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Abstract

We show that for graphs of bounded degree, a subset minimal elimi-

nation ordering can be determined in almost linear time.

1 Introduction

One of the major problems in computational linear algebra is that of sparse
Gauss elimination along the diagonal of a positive de�nite matrix. It is well
known that it translates into the following graph theoretic problem [11].

Minimum Elimination Ordering: For an ordering < on the vertices, we
consider the �ll-in graph G0

< = (V;E0) of G = (V;E). G0
< contains �rst

the edges in E and secondly two vertices x and y form an edge in G0
<

if they have a common smaller neighbor in G0
<. The problem of Mini-

mum Elimination ordering is, given a graph G = (V;E), �nd an ordering
<, such that G0

< has a minimum number of �ll-in edges. Note that this
problem is NP-complete [13].

For that reason, we relativize the problem.

Minimal Elimination Ordering: Given a graph G, �nd an ordering <, such
that the edge set of G0

< is minimal with respect to inclusion. This problem
can be solved in O(nm) time [12].

Last problem could be solved for planar graphs in linear time [3].
Another approach is the nested dissection [1]. It is known that this problem

can be solved more e�ciently than for graphs in general for planar graphs and
for bounded degree graphs [9].

In so far, it is reasonable to develop also a minimal elimination ordering
algorithm that runs for bounded degree graphs more e�ciently than for graphs
in general. We show the following.

Theorem 1 For bounded degree graphs, a minimal elimination ordering can be
determined in O(n)�(n) time. Here �(n) is the inverse Ackemann function.

The strategy of the algorithm is as follows.

1. We divide the vertex set V of the graph into levels V1; : : : ; Vk of bounded
size, such that we there is a minimal elimination ordering, such that with
x 2 Vi, y 2 Vj , and i < j, we have x < y. This partition of the vertex set
is also called a bounded approximation of a minimal elimination ordering.
This is done in section 3

2. In section 4, we determine an elimination tree of the partition V1; : : : ; Vk
with the nodes V1; : : : ; Vk in the same way as one determines an elimination
tree of the �ll-in graph of an ordering of the vertices (see for example [8, 4]).
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3. In section 6, we determine for each vertex v of G a subtree Tv of the
elimination tree. To keep a space bound of O(n), we will use a compact
tree representation.

4. The elimination tree gives one enough information how to re�ne the levels
Vi. This is done in section 7.

2 Notation

A graph G = (V;E) consists of a vertex set V and an edge set E. Multiple
edges and loops are not allowed. The edge joining x and y is denoted by xy.

We say that x is a neighbor of y i� xy 2 E. The set of neighbors of x is
denoted by N(x) and is called the neighborhood. The set of neighbors of x and
x is denoted by N [x] and is called the closed neighborhood of x.

The degree of a vertex v is the size of its neighborhood and is denoted by
d(v). The maximum degree of a graph G is denoted by �.

The number of vertices of a graph G is denoted by n, and the number of its
edges is denoted by m.

Trees are always directed to the root. The notion of the parent, child, an-
cestor, and descendent are de�ned as usual.

A subgraph of (V;E) is a graph (V 0; E0) such that V 0 � V , E0 � E.
We denote by n the number of vertices and by m the number of edges of G.
A graph is called chordal i� each cycle of length greater than three has a

chord, i.e. an edge that joins two nonconsecutive vertices of the cycle. Note that
chordal graphs are exactly those graphs having a perfect elimination ordering
<, i.e. for each vertex v the neighbors w > v induce a complete subgraph, i.e.
they are pairwise joined by an edge [6].

Moreover, chordal graphs G = (V;E) are exactly the intersection graphs
of subtrees of a tree [7, 2], i.e. there is a tree T and a collection of subtrees
Tv, v 2 V , such that vw 2 E if and only if Tv and Tw share a node. We
call (T; Tv)v2V also a tree representation of G. Whenever the trees Tv are
represented by their leaves, we call (T; Tv)v2V a compact tree representation of
G. Note that it is su�cient to mention the leaves of Tv, because with s and t

in Tv, all vertices of T on the unique path from s to t in T are also in Tv.
Note that in any chordal graph, the number of maximal cliques is bounded

by n and the number of pairs (x; c) such that x is in the clique c is bounded by
the number of edges.

3 First Approximation

Theorem 2 Let T be a spanning tree of G and v1; : : : ; vn be a postorder enu-
meration of T . Let Vi be the set of vertices that have vi in the closed neighborhood
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but no vj with j > i. Then there is a minimal elimination ordering <, such that
with x 2 Vi, y 2 Vj , and i < j, x < y.

We call such an ordering also compatible with V1; : : : ; Vk.
Proof of Theorem: Let C be a connected component of V1 [ : : : [ Vi�1.

Consider the neighborhood N(C) of C in Vi [ : : : [ Vn. Note that every vertex
in N(C) has a neighbor in the connected vertex set fvi; : : : ; vng, but no vertex
in N(C) is a vertex vi; : : : ; vn. Therefore N(C) is a minimal set that separates
C and the connected set fvi; : : : ; vng, i.e. N(C) is a cut. Note that the sets
N(C) do not cross, i.e. N(C1) intersects at most one connected component of
G�N(C2). By a result of [10], one gets a minimal �ll-in such that all these sets
N(C) are cuts. We always can choose vk as the vertex of maximum number of
the minimal �ll-in ordering <. Then all vertices in C have a smaller number
than the vertices in N(C). That means also that if x 2 Vi, y 2 Vj , i < j, and
xy is an edge of G or a �ll-in edge then x < y. We therefore can transform the
ordering < into an ordering <0, such that with x 2 Vi, y 2 Vj , and i < j, we
have x <0 y. Therefore there is a minimal elimination ordering with this �ll-in
that meets the requirement of the theorem.
Q.E.D.

Note that the ordered partition (V1; : : : ; Vk) can be determined in O(n+m) =
O(n) time.

4 Further Level Re�nement and Construction

of the Elimination Tree

Using union-�nd, we determine the connected components of
S
j�i Vj , for all i.

Vertices x and y in Vi are called equivalent if they belong to the same connected
component of

S
j�i Vj .

The elimination tree of G is constructed as follows. The nodes of the elim-
ination tree T are the equivalence classes as de�ned in previous section. The
parent of an equivalence class C of Vi is the equivalence class C 0 of Vj , such
that j > i, C 0 is adjacent to the connected component D of

S
j�i that contains

C, and j is minimal.

Lemma 1 The equivalence classes and the elimination tree can be determined
in O(n�(n)) time.

Proof: We �rst determine the sets Di of connected components of G[Vi].
This can be done in linear time. The set of equivalence classes of V1 is just the
set D1 of connected components of V1. To determine the equivalence classes of
Vi, we determine the connected components of V1 [ : : : [ Vi using union-�nd.
The initial set Comp of components is D1. For each D 2 Comp, let iD be
the largest i, such that D intersects Vi. Initially, for each D 2 Comp, we have
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iD = 1. For each C 2 Comp, let Eq(C) = C \ ViC if this set is an equivalence
class. Initially, for each D 2 D1, Eq(D) := D.

Starting with i = 2, we consider each D 2 Di. For each edge xy with
x 2 D and y 2

S
j<i Vj , we �nd the largest C 2 Comp containing y by the �nd

operation. We create the union D0 = C [D. We set iD0 := i and if iD < i, we
set a pointer p(C) := x. The parent of Eq(C) should be the equivalence class
that contains x. After we considered all D 2 Di, we �nd, for each x 2 Vi, the
largest Cx 2 Comp that contains x and put x into Eq(Cx). If p(C) = x, for
some C 2 Comp then we set Parent(Eq(C)) := Eq(Cx) and erase the pointer
p(C) = x.

This procedure computes the elimination tree and has the same time bound
as union-�nd. The time bound is O(n�(n)).
Q.E.D.

5 Pre-Fill-in of Equivalence Classes

We determine, for each equivalence class C, the set EC of edges that are in any
�ll-in of an ordering that meets is compatible with V1; : : : ; Vn. They are just
those edges xy joining two vertices in C � Vi that are in E or adjacent to a
particular connected component of V1 [ : : : [ Vi�1.

Let v 2 C � Vi and C be an equivalence class. Let vw 2 E and w 2 C 0 � Vj
and j < i. Then C 0 is a descendent of C. Let C 00 be the child of C that is an
ancestor of C 0. We say v adj C 00 (v is adjacent with C 00).

Remark 1 The number of children of C that are adjacent with v is bounded by
�.

Lemma 2 For all vertices v 2 C, the set of children of C that are adjacent
with v can be determined in O(n) time.

Proof: We can determine a preorder enumeration C1; : : : ; Ck of the elimi-
nation tree in linear time. We therefore get a sorting of the edges joining C

with some descendent C 0 of C with respect to the number of C 0 together with
the children of C in linear time. For each edge vw joining v 2 C with some
descendant C 0 of C, we determine the last child C 00 coming before C 0 in the
preorder enumeration, and we get as a result that v is adjacent with C 00.
Q.E.D.

Let v and w be in C. Then vw 2 EC if vw 2 E or v and w have a common
adjacent child of C.

Lemma 3 EC can be determined in O(�3).

Proof: This is true, because the number of vertices in C is bounded by �
and the number of adjacent children of any v 2 C is bounded by �.
Q.E.D.
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6 Compact Tree Representations

For each vertex v of G, let Cv be the equivalence class containing v and Sv
be the set of descendants of Cv containing a neighbor of v. Tv is the smallest
subtree of the elimination tree T that contains Cv and all equivalence classes in
Sv. One gets a compact representation Compv of Tv consisting of Cv , all nodes
of Sv , and all nodes of Tv containing at least two children in Tv. Note that the
size of Compv is in the order of the degree of v in G (and therefore bounded
by �). Note that (Compv)v2V can be determined in linear time determining
Sv and all least common ancestors of consecutive nodes in Sv in the preorder
enumeration of Sv (see also [5, 4].

7 Final Elimination Ordering Using Modi�ed Lex-

ical Search

It remains to re�ne each equivalence class C. We may assume that EC is known.
In general, one �nds a minimal elimination ordering using lexical breadth-

�rst search as follows [12].
We iteratively re�ne an ordered partition L1; : : : ; Lk as follows.

1. We select an unnumbered vertex v of the largest level and number it.

2. We determine the �ll-in edges incident with v as follows. A vertex x 2 Li
is made adjacent with v if x and v are adjacent to a common connected
component of

S
j<i Lj .

3. Each Li is split into a greater level of neighbors of v and a smaller level
of nonneighbors of v.

We call this algorithm due to Rose, Tarjan, and Lueker, also the RTL-
algorithm.

The key result for further re�nement is the following.

Lemma 4 Let v belong to an ancestor equivalence class of C and let x 2 C.
Then v and x are adjacent in any �ll-in of a compatible ordering if v is adjacent
to a vertex y that belongs to an equivalence class C 0 that is a descendant of an
adjacent child of x.

Proof: Assume that x 2 C � Vi. Let x be adjacent to the child C 00 of C and
therefore be adjacent to the vertex z belonging to the descendant C 000 of C 00.
Let y be de�ned as in the lemma. y also belongs to an equivalence class C 0 that
is a descendant of C 00. C 00 is the set of vertices of some Vj , j < i belonging to
one connected component D of V1 [ : : : [ Vj . Also C 0 and C 000 belong to this
connected component. Therefore x and v are neighbors of the same connected
component of V1 [ : : : [ Vi�1. Therefore x and v must be joined by an edge of
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G or by a �ll-in edge.
Q.E.D.

By the last lemma, we may take any vertex v in an ancestor of C, consider a
vertex x 2 C as adjacent with v if they are adjacent in G or adjacent with some
child component of C. We split C into the equivalence classes of neighbors of v
and nonneighbors of v.

We determine a minimal �ll-in of the graphs G0
C as follows. The vertex set

V 0
C onsists of

1. The vertices of C,

2. the vertices v that appear in some ancestor of C and that are adjacent
with some vertex in C.

The edge set E0
C is de�ned as follows.

1. The edges in EC belong to E0
C ,

2. the vertices in V 0
C that do not belong to C form a complete set,

3. v 2 V 0
C nC and x 2 C are joined by an edge in E0

C is x is adjacent with v.

We immediately can observe the following.

Lemma 5 1. V 0
C is the set of all vertices v, such that Tv contains C.

2. vw is an edge in G0
C if vw is an edge of G or Tv and Tv share another

equivalence class than C.

3. The edges of G0
C are necessarily in any �ll-in graph of a compatible elim-

ination ordering.

4. If x and y are adjacent in some G0
C then they are adjacent in all G0

C they
belong to.

Proof: The �rst statement follows from the de�nition of the set Tv.
The second statement can be checked as follows. If v and w are in C then

vw 2 EC if and only if vw 2 E or v and w have a common adjacent child C 0.
The second case is equivalent to the fact that Tv and Tw share also C 0. If v is
not in C, but w 2 C then either vw 2 E or there is a child C 0, such that v and
w are adjacent to vertices belonging to descendants of C 0. The second case is
equivalent to the fact that Tv and Tw contains C 0. If v and w are both not in
C then Tv and Tw contain both also the parent of C.

The third statement follows directly from the construction of the edge sets
E0
C .
The fourth statement follows directly from the second statement.

Q.E.D.
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Lemma 6 If we determine a minimal �ll-in, for each G0
C separately, then we

get a minimal �ll-in of G.

Proof: We only have to show that we get a �ll-in of the whole graph, i.e.
that we get a chordal graph. Let TC be any tree representation of a minimal
�ll-in of G0

C . Consider any edge CC 0 of the elimination tree. Note that all
vertices v, such that Tv passes CC 0 are pairwise adjacent in G0

C and therefore
the corresponding subtrees T 0v in G0

C share a node t of TC . Therefore we can
link the edge CC 0 with t. When we do this, for all C and all edges CC 0, we get
a tree representation of the graph G0 that comes up if we determine a minimal
�ll-in, for each G0

C separately. Therefore G0 is chordal.
Q.E.D.

To determine a minimal �ll-in of G0
C , we proceed as in [12]. We consider

the vertices not in C as vertices with larger numbers than those in C. Since
the vertices not in C are pairwise adjacent, we may assume any ordering of the
vertices not in C. We may assume that the vertices v with C 62 Compv are of
greater number than those v with C 2 Compv .

In detail, we proceed as follows.

1. We �rst consider the vertices v, such that C 2 Tv, but C 62 Compv .

We call a child C 0 of C a pass through child of C if there is a Tv passing
C 0 and C, such that C is not in Compv and therefore C 0 is the only child
of C in Tv. Such a vertex v is also called a pass through vertex of C.

We determine the pass through children of all C as follows.

� For each node C of the elimination tree, we determine the distance

dist(C) from the root.

� For each C, let min(C) be the minimum distance dist(C 0) of the root

of Tv with C 2 Compv .

� For each node C, let Min(C) be the minimum of all min(C 0), such

that C 0 is a descendant of C or C 0 = C.

� A child C 0 of C is a pass through child of C if and only if Min(C 0) <
dist(C).

This part can be done in O(n+m) = O(n) time.

Note that if v1 and v2 are pass through vertices associated with the same
pass through child of C then v1 and v2 have the same closed neighborhood
in G0

C . Therefore we can shrink the vertices associated with the same pass
through child C 0 to one vertex vC0 . After determining the minimal �ll-in,
we again replace vC0 by the the complete set of vertices v associated with
the pass through child C 0, and the resulting �ll-in is a minimal �ll-in.

We run now the RTL-algorithm to number the pass through vertices, i.e.
the pass through children.
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Let C 0
1; : : : ; C

0
k be an enumeration of the pass through children of C. For

i = 1; : : : ; k, we determine the i-re�nement of C.

Let x adj C 0
i be de�ned as in section 5.

� Initially the 0-re�nement consists of C.

� Suppose the i-re�nement consists of C1; : : : ; Cl. The i + 1-re�nement

of C is determined as follows.

{ A vertex x 2 Cj is called adjacent with C 0
i+1 if x adj C 0

i+1 or there

is a connected component D of
S
j0<j Cj0 in EC , such that x is

adjacent to some vertex in D and there is some y 2 D, such that

y adj C 0
i+1.

{ We get the i + 1-re�nement splitting each Ci into a greater com-

ponent of vertices adjacent with C 0
i+1 and a smaller component of

vertices not adjacent with C 0
i+1.

The time needed for one C 0
i is bounded by �

2. The number of all C 0
i in the

whole graph G is at most n. Therefore we get a time bound of O(n�2).

2. We consider the vertices v, such that C 2 Compv and Cv 6= C. That
means we apply the RTL-algorithm and number the vertices of G0

C that
are not in C but no pass through vertices.

For each vertex v, we do the v-re�nement of all C with C 2 Compv nfCvg.

� For all C 2 Compv n fCvg, we determine the set Childv(C) of children
of C that are ancestors of some C 0 2 Compv.

� For all x 2 C 2 Compv n fCvg, we put x into NC(v) if xv 2 E or

x adj C 0, for some C 0 2 Childv(C).

� Let C1; : : : ; Cl be the present re�nement of C. We put x 2 Cj into

N 0
C(v) if x 2 NC(v) or there is a connected component D of C1 [ : : :[

Cj�1 in EC , such that x is adjacent to some vertex in D and D contains

a vertex in NC(v).

� We get the v-re�nement of C by splitting each Cj into a greater com-

ponent containing the vertices in NC(v) and a smaller component con-

taining the vertices not in NC(v).

This step can be done in O(�3) time, for each v, and therefore the overall
time is linear.

3. The rest re�nement of C considers only vertices of C and is done as in
[12]. This can obviously done in O(jCj3) time, for each C, and therefore
in overall time O(n�2) = O(n).

The overall time bound is O(n(�3+�(n)) = O(n�(n)) This proves the main
result of the paper.
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8 Conclusions

Note that a minimal elimination �ll-in can be far from a minimum �ll-in. But the
approach of this paper might also be helpful to improve elimination heuristics.
For example, the second re�nement procedure might be helpful to make an
ordered vertex partition a minimal elimination ordering. Future research might
go in that direction to improve this algorithm such that the resulting ordering
has also good approximation properties.

The time bound that has been proved is O(n(�3 + �(n)). The exponent of
� might be lower.
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