conditions and for alli € {1,... s} and all j € {1,... s} \{i} there exists anl € {1,... ,s}\{i,j} and

a nonempty set Tlfj C T\ H such that d(T;) + d (TZ]) < C andd(T})+d (TZ \TZ]) < C.

This postulates the existence of tours as depicted in Figure 2 4, 6-9.

Here the customers of V[C] are served by s <1 vehicles. With the exception of one tooth (7;) all other
teeth are served by exactly one vehicle (Note that no two teeth can be completely served by one vehicle
since we assume the graph I, to contain no edges). The customers of T; are split among two tours, each
also serving one of the “tight” teeth (7; and 7;). Such a constellation must exist for every 7 and j, while {
can be chosen depending on 4, j. It is additionally required that the customers of (T; N H) are completely
contained in the tour serving the costumers from 7;.

Theorem 4.4. Let C be a family of nodesets with one handle and teeth Ty, ... ,Ts as defined above and
satisfying condition 4.3, s > 3 and

AT UT)>C  Vi£je{l,. .. s} (37)

Then

defines a facet of the GV RP —polyhedron.

Proof. From 4.1 it follows that a(C)x > 4s is valid for the GVRP, when F, contains no edge. This is
implied by (37).

The remainder of the proof can be outlined as follows. First, we construct two types of solutions which
show that a(C)x > 4s is a face of the GV RP. Then we assume fz > 4s to be a facet of GV RP containing
the face a(C)x > 4s. Tt is shown that the zeroes in a(C) must also be zero in f. Next, we prove that
any two edges connecting two given sets adjacent in Figure 1 must have the same coefficient in f. This
reduces the number of linearly independent solutions required to uniquely determine all coefficients in f
for edges between “adjacent” sets to 3s 4 1. Starting from the two initial solutions a set of 3s + 1 linear
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. J

Figure 1: The sets in Theorem 4.4

independent solutions tight for a(C)x > 4s is constructed. These 3s 4+ 1 only use edges where a.(C) = 1
(the edges between “adjacent” sets) and can thus be used to show that f. = 1 whenever a.(C) = 1. The
solutions needed to show the same for the coeffients with a.(C) > 1 are not defined explicitely, here, but
depicted in Figure 2, instead.

For h = 1,...,s we define A := V\V[C],B} := T, \ H,B) := T, N H,Z := H\ |J, Ty and identify
Bl = A as well as B = Z. The sets A, B}, B? 7 form a partition of the node set. Let z € Z and
b;f € B;L for h =1,...,sand j = 1,2 and b2 = vy and b2 = 2. The sets are depicted in Figure 1.
All solutions defined in the following are sketched in Figure 2. Here every set is represented by a single
node, all other nodes are connected by edges with value two in the solution to this representing node.
We consider first Solution 1 from Figure 2.

2 ife:b?uwithh:1,...,5;j:0,...,3;uEBf\{b?}
ol 1 ife:b?b?HWithhzl,...,s;jzo,...,Q
c s 1fe=uwgz
0 else.
This solution is feasible since d(T;) < C.
Our next set of s tours utilizes condition 4.3. Namely, for ¢ = 1,...s we consider the solutions

2 ife:b?qwithh:l,...,5;j:0,...,3;uEBf\{b?}
2 if e = b3b% 4 with j =0,...,2

i) =<1 if e=0000, withh=1,...,55h#4j=0,...,2
s<3 ife=uwyz

0 else.

(Solution 4 in Fig. 2). The tooth T; has a special role in (i), since it is served by the tours that are
mainly concerned with the teeth T} resp. 7j. Due to the preconditions we may assume that the tour
serving T does not serve any costumer in 7; N H.

Both types of solutions satisfy a(C)x = 4s, i.e. a(C)x > 4s defines a face of the polyhedron and it is also
easy to find a solution with a(C)x > 4s. Let fx > 4s be a facet of GV RP containing the face a(C)z > 4s.
We show that then «(C) and f coincide in all coefficients, i.e. a.(C) = f. for all e € E. All tours that will
occur in the following will have the same partition of the customers, i.e. if a client is visited by a second,
modified tour he is supposed to be served further on by the same tour as before.
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To determine the coefficients of f first consider an “internal” edge e with both ends lying in the same
class Bl for some h € 1,...,s and j = 0,...,3. Clearly 2’ = x! 4+ 2x(e) is another feasible tour with
x(e) being the characteristic function of {e}. Equality a(C)z' = 4s implies fa! = 4s. Since a.(C) = 0 we
obtain a(C)x’ = 4s, implying fz’ = 4s and f. = 0.

Next, we show that f., = f., for e; = (b?,b?_l_l) and any other edge e; = (p?,p?H) € (B;L : Bf+1). Let
"= xlﬁx(el)—|—X((b"7?,p?))—i—x(ez)—l—x(p?H, b?+1)). Then " defines a tour and using the last paragraph
and a.(C)xy = fa1 = fo’" = 4s we conclude fo, = fe,. A similar argument applies to e; = (vg, 2) and

es € (A: 7).

Now we consider the edges that connect sets “adjacent” in Figure 1, i.e. the 3s sets (B;L : Bf_l_l) and
(A : Z). From the two preceding two paragraphs we conclude that there are at most 3s + 1 different
coefficients for the variables corresponding to these edges in fo > 4s. We will present 3s 4 1 linearly
independent tours using only such edges and “internal” edges with a(C). = 0. The first s + 1 solutions
are x1 and the s linearly independent solutions (i) for the s choices of i. Since no customer from
T; N H is served by the tour responsible for T; we get another s linearly independent solutions, namely
23(i) = 22(3) ©x((b5,b5)) <x((6%,65)) + x((b5, 1)) + x((vo,2) (Solution 2 in Figure 2). Finally, we
derive another s independent solutions z*(i) from #! for i = 1,... s by setting z*(7) := =1 + x (b}, b})) +
x (b, 64)) <x((bh, 0%)) <x((ve, z)) (Solution 3).

As all these solutions satisfy a(C)z = 4s we also have fz = 4s. Thus the 3s+1 free coefficients of f meeting
the support of our 7 form a solution of the system Af = b of linear equations. The (3541 x3s+1)-matrix
of this system is given as

111 111 .11 5
2 2 111 ... 111 s&3
111 222 .. 111 s&3
111 111 . 2022 se3
311 111 ... 111 s5&2

Al 31 11 se2
111 111 . 311 se2
2 0 111 ... 111 s&l
111 220 .. 111 s&l
111 111 . 220 sel

It can be verified that the absolute value of the determinant of this matrix is 4s22°. Hence, the solution
is unique and coincides with the coefficients in a(C).

We are left with the coefficients a(C). with a(C)e > 2. For the proof we refer the reader to solutions
5 <9 in Figure 2. Each of these can be obtained from either ' (Solution 5) or z? (Solutions 6-9)
without modifying the partition of V. They are all linearly independent since each of them owns one
edge exclusively. As above we conclude that f. = a(C)e. O

The choice of basic solutions was driven by the attempt not to use a tour serving two of the sets T; \ H
completely. It adresses the case where all teeth have demand > %C’ and this demand is located mainly
“outside” of the handle. Unfortunately, our attemps to develop a useful separation heuristic for these
“combs with large teeth” have failed.
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Figure 2: Basic solutions from the proof of Theorem 4.4

5 Hypotours

We will now leave our more theoretical considerations and turn to the specifics of a Branch and Cut Code
for the VRP. The hypotour inequalities were introduced by Augerat and were already used in the cutting
plane code presented in [ABB195]. In our computational experiments we could confirm their finding
that this class can in some cases significantly improve the lower bounds. In this section we will review
the inequalities and suggest an improved separation heuristic. We will also state a method of combining
hypotour inequalities to new valid inequalities.

5.1 The inequalities

Let az < ag be a valid inequality with integer coefficient vector a, and let F' be an edge set such that
ar = ag => z(F) > 1. (38)
Then the hypotour inequality
ar Se(F) < ag el
is clearly valid for the CVRP.

We will apply this to the following set of inequalities. Let L C V5 be a node set and e3 = (u1,v1),e3 =
(ug,v2) € ¥(L) and consider the valid inequalities

z(v(L)) < |L] =1 (39)
e(Y(L\{v}) +ze, <|L| &1 (40)
2(y(L\{vi,va})) + ze, + e, < |L] 1. (41)

In the following we will implicitly assume that a hypotour inequality is derived from one of these particular
inequalities. We denote the node set L as the central set of a hypotour inequality and call a corresponding
edge set F' satisfying (38) the completing set of a hypotour inequality with central set L.
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The practically most important subclass of hypotour inequalities arises from (41). Any k-tour satisfying
this with equality must visit L in a single path starting and ending in e1, es. Now, if F'is a set of edges
such that any k—tour containing such a path has also to pass some edge of F' then

2(V(LA\A{v1,02})) 4+ @, + e, 92(F) < |L[ 2. (42)

1s valid.

Figure 3: Hypotour inequality of G. Figure 4: Not yet fixed edges of GG.

For practical purposes the hypotour inequalities need not be valid for the full CVRP polytope. Often it
is possible to construct completing sets F' such that the resulting inequalities are guaranteed to be valid
at least for the optimal face of the polytope. It is thus possible to exploit knowledge about variables
which are necessarily zero in any optimal solution.

Figure 3 shows a fractional solution # in the benchmark instance E-n51-k5 [CE69], the numbers at the
vertices indicate their demand. Now, let . be the set of vertices connected by the grey edges in the upper
right corner and ey, e; the edges emerging at their bottom. All edges not displayed in Figure 4 have
already been proven to be necessarily zero in any optimal solution (the edges are fixed to zero). The
capacity of this instance is C' = 160 and d(L) = 137. A path through L can be completed to a tour by
adding the edge (vg,5) and either the path (1,2,3,v) (with d(L U {3,4}) = 158) or the path (1,4,3, vg)
(with d(L U {2,3}) = 160). The two black edges thus form a feasible completing set.

This yields a hypotour inequality of type (42) which is violated by . The inequality shown has been
identified with the separation routine presented next. The example illustrates that the choice of F' is in
no way unique, as there are other two element sets which could be used as a completing set. (Even the
one element set containing only (vg, 3) is feasible). Tt also becomes evident that hypotour inequalities
can be considerably stronger (i.e. F' smaller) when the number of edges already fixed to zero increases.

5.2 Separation

Our separation heuristic to identify violated inequalities of type (42) has two phases. First, we enumerate
candidate central sets L while in the second phase we try to identify a completing set F'.
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5.2.1 Enumeration of central sets

For obvious reasons we consider only candidate sets L satisfying z(y(L)) > |L| <2 and d(L) < C.
Furthermore, we try to restrict to sets L that satisfy #(6(L)) < =(§(L)) for all L' with L C L. A
hypotour inequality derived from (39) for L’ dominates one for L. This is not always the case for
inequalities derived from (41) but it seems reasonable to neglect this. Thus we start our enumeration by
shrinking all maximal node sets S; satisfying #(6(S;)) = 2. The inequality x(vy(L)) > |L| <2 implies that
we only have to consider node sets L inducing a connected subgraph in the shrunken support graph of
z. Furthermore, following the dominance consideration, given a node set L and a node v € V5 \ L such
that #(L : v) > 1 we replace L by L U {v}.

Computing all connected subgraphs of G, for which no such node exists can be done quickly for the
CVRP instances that we used as benchmarks, since the shrunken support graph is sparse and not too
large. We used a search tree in which each tree node is associated with a current candidate set L C Vj
and a set L C V'\ L of customers which can not be included into L in the current subtree. I is initialized
with the depot. In each enumeration node a customer v € V' \ (L U L) is chosen and two sons with v € L
and v € L are created. A node in the search tree is eliminated if one of the following conditions is met

Q

In the second case x(y(L')) < |L/| <2 for any set L’ which can be generated in the current subtree and
thus L’ cannot serve as a central set. In the third case each set L’ will be dominated by some other
set containing the node v. If the last condition is met there is hardly a chance to find a completing
set I for any L’ contained in the current subtree. If this enumeration is implemented carefully the
number of candidate sets L is sufficiently small and in phase two we check for all candidate sets satisfying
d(L) > 0.6 - C', whether a violated hypotour inequality can be constructed. Table 2 shows the number of
generated candidate sets in some benchmark instances and reveals that the time spent in this enumeration
can be neglected.

5.2.2 Computing the completing set

The difficult and time consuming part of the heuristic is the computation of a small completing set F'.
We only consider the case of inequality (42). Here, F' has to contain at least one edge from every feasible
k—tour that visits the nodes in L in a Hamiltonian path visiting L with edge set ending in eq, es.

Again we try to keep F small by relaxing the requirement in (38) to incidence vectors of optimal k-
tours only. The resulting hypotour inequality is still valid for the optimal face of the polytope. This is
done enumeratively by first determinining a short Hamiltonian path and then completing it to a tour 7'
Within the enumeration we check whether 7' can itself be improved by a two-opt step, or by moving a
single node to another position within this tour. If no local improvement can be found we add an edge
from T with sufficiently small z—value to F'. If no such edge exists, then in a third step we apply the
following criterion:

Restcluster criterion: Let G, denote the support graph of x and let Cy, ... ,C; be the components of
G\ ({vo} UT). If there is a mazimal connected component C; with d(C;) < d(Vy) &(k <1)C, then add
all edges of (Cs : Vo \ (C; UT)) to F.

This criterion yields a correct completing set F', as there can not be a k—tour containing a tour with a
demand less than d(Vy) <(k<1)C. Thus there must be some edge from (C; : V5 \ (C; UT)) in any k-tour
containing tour 7T'.
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Name avg. avg. avg. time
Ftenumeration Fttested time tests

node central sets | sep.-heur.[s] | [%]

B-nb7-k9 629 41 0.07 77.5
E-n101-k8 1351 77 1.3 97.6
E-n51-kb 232 28 0.05 88.9
E-n76-k10 826 85 0.6 94.4
FRB-n51-k5 506 29 0.21 94.9
F-n135-k7 1820 49 12.8 99.5

Table 2: Performance of the enumeration of central sets

Name Upper | LB-Hypos | Num. Time [s] Time [s] LB
Bound Tter. | (Separation [s]) | Hypotour-Sep. | No Hypos
B-nb7-k7 1153 1149.68 75 22 (16.8) 1.9 1148.68
B-n57-k9 1598 1587.59 94 33.5 (24.3) 1.5 1586.44
B-1n63-k10 1496 1479.98 71 20.38 (13.3) 0.8 1478.85
E-n101-k8 817 800.178 74 118 (104) 36.4 796.341
E-n30-k3 534 509.5 19 0.7 (0.5) 0.3 508.5
E-n33-k4 835 > 834 18 0.7 (0.4) 0.03 833.5
E-nb1-kb 521 517.8 48 7 (5.7) 0.5 514.524
E-n76-k10 835 794.154 85 86 (71) 15.4 788.789
E-n76-k7 682 663.705 62 41.3 (35.4) 5.8 661.247
E-n76-k8 735 713.153 70 53.6 (44.8) 6.2 710.91
FRA-n51-kb 2552 2545.69 57 13.1 (10.8) 1.1 2541
FRB-nb1-kb 4195 4139.33 54 12.5 (8) 1 4136
FRC-n51-k5 | 3772 3701.85 74 28.7 (23) 4.3 3688.71
F-n72-k4 237 232.558 25 5 (3.9) 2.1 232.5
F-n135-k7 1162 1159.25 118 256 (170) 40.7 1156.87

Table 3: Results of cutting plane code with hypotour separation

Summarizing we do the following. Given a set L we compute the optimal path through L ending in
e1,eo and then do a depth first type enumeration of all possible extensions of this path to a complete
tour. The optimality tests for this tour can be done in time linear in the current length of 7" whenever a
new node is appended within the search and thus help to keep the enumeration tree small. Whenever a
feasible tour 7" is found, we try to include edges either from 7" with sufficiently small z-value or satisfying
the Restcluster criterion into F. If this fails we continue with the next central set. Otherwise, in the
following, tours which use this edge need no longer be considered. Still, the enumeration can lead to
combinatorial explosion and we had to introduce some stopping criteria.

5.2.3 Results

Table 3 summarizes the results of the separation heuristic for hypotour inequalities. We used in the runs
all heuristics already described in [ABBT95] to identify capacity constraints and resorted to the hypotour
separator only when not enough (at least 5) capacity constraints were found. The last column contains
the results we obtained when only capacity constraints where used as cutting planes.
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5.3 Combination of Hypotours

In this section we describe a class of valid inequalities which can be obtained from the combination of
the hypotour inequalities resulting from (39)-(41) as described in the previous section. The underlying
observation is that if a solution contains two node disjoint paths P;, Ps with a total demand of more than
C then P; and P» belong to different tours and these two tours have no edge in common.

Let x(Fr,) <z (F1) < |L1| <2 and z(EL,) ©z(F2) < |Ls| <2 be valid hypotour inequalities with central
sets L1 and Ly and completing sets F, 5. For simplicity we assume L; N Ly = .

Definition 5.1. Let F' be a completing set for a central set L. Let kT be a feasible k—tour that visits L
n a single path and intersects F' in a single element e. Call such an edge e exclusive if there is no k—tour

visiting L in a single path but e in a different tour. We call a set F'°%" C F of exclusive edges exclusive,
as well as the partition (F'U" Frooury ywhere Fotour .= F\ Frour,

Lemma 5.2. Giwen two valid hypotour inequalities as described above with disjoint central sets L1, Lo
such that d(Ly U Ly) > C' and completing sets Fy, Fy, let FoU" FoUUr be exclusive partitions of F; for
t = 1,2. Then the combined hypotour inequality

2(Epy) + w(EL,) <o (P UFMT) @r(FP) <u(F7) < |Li| + | La| <4 (43)

15 valid.

Proof. Let x be the incidence vector of a k—tour k7. Two subtour elimination constraints imply (Fr,)+
2(Fr,) < |L1]| + |L2] ©2. Thus it suffices to examine the following two cases.

First assume z(Fr,) + «(Er,) = |L1| + |L2| 3. Then one of 2(Eyr,) < |L;| <1 for ¢ = 1,2 must be
satisfied with equality and (43) is obtained as a sum of the corresponding hypotour inequality and the
subtour elimination constraint for L;, j # .

If 2(Er,)+2(FEr,) = |L1| + | L2| ©2, we have x(F;) > 1 for i = 1,2. If [kT' N (FL U F2)| > 2 we are done.
Thus we may assume kTN Fy; = kTN Fy = {e}. Still we are done unless e € F{°“" N F1°%". Exclusiveness
of these sets implies that 1; U Lo are served by a single tour, a contradiction. [l

Remark 5.3. The combined hypotour inequality dominates the sum of the two original inequalities iff

(Fltour N thour) \ (Flnotour U anotour) # 0 (44)

A recursive application of this method yields combinations also of I > 2 hypotour inequalities:

l l l
(2(BL,) @a(F7 ) ea(|J F) < 3 L] <21,

1 i=1 i=1

K3

An example of the combination of three inequalities is shown in Figure 5. The thick horizontal edge in
the center belongs to Fj*'°“" and FJetour,

In practice an exclusive partition can be obtained within the enumerative procedure described in the
previous section by including into F*°*°“" every edge, which has been added to F; due to the restcluster
criterion.

In the cutting plane code described below we used combined hypotours which we obtained from simple
hypotours generated in previous cutting-plane iterations by checking (44). The improvement of the lower
bounds using these inequalities was very small. Nevertheless the check can be done very quickly.
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100 & 30 1.0033
RHS: 17.000000

<
Capacity: 160 Value: 519.000

Figure 5: Combination of hypotour inequalities.

6 Branch and Cut

We implemented a Branch and Cut code for the symmetric CVRP based on the ABACUS-library by
Thienel and Jinger [JT98] with CPLEX 6.0 as LP-solver. Table 4 summarizes the results we obtained
with our implementation of a cutting plane code for the CVRP. We used all separators described in
[ABBT95] for the identification of violated capacity constraints and a simplified version of their algorithm
for generalized capacity constraints. Additionally, we used a heuristic which tries to find a violated
capacity constraint by greedily adding nodes to the central set of a violated multistar constraint, which
was found by the network flow algorithm described in Section 3. Furthermore, we identified violated
comb inequalities with a routine similar to the one described in [ABB95]. Some modifications of this
routine were introduced in order to find more combs containing the depot in one of the teeth. We also
implemented the Padberg—Rao [PR82] algorithm for 2—matching inequalities. This routine is exact as
long as all demands are smaller than d(V) <(k <1)C. In the other cases the routine may find only
inequalities which are not valid for the CVRP but this can easily be checked. We also used the separation
routine for hypotours from Section 5.

The runs were done on a 400 MHz Sun—Ultrasparc Il and are in the same order of magnitude as those
from [ABB195], taking into account the differences in CPU speed and quality of the CPLEX version. An
exception is the instance F-n135-k7, where we needed several times longer. This time is spent mainly for
hypotour separation, indicating that the stopping criteria should perhaps be adapted during running-time
in order to obtain a better scalability of the algorithm. We stop as soon as the gap is smaller than which
1s why for some instances we have no exact values for the lower bound. In these runs the upper bounds
were passed to the program as external parameters.

It can be seen that the practical difficulty in solving a given instance of the CVRP to optimality increases
when the tours in the optimal solution tend to intersect geographically. This is forced by small vehicle
capacities, as can be seen by comparing the results of E-n76-k7, E-n76-k8 and E-n76-k10. These are
identical except for the value of C'. Another feature of an instance which destroys geographical clustering
in the solution is when the depot is not in the center of the customers. This can be seen for example
from the instances FRA-n51-k5, FRB-nb1-kb and FRC-nb1-k5. These are identical except that in FRB
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Name Upper | Lower | Iter. | time [s] | time [s] LB
Bound | Bound separation | [ABBT95]
B-nb7-k7 1153 1149.64 | 67 18.3 13.6
B-n57-k9 1598 | 1587.99 | 98 40.2 30.5
B-n63-k10 1496 1480 74 23.1 15.4
E-n101-k8 817 800.97 | 134 257 234.8 799.656
E-n22-k4 375 375 8 0.1 0.05 375
E-n23-k3 569 569 7 0.1 0.05 569
E-n30-k3 534 513.2 36 1.6 1.4 534
E-n33-k4 835 > 834 18 0.7 0.4 835
E-n51-kb 521 518.623 | 70 17.3 15.5 517.124
E-n76-k10 835 795.17 | 172 290 262 793.384
E-n76-k7 682 | 664.704 | 105 95 87 664.355
E-n76-k8 735 714.7 125 126 112 713.746
FRA-nb1-kb | 2552 | 2546.07 | 64 18.6 16.1
FRB-n51-kb | 4195 | 4140.09 | 66 21.3 16.2
FRC-n51-k5 | 3772 | 3703.68 | 111 63.6 56.4
F-n45-k4 724 >723 26 1.2 0.7 724
F-n72-k4 237 234.143 | 63 16.2 13.8 235
F-n135-k7 1162 | 1159.56 | 155 666 572 1159.06
M-n101-k10 820 >819 39 15.1 6.7 820

Table 4: Cutting plane results

and FRC the depot is located somewhere at the border while in FRA there is a “central” depot.

All runs were initialized with an upper bound of optimal value plus one. An exception was the instance
E-n76-k8 where we used the optimal value as the initial upper bound, since our heuristics failed to find
the optimal solution quickly enough. Upper bounds were computed during the runs with a tabu-search
and a savings heuristic with an edge weight function where the distances were modified using the current
LP-solution. In Table 5 we summarize the results of our Branch and Cut implementation for those
instances which could be solved to optimality.

Much effort is spent in the branching step. We used branching on sets as already proposed by other
authors (cf. [ABBT95]). Given a set L with z(§(L)) ~ 3 we generated two sons with z(6(L)) = 2
and z(§(L)) > 4. In order to evaluate the quality of a set L we solved the resulting linear program
for the “x(d(L)) > 4”—branch. We tested up to 20 such sets per branching-step and chose the one for
which the “x(6(L)) > 4”-branch lead to the largest increase in the objective. This strategy was due
to the observation that the branching strategy tends to produce unbalanced enumeration trees with the
“> 4”—side having significantly more nodes than the “x(46(L)) = 2”-side where sets of customers are
shrunk to nodes with large demands. We also solved the “x(d(L)) = 2”-LP for all candidate branching
sets. Whenever the resulting lower bounds in one of the two tested branches already revealed that no
improvement of the upper bound could be achieved in the corresponding subtree we added the branching-
inequality to the current LP and reentered the cutting plane phase in the current node. With this strategy
the instance FRA-nb51-kb could be solved within the root node even though the cutting plane procedure
itself could not really close the gap (see Table 4).

Within the non-root subproblems we did not use the separation routines for combs any more, because
they did not contribute significantly to an improvement of the lower bound. It seems remarkable that with
the instances E-n76-k7 and E-n76-k8 two of the 76-node instances published by Eilon [CE69] were solved
for the first time on a single processor. Independently from our work, Kopman, Ralphs, Pulleyblank and
Trotter [Kop99, KRPT00, NRO1] solved these instances on a parallel machine using a huge enumeration
tree. An optimal solution with cost 682 of instance E-n76-k7 is depicted in Figure 6. Nevertheless the
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Name Optimal | B&B Time | Time [h:min:s] | Time [h:min:s]
value | nodes | [h:min:s] Primal Branching
Heuristics Tests
B-nb7-k7 1153 103 0:11:01 0:08:13 0:01:00
B-n57-k9 1598 493 0:39:48 0:20:13 0:08:23
B-n63-k10 1496 1581 | 0:32:40 0:09:07 0:06:51
FRA-n51-kb 2552 1 0:02:00 0:01:43 0:00:01
FRB-n51-kb 4195 463 0:17:12 0:07:10 0:03:32
FRC-n51-k5 3772 827 0:27:45 0:03:59 0:09:26
F-n72-k4 237 41 0:01:15 0:00:33 0:00:03
F-n135-k7 1162 65 1:31:29 1:18:34 0:03:21
E-n76-k7 682 6717 | 7:39:10 1:04:22 1:57:45
E-n76-k8 735() 6259 | 9:51:06 4:50:10 2:55:38

Table 5: Branch and Cut results. () Upper bound 735 was provided as external parameter.

Figure 6: Optimal solution of instance E-n76-k7 with value 682.



Branch and Cut for the VRP 21

challenging instance E-n76-k10 still resisted all attacks.
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suggestions improving a preliminary version of the paper and to Denis Naddef for bringing the work of
Augerat to their attention.
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