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Abstract

Regularized variable selection is a powerful tool for identifying the true regression
model from a large number of candidates by applying penalties to the objective
functions. The penalty functions typically involve a tuning parameter that control
the complexity of the selected model. The ability of the regularized variable se-
lection methods to identify the true model critically depends on the correct choice
of the tuning parameter. In this study we develop a consistent tuning parameter
selection method for regularized Cox’s proportional hazards model with a diverg-
ing number of parameters. The tuning parameter is selected by minimizing the
generalized information criterion. We prove that, for any penalty that possesses
the oracle property, the proposed tuning parameter selection method identifies the
true model with probability approaching one as sample size increases. Its finite
sample performance is evaluated by simulations. Its practical use is demonstrated
in the Cancer Genome Atlas (TCGA) breast cancer data.
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Tuning parameter selection in Cox model 1

1. Introduction

In modern epidemiological and biomedical research, investigators are increasingly facing large-

scale data with numerous variables. Investigators are often interested in identifying which of those

variables are associated with the outcome of interest. Therefore, variable selection becomes an

important task for large-scale data analysis. In order to avoid missing any potentially important

variables and functional forms of them such as polynomials and interactions, it is desirable to

include in the variable selection process as many candidate variables and their functions as the

sample size allows. Regularized variable selection method is an effective and efficient tool to iden-

tifying important variables from a large number of candidates. In this method, a penalty is applied

to the objective function to shrink the estimates of regression coefficients and achieve sparsity by

estimating small coefficients as exactly zero. Many penalty functions have been proposed in the

literature including Lasso (Tibshirani, 1996), adaptive Lasso (Zou, 2006), and smoothly clipped

absolute deviation (SCAD) (Fan & Li, 2001), among others. It has been shown that certain penalty

functions possess the so-called oracle property that they identify the true model with probability

approaching one as sample size goes to infinity and estimate the nonzero parameters as efficient as

if the true model is known with a proper choice of the tuning parameter (Fan & Li, 2001).

In variable selection literature, the number of parameters p is typically categorized into three

scenarios according to its relationship with sample size n. In the first category, p is considered

fixed as n → ∞. In the next category, p is allowed to increase to infinity with n but at a slower

rate. The relationship is commonly assumed to be p = O(nκ) where 0 < κ < 1. Models in this

category are often said to have a diverging dimension. In the last category, p is assumed to increase

to infinity at a faster rate than n such as p = O(nκ) with κ > 1 or log(p) = O(n). Models in this

category are called high-dimensional, and some researcher call them ultra high-dimensional when

log(p) = O(n). In this paper we are concerned with the second category where p goes to infinity but

at a slower rate than n. This scenario is useful in many practical situations. For example, in studies
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2 A. Ni and J. Cai

that involve gene sequencing data, the number of observed single nucleotide polymorphisms and

other gene alterations usually increases with the number of subjects under study. If each alteration

is considered as a covariate, then it is necessary to allow the number of parameters in the model to

increase with sample size. Many high-dimensional variable selection problems with p� n can be

reduced to problems with a diverging number of parameters by applying a pre-screening procedure

(Fan & Lv, 2008; Fan et al., 2010b,a; Wang & Zhu, 2011).

Tuning parameter is an important component of any penalty function. It controls the complexity

of the selected model. The oracle property of the penalty functions only ensures the existence

of a tuning parameter that leads to the true model, but it does not provide a method to identify

such tuning parameter consistently. Under the fixed-p scenario, Fan & Li (2001) used generalized

cross-validation to choose the tuning parameter. This method has been shown to be analogous to

the Akaike information criterion (Akaike, 1973) and overfit models with a positive probability

asymptotically (Wang et al., 2007). The same authors proposed a Bayesian information criterion-

based tuning parameter selection method and proved its model selection consistency in linear

models. Zhang et al. (2010) further introduced a generalized information criterion for generalized

linear models. Su et al. (2016) proposed an approximate information criterion for variable selection

in Cox proportional hazards model. Under the diverging model dimension scenario, Wang et al.

(2009) proposed a modified Bayesian information criterion for tuning parameter selection in linear

models. Under the high-dimensional model setting, Wang & Zhu (2011) proposed a family of

Bayesian information criteria for linear models. The authors proved that the generalized infor-

mation criterion identifies the true model consistently if the penalty coefficient diverges to infinity

with a rate slower than n1/2. Fan & Tang (2013) extended this criterion to generalized linear models

and established the divergence rate of its penalty coefficient for model selection consistency. More

recently, Luo et al. (2015) tackled the problem from a Bayesian perspective and proposed the

Extended Bayesian information criteria by modifying the prior distribution of the model space. The
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Tuning parameter selection in Cox model 3

authors established model selection consistency under high-dimensional (p = O(nκ) with κ > 1)

Cox proportional hazards model but with the requirement that the number of nonzero parameters

is finite. In this paper, we extend the generalized information criterion to the Cox proportional

hazards model with diverging numbers of candidate as well as nonzero parameters by establishing

the required divergence rate of the penalty coefficient in the information criterion.

2. Generalized Information Criterion under Cox Proportional Hazards Model

Suppose there are n independent subjects. Let T and C be respectively the time to the outcome of

interest and the censoring time. Let X = min(T,C) be the observed time and ∆ = I(T 6 C)

be the censoring indicator, where I(·) is an indicator function. Let Zi(t) be the dn × 1 possibly

time-dependent covariate vector for subject i at time t. T and C are assumed to be independent

conditional on Z. Let β = (β1, ..., βdn)T ∈ B ⊂ Rdn be a vector of regression coefficients and

β0 = (β01, ..., β0dn)T be its true value. Assume there are kn nonzero components of β0 and dn− kn

zero components. We allow both dn and kn to increase to infinity with n but with a slower rate than

n. Although the dimensions of β, β0, and Zi(t) all depend on n, we omit n from the subscript for

notational simplicity. Define for subject i the counting process Ni(t) = I(Xi 6 t,∆i = 1), and

the at risk process Yi(t) = I(Xi > t). The log-partial likelihood under Cox proportional hazards

model is

`n(β) =
n∑
i=1

∫ τ

0

(
βTZi(t)− log

[
1

n

∑n

j=1
Yj(t) exp

{
βTZj(t)

}])
dNi(t), (1)

where τ is the time at the end of study. This log-partial likelihood is slightly different from the

conventional definition by including a 1/n term inside the logarithm. This leads to the same

score function and estimate of β as the conventional definition but will facilitate the theoretical

derivations in this paper. Let Pλ(·) be a penalty function with tuning parameter λ. We assume

that the penalty function possesses the oracle property. The penalized maximum partial likelihood
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4 A. Ni and J. Cai

estimator β̂λ is the maximizer of the following objective function,

`n(β)− n
dn∑
j=1

Pλ(|βj|). (2)

Let αλ be the model that is identified by the tuning parameter λ . Let α0 be the true model. Let |αλ|

be the size of model αλ. Then |α0| = kn. We consider the generalized information criterion

GIC(λ) =
1

n

{
−`n(β̂λ) + an|αλ|

}
, (3)

where the penalty coefficient an is a positive sequence depending on n. When an = 1 the criterion

becomes the AIC statistic. Wang et al. (2007) noted that, when dn is small compared to n, the

AIC statistic is approximately equal to the generalized cross-validation statistic (Craven & Wahba,

1979), which is frequently used for tuning parameter selection in Cox model (Tibshirani, 1997;

Fan & Li, 2002; Cai et al., 2005; Zhang & Lu, 2007). When an = log(n)/2, the criterion becomes

the Bayesian information criterion (BIC). Although there is no direct use of BIC for Cox model

selection, some modified forms of BIC have been proposed for Cox model selection in the literature

(Volinsky & Raftery, 2000; Luo et al., 2015). The selected tuning parameter λ̂ is the minimizer of

(3). The oracle property guarantees the existence of at least one λ that gives rise to the true model

α0. The goal of this paper is to determine the characteristic of the sequence an so that the λ leading

to the true model is identified with probability tending to one as sample size goes to infinity.

3. Notations and Regularity Conditions

In addition to the penalized estimator β̂λ, we also define the unpenalized maximum partial likeli-

hood estimator β̂αλ for model αλ, which maximizes (1). Note that β̂λ is a function of λ and β̂αλ is a

function of the model. For a given model αλ, we define its true parameter β0
αλ

as the minimizer of

the Kullback-Leibler distance D(βαλ) = n−1E{`n(β0)− `n(βαλ)}. The expectation is taken under

the true model.

Hosted by The Berkeley Electronic PressHosted by The Berkeley Electronic Press



Tuning parameter selection in Cox model 5

Let a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT for a vector a. Define the following notations for each n:

S(k)
n (β, t) =

1

n

n∑
i=1

Yi(t)Zi(t)
⊗keβ

TZi(t), k = 0, 1, 2,

s(k)
n (β, t) = E{S(k)

n (β, t)}, k = 0, 1, 2,

In(β) = − 1

n
E

{
∂2`n(β)

∂β2

}
.

We require the following regularity conditions:

(A)
∫ τ

0
h0(t)dt <∞, where h0(t) is the baseline hazard function.

(B) E{Y (τ)} > 0.

(C) |Zij(0)| +
∫ τ

0
|dZij(t)| < C1 < ∞ almost surely for some constant C1 and i = 1, ..., n and

j = 1, ..., dn. It implies that Kn = max16j6dn,16i6n ‖Zij(t)‖∞ <∞, where ‖ · ‖∞ denotes the

supremum norm.

(D) For any model αλ, there exists a neighborhood Bαλ of β0
αλ

such that for all βαλ ∈ Bαλ and

t ∈ [0, τ ], ∂s(0)
n (βαλ , t)/∂βαλ = s

(1)
n (βαλ , t), and ∂2s

(0)
n (βαλ , t)/∂βαλ∂β

T
αλ

= s
(2)
n (βαλ , t). The

functions s(k)
n (βαλ , t) (k = 0, 1, 2) are continuous and bounded and s(0)

n (βαλ , t) is bounded

away from 0 on Bαλ × [0, τ ].

(E) For any model αλ, there exists a neighborhood Bαλ of β0
αλ

such that for all βαλ ∈ Bαλ , there

exists positive constant C2 and C3 such that

0 < C2 < eigenmin{In(βαλ)} 6 eigenmax{In(βαλ)} < C3 <∞,

where eigenmin(·) and eigenmax(·) are the minimum and maximum eigenvalues of a matrix,

respectively.

(F) Ln = supβ∈B ‖β‖1 <∞, where ‖·‖1 denotes the L1 norm. As a consequence of this condition

and Condition (C), we can define exp{|βTZi(t)|} 6 exp(LnKn) = Un < ∞ for i = 1, ..., n

and β ∈ B.

(G) d4
n/n→ 0 and kn/dn → c ∈ [0, 1) as n→∞.

Condition (A) ensures finite baseline cumulative hazard. Condition (B) ensures non-empty risk
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6 A. Ni and J. Cai

set by the end of the study. Condition (C) requires the stochastic process of each time-dependent co-

variate to have bounded total variation almost surely. Condition (D) essentially requires exp{βTαλZi(t)}

to be integrable under a diverging dimension so that integration and differentiation with respect

to S(k)
n (βαλ , t) (k = 0, 1) can be interchanged, which is a standard condition for the proportional

hazards model. Condition (E) ensures that the covariance matrices of the score function are positive

definite and have uniformly bounded eigenvalues for all n. The same condition has been assumed in

the variable selection literature (Peng & Fan, 2004; Cai et al., 2005; Cho & Qu, 2013). Condition

(F) confines our investigation to the parameters with a finite total effect on the hazard function,

which is very reasonable in practice. Condition (G) specifies the divergence rate of the number of

candidate and nonzero parameters that is required to establish the theoretical results in this paper.

4. Asymptotic Properties of the Generalized Information Criterion

Let λmax be the smallest λ that results in an empty model with no nonzero estimates. We partition

the tuning parameter space Ω = [0, λmax] into the underfit, true, and overfit subspaces as follows,

Ω− = {λ : αλ 6⊃ α0}, Ω0 = {λ : αλ = α0}, Ω+ = {λ : αλ ) α0},

where a ) b means a contains b but is not equal to b. Since β̂λ is the maximizer of potentially

nonconcave objective function (2) due to nonconcave penalties, the asymptotic property of `n(β̂λ)

is difficult to study. Instead, we work with the unpenalized version of the log-partial likelihood.

Define

GIC∗(αλ) =
1

n

{
−`n(β̂αλ) + an|αλ|

}
.

Note that GIC∗(αλ) is a function of the model whereas GIC(λ) is a function of the tuning pa-

rameter. We only present main results in this section, the proofs of which are outlined in the Web

Appendix. There are two challenges in the proofs that are unique to the log-partial likelihood. First,

the log-partial likelihood and its score function are summations of dependent terms. We introduce

two intermediate quantities to tackle this difficulty. Second, the log-partial likelihood does not
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Tuning parameter selection in Cox model 7

possess the Lipschitz property (Kong & Nan, 2014) so certain asymptotic properties cannot be

established uniformly for β. We instead establish the pointwise properties for any given β, which

suffices our purpose as we are only concerned with the maximum partial likelihood estimator β̂αλ .

The following lemma states that, for any λ, the difference between GIC(λ) and GIC(λ0) is no

less than that between GIC∗(αλ) and GIC∗(α0) with probability tending to one.

LEMMA 1: If the penalty function possesses the oracle property for the log-partial likelihood

(1), then for any λ ∈ Ω and λ0 ∈ Ω0, as n→∞,

pr {GIC(λ)−GIC(λ0) > GIC∗(αλ)−GIC∗(α0)} → 1.

Lemma 1 allows us to study the asymptotic properties of GIC∗(αλ) instead of GIC(λ). Cai et al.

(2005) established oracle property for SCAD penalty under Cox model with a growing number of

parameters. Bradic et al. (2011) further proved the oracle property for the class of folded concave

penalties including SCAD, minimax concave penalty (MCP), and Lasso under Cox model with

non-polynomial dimensionality which includes diverging dimension as a special case.

The following theorem describes the uniform stochastic order of the difference between `n(β̂αλ)−

`n(β̂α0) and D(β0
αλ

) over all possible model αλ, the number of which increases combinatorially

fast with sample size. All expectations are taken under the true model.

THEOREM 1: Under Conditions (A) to (G), uniformly for all models,

sup
αλ

1

|αλ|1/2
∣∣∣`n(β̂αλ)− E{`n(β0

αλ
)}
∣∣∣ = Op[n

1/2{log(dn)}1/2].

Based on Theorem 1, for all underfitted model αλ 6⊃ α0 we have that,

inf
αλ 6⊃α0

{GIC∗(αλ)−GIC∗(α0)}

= inf
αλ 6⊃α0

1

n

[
`n(β̂α0)− `n(β̂αλ)− E{`n(β0

α0
)− `n(β0

αλ
)}+ E{`n(β0

α0
)− `n(β0

αλ
)}

+an(|αλ| − |α0|)
]

> − 1

n
sup
αλ 6⊃α0

∣∣∣`n(β̂αλ)− E{`n(β0
αλ

)}
∣∣∣− 1

n

∣∣∣`n(β̂α0)− E{`n(β0
α0

)}
∣∣∣+ inf

αλ 6⊃α0

D(β0
αλ

)
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8 A. Ni and J. Cai

+ inf
αλ 6⊃α0

1

n
an(|αλ| − |α0|)

> − 1

n
sup
αλ 6⊃α0

∣∣∣`n(β̂αλ)− E{`n(β0
αλ

)}
∣∣∣− 1

n

∣∣∣`n(β̂α0)− E{`n(β0
α0

)}
∣∣∣+ δn −

1

n
ankn

= − 1

n
Op[{dnn log(dn)}1/2]− 1

n
Op[{dnn log(dn)}1/2] + δn −

1

n
ankn

= −Op[{dn log(dn)}1/2n−1/2] + δn −
1

n
ankn, (4)

where δn = infαλ 6⊃α0 D(β0
αλ

) defines the smallest Kullback–Leibler distance to the true model

among all underfitted models. It can be deemed as the signal strength of the true model. Since

δn is always positive, if δn and an satisfy the conditions δnn1/2{dn log(dn)}−1/2 → ∞ and an =

o(δnnk
−1
n ), then (4) is positive with probability tending to one. Then by Lemma 1,

pr

[
inf
λ∈Ω−
{GIC(λ)−GIC(λ0)} > 0

]
→ 1

as n→∞. This result suggests that as long as the signal strength of the true model does not decay

to zero too fast and the sequence an does not go to infinity too fast, the generalized information

criterion of all underfitted models is larger than that of the true model with probability tending to

one.

For overfitted models, the Kullback–Leibler distance based method is no longer useful because

D(β0
αλ

) = 0 for all αλ ) α0 so δn cannot be well defined. We instead study the asymptotic

property of `n(β̂αλ) − `n(β̂α0) directly. If the dimension of the model is finite, it is known that

2 times the log-partial likelihood ratio converges to a χ2 distribution with |αλ| − |α0| degree of

freedom. However, when the model dimension goes to infinity, we have to consider higher order

terms in the linearization of the log-partial likelihood ratio statistic. Moreover, obtaining a uniform

stochastic order of `n(β̂αλ)− `n(β̂α0) over all overfitted models is challenging since the number of

such models increases to infinity combinatorially fast.

THEOREM 2: Under Conditions (A) to (G), uniformly for all αλ ) α0,

sup
αλ)α0

1

|αλ| − |α0|

{
`n(β̂αλ)− `n(β̂α0)

}
= Op{log(dn)}.
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Tuning parameter selection in Cox model 9

As a consequence of Theorem 2, uniformly for all overfitted models we have that

inf
αλ)α0

GIC∗(αλ)−GIC∗(α0)

|αλ| − |α0|

= inf
αλ)α0

1

n(|αλ| − |α0|)

{
`n(β̂α0)− `n(β̂αλ) + an(|αλ| − |α0|)

}
= −Op{n−1 log(dn)}+

an
n
. (5)

Therefore, when an/ log(dn)→∞, (5) is positive with probability tending to one. Since |αλ| −

|α0| is positive for all overfitted models, it follows that infαλ)α0 GIC∗(αλ)−GIC∗(α0) is positive

with probability approaching one when an/ log(dn)→∞. By Lemma 1 it follows that

pr

[
inf
λ∈Ω+

{GIC(λ)−GIC(λ0)} > 0

]
→ 1

as n→∞. With Theorem 1 and 2, we arrive at the following theorem.

THEOREM 3: Under Conditions (A) to (G), if δnn1/2{dn log(dn)}−1/2 →∞, an = o(δnnk
−1
n ),

and an/ log(dn)→∞, then as n→∞,

pr

{
inf

λ∈Ω−∪Ω+

GIC(λ) > GIC(λ0)

}
→ 1.

Theorem 3 is a direct consequence of Theorem 1 and 2. It entails that, if the signal strength

of the true model does not decrease to zero too fast and an diverges with sample size with a

proper range of rates, then by minimizing the generalized information criterion we can identify

the tuning parameter that leads to the true model with probability tending to one as sample size

goes to infinity. From the three requirements specified in Theorem 3 we can see that the lower

bound of the divergence rate of an is log(dn). The upper bound depends on the signal strength δn.

If δn satisfies the first requirement, then an = O[{ndn log(dn)}1/2/kn] always satisfies the second

requirement. Hence, any an with a divergence rate between log(dn) and {ndn log(dn)}1/2/kn gives

model selection consistency as sample size goes to infinity. Notably, the AIC statistic where an = 2

does not satisfy the requirements listed in Theorem 3, hence its inconsistency in model selection.

The BIC statistic where an = log(n) does satisfy the model selection consistency requirements.

Moreover, there is a range of other consistent information criteria as long as their an satisfies the
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10 A. Ni and J. Cai

requirements in Theorem 3. In the simulation study that follows, we will investigate the finite

sample performance of AIC, BIC, and one other consistent information criterion.

5. Simulation Studies

We use the smoothly clipped absolute deviation penalty (Fan & Li, 2001) to demonstrate the finite

sample performance of the proposed tuning parameter selection method. Cai et al. (2005) has

established the oracle property of this penalty function in Cox model with a diverging number of

parameters.

Independent failure times are generated from the exponential hazard model. We set the baseline

hazard h0(t) = 2 and the dimension of β to be dn = [10n
1/5
c ] to reflect that it increases with the

number of cases nc and in turn with the sample size. We set dn as a function of nc rather than

n because the former better represents the amount of information contained in the dataset. The

first component of β is the smallest nonzero parameter in terms of the absolute value, denoted by

βmin, which is related to δn, the signal strength of the true model. As it is not possible to specify

the required convergence rate of δn under finite sample size, we consider three different values

of βmin: 1.0, 0.34, and 0.18 corresponding to hazard ratio of 2.8, 1.4, and 1.2, respectively. The

other nonzero parameters recycle from 0.6 and −0.8. There is one nonzero parameter for every

two zero parameters. The pattern of β is (βmin, 0, 0, 0.6, 0, 0,−0.8, 0, 0, 0.6, 0, 0,−0.8, 0, 0, ...). We

generate the design matrix Z as a mixture of correlated binary and continuous variables. First, a dn-

dimensional multivariate standard normal variable Z∗ is generated with corr(Z∗i , Z
∗
j ) = 0.5|i−j|.

Then the first three components of Z∗ are kept continuous, and the next three components are

dichotomized at zero, and this pattern is repeated for the rest of Z∗. Thus half of the covariates

become binary with parameter 0.5. Censoring times Ci are generated from a uniform distribution

U(0, c) where c is adjusted to achieve desired censoring percentage.

Various sample sizes and censoring rates are considered for each of the two βmin values. Variable

selection performance of the generalized information criterion is assessed for three choices of an: 1,
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Tuning parameter selection in Cox model 11

log(n)/2, and log{log(dn)} log(dn). The first two choices correspond to AIC and BIC, respectively.

The third one has a divergence rate between AIC and BIC. We also include as a comparison

the extended BIC (EBIC) (Luo et al., 2015) where an|αλ| in the proposed GIC is replaced by

log(n)|αλ|/2 + γ log
(
dn
|αλ|

)
. Following the authors, we set γ = 1 − 1/{4 log(dn)/ log(n)}. Since

the objective function (2) is not concave, we use local quadratic approximation algorithm to obtain

the estimates and their standard errors (Fan & Li, 2001). As a benchmark, we include the hard

threshold variable selection procedure, where the component of the unpenalized maximum partial

likelihood estimator from the full model is selected if its p-value from the Wald test is less than

0.05. We also include the result from the oracle procedure where the correct subset of covariates is

used to fit the model. For each setting 500 replications are conducted.

The performance of the variable selection procedure is evaluated by the average number of zero

parameters correctly estimated as zero (true negative number), the average number of nonzero

parameters erroneously estimated as zero (false negative number), the average number of correctly

identified parameters (both zero and nonzero), and the rate of identifying the true model. In addi-

tion, we define model error of a variable selection procedure as ME(µ̂) = E{E(T | z) − µ̂(z)}2.

Under the proportional hazard model with constant baseline hazard h0, it can be shown that

ME(µ̂) = h−2
0 E{exp(−β̂T z) − exp(−βT0 z)}2 and is estimated by h−2

0 m−1
∑m

i=1{exp(−β̂Ti zi) −

exp(−βT0 zi)}2, where m is the number of simulation replications. The relative model error for a

particular model is defined as the ratio of its model error to that of the unpenalized full model. We

use the median and the median absolute deviation of the estimated relative model error to compare

the performance of different variable selection procedures.

Table 1 summarizes the variable selection performance of different generalized information

criteria under sample sizes 1500, 2500, and 5000 and censoring rates of 80% and 90%. Overall, the

criterion with an = log{log(dn)} log(dn) gives the best performance in terms of rate of identifying

the true model and the median relative model error in various settings. The performance of the
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EBIC is remarkably close to that of an = log{log(dn)} log(dn) with the latter outperforming the

former slightly but consistently across all scenarios. The only scenarios where the performance of

an = log(n)/2 is similar to or slightly better than that of an = log{log(dn)} log(dn) are when

both of them have very high rate of identifying the true model or the signal strength is strong

(βmin = 1.0). Based on the average number of correctly and incorrectly identified zero parameters,

the criterion with an = 1 tends to select more parameters into the final model than does the

criterion with an = log{log(dn)} log(dn), whereas the criterion with an = log(n)/2 tends to

select less parameters than does the criterion with an = log{log(dn)} log(dn). This is consistent

with the fact that log{log(dn)} log(dn) lies between 1 and log(n)/2. We also evaluate the rates of

identifying the true model and average percentages of correctly identified parameters for different

generalized information criteria under wider range of sample sizes and censoring rates. The results

are summarized in Figure 1 and 2. It is apparent that the generalized information criterion with

an = log{log(dn)} log(dn) offers the best overall performance in variable selection under most

sample sizes and censoring rates. The only scenarios where the choices of an = 1 or log(n)/2

outperform an = log{log(dn)} log(dn) are those where the latter’s performance is already very

satisfactory.

[Table 1 about here.]

[Figure 1 about here.]

[Figure 2 about here.]

6. Real Data Applications

The Cancer Genome Atlas (TCGA) Research Network is a large collection of publically available

genomic sequence and mRNA expression data from tumor samples of various types of cancer

(http://cancergenome.nih.gov). The availability of matched overall survival data makes it possible

to conduct analysis to identify gene alterations and expressions that are potentially prognostic of
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the overall survival. In this analysis we use the breast invasive carcinoma dataset that contains

the mRNA expression data from 816 cancer patients (Ciriello et al., 2015). There are 119 death

events, corresponding to a 85.4% censoring rate. The mRNA expression was measured by RNAseq

technique and was standardized into z-scores for each gene by subtracting the mean and divided by

the standard deviation of the mRNA expression of that gene in the normal samples in the TCGA

database. Each gene was further categorized as significantly altered if the absolute value of its z-

score is larger than 1.96 and not altered otherwise. We consider the 468 genes that constitute the

IMPACT gene panel developed and routinely used at the Memorial Sloan Kettering Cancer Center

(http://cmo.mskcc.org/cmo/resources/gene-lists). Since the number of genes is more than half of

the sample size and exceeds the number of deaths, the Condition (G) imposed in this paper is likely

to be violated. To overcome this difficulty, we pre-screen the candidate genes by only including

those with an alteration frequency greater than 5% and a univariate log-rank test p value less than

0.05. These steps result in 35 genes that enter the subsequent SCAD-penalized variable selection

procedure. The idea of pre-screening followed by penalized regression has been thoroughly studies

in the literature (Fan et al., 2010a). The alteration frequency of the 35 genes range from 5% to

41%. We again use the three choices of an, EBIC, and the hard threshold method to select the

genes. The chosen tuning parameters λs are: 0.41 for an = 1, 0.73 for an = log(n)/2, 0.66 for

an = log{log(dn)} log(dn), and 0.66 for EBIC. The identified genes are summarized in Table 2.

Only genes that are selected by at least one method are listed.

The criterion with an = log{log(dn)} log(dn) identifies two genes: MLH1 and KRAS. The

MLH1 gene mutation has been reported to be associated with over ten-fold increase in the in-

cidence ratio of breast cancer (Scott et al., 2001). The KRAS gene amplification and mutation

are well known to be present in a number of cancers including breast cancer, lung cancer, and

endrometrial cancer (Kim et al., 2015; Pereira et al., 2013; Birkeland et al., 2012). Therefore, the

identification of MLH1 and KRAS gene mutations makes biological sense. The EBIC method
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identified the same two genes as an = log{log(dn)} log(dn), which is expected given the similar

results of these two methods in the simulation studies. The criterion with an = log(n)/2 misses

the important KRAS gene mutation. On the other hand, the criterion with an = 1 identifies ten

genes and the hard threshold method identifies five, many of which do not have previous literature

to support their association with the overall survival.

[Table 2 about here.]

7. Discussion

The theorems developed in this paper specify theoretical range of the divergence rate of the se-

quence an for model selection consistency. Any rate within the range leads to selection consistency.

Therefore, the choices of an is not unique. In real-data applications with finite sample sizes, differ-

ent choice of an may yield different results. Our simulation studies numerically demonstrate that

the choice of an = log{log(dn)} log(dn) offers an overall superior variable selection performance

over wide ranges of sample sizes and censoring rates. Admittedly, there likely to be other situations

where other choices of an may offer better performance. The main goal of this paper is to establish

the theoretical requirement on an for selection consistency. It is not our intention to provide the

best choices of an for all possible finite sample scenarios. In practice, we suggest practitioners to

use a few different an choices as a sensitivity analysis to assess how robust the selected model is

to the variation of an.

Although in this paper the model selection consistency of the generalized information crite-

rion is investigated in the context of regularized variable selection in Cox’s proportional hazards

model with a diverging number of parameters, the conclusions of our study have a much broader

application. In fact, the generalized information criterion developed in this paper can be used to

identify the true model from any set of candidate Cox’s regression models as long as the true

model is contained in the set. Therefore, it can be equally applied to the best subset selection or
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stepwise model selection procedures. In the context of regularized variable selection, the solution

path corresponding to a sequence of tuning parameter forms the set of candidate models. The oracle

property of the penalty function ensures that the solution path contains the true model.

A natural research question is to study the properties of the generalized information criterion

when the set of candidate models does not contain the true model. This happens when the solution

path of a regularized variable selection procedure fails to capture the true model or some covariates

with nonzero true effects are not included in the initial family of candidate covariates. In these cases

it is not clear if the proposed generalized information criterion can consistently identify all nonzero

parameters. Another potential research direction is to evaluate a variable selection procedure by

certain loss function of the estimated parameters rather than model selection consistency. Zhang

et al. (2010) investigated the squared loss of the penalized estimator in linear models with fixed

number of parameters and found that the Akaike but not the Bayesian information criterion is

asymptotically loss efficient in that it identifies the model whose squared loss converges to the

infimum of the squared loss of all possible models. It would be interesting to establish similar

results for Cox’s proportional hazards model with a diverging number of parameters.

Another future research direction is to apply the theoretical framework used in this paper to

the variable selection method recently proposed by Su et al. (2016) under Cox model with a

fixed model size. In their approach, the authors essentially approximate |αλ| in our GIC with the

“unit dent function”
∑dn

j=1 tanh(ncγ
2
j ) and set an in our GIC to log(nc), which lies in the range

of divergence rate identified in our paper for selection consistency. Although the authors showed

under a particular finite sample setting that the parameter estimation is robust to the choice of an,

it would still be interesting to extend our theoretical framework to their approach to identify a

theoretical range of divergence rate of an that ensures selection consistency under Cox model with

a diverging number of parameters.
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Figure 1. Rate of identifying the true model (RITM) of different choices of an in the generalized
information criterion. GIC 1: an = 1; GIC 2: an = log(n)/2; GIC 3: an = log{log(dn)} log(dn);
EBIC: extended BIC.
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Figure 2. Average percentages of correctly identified parameters (both zero and nonzero) for
different choices of an in the generalized information criterion. GIC 1: an = 1; GIC 2: an =
log(n)/2; GIC 3: an = log{log(dn)} log(dn); EBIC: extended BIC.
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Table 1
Model selection performance of different choices of an in the generalized information criteria.

80% Censored 90% Censored
RME RITM RME RITM

Method median (MAD) TN FN C (%) median (MAD) TN FN C (%)

n = 1500, βmin = 1.0, dn = 31 for 80% censored, dn = 27 for 90% censored

HT 0.60 (0.19) 18.8 0.1 29.8 28.8 0.61 (0.23) 17.0 0.4 25.6 24.6
GIC 1 0.41 (0.15) 19.3 0.0 30.3 51.0 0.50 (0.13) 15.7 0.2 24.5 10.2
GIC 2 0.36 (0.15) 19.8 0.1 30.7 78.0 0.46 (0.29) 17.8 0.8 26.0 39.6
GIC 3 0.36 (0.16) 19.9 0.1 30.7 79.0 0.48 (0.31) 17.8 0.8 26.0 38.6
EBIC 0.36 (0.16) 19.8 0.1 30.7 78.8 0.50 (0.34) 17.8 0.9 26.0 37.8
Oracle 0.32 (0.14) 20.0 0.0 31.0 100.0 0.29 (0.14) 18.0 0.0 27.0 100.0

n = 1500, βmin = 0.34, dn = 31 for 80% censored, dn = 27 for 90% censored

HT 0.72 (0.17) 18.8 0.1 29.7 29.6 0.81 (0.25) 16.9 0.6 25.2 16.6
GIC 1 0.46 (0.18) 19.3 0.0 30.2 48.0 0.71 (0.21) 15.3 0.2 24.1 8.0
GIC 2 0.56 (0.39) 20.0 0.7 30.3 52.8 3.64 (2.48) 18.0 3.3 23.7 2.0
GIC 3 0.36 (0.18) 19.9 0.1 30.8 80.6 0.86 (0.57) 17.8 1.2 25.5 24.4
EBIC 0.38 (0.17) 19.9 0.1 30.7 78.6 1.04 (0.91) 17.8 1.5 25.3 15.0
Oracle 0.33 (0.14) 20.0 0.0 31.0 100.0 0.29 (0.14) 18.0 0.0 27.0 100.0

n = 2500, βmin = 0.34, dn = 34 for 80% censored, dn = 30 for 90% censored

HT 0.71 (0.15) 20.7 0.0 32.7 31.2 0.70 (0.19) 18.9 0.1 28.8 31.2
GIC 1 0.47 (0.18) 21.5 0.0 33.5 60.0 0.63 (0.18) 17.6 0.0 27.5 9.8
GIC 2 0.36 (0.16) 22.0 0.0 34.0 96.8 1.61 (1.25) 20.0 1.6 28.4 20.6
GIC 3 0.37 (0.16) 21.9 0.0 33.9 93.8 0.44 (0.25) 19.9 0.3 29.6 67.2
EBIC 0.38 (0.16) 21.9 0.0 33.9 90.0 0.44 (0.25) 19.8 0.5 29.3 52.6
Oracle 0.36 (0.15) 22.0 0.0 34.0 100.0 0.31 (0.13) 20.0 0.0 30.0 100.0

n = 2500, βmin = 0.18, dn = 34 for 80% censored, dn = 30 for 90% censored

HT 0.71 (0.15) 20.7 0.1 32.7 26.0 0.69 (0.19) 18.9 0.4 28.5 21.8
GIC 1 0.49 (0.17) 21.5 0.1 33.4 54.6 0.66 (0.18) 17.6 0.2 27.4 10.6
GIC 2 0.45 (0.21) 22.0 0.6 33.4 47.6 2.27 (1.74) 20.0 2.5 27.5 3.0
GIC 3 0.40 (0.17) 21.9 0.2 33.8 77.2 0.50 (0.28) 19.9 0.8 29.1 35.8
EBIC 0.40 (0.17) 21.9 0.2 33.7 76.0 0.45 (0.27) 19.8 1.1 28.8 20.0
Oracle 0.36 (0.15) 22.0 0.0 34.0 100.0 0.32 (0.14) 20.0 0.0 30.0 100.0

n = 5000, βmin = 0.18, dn = 39 for 80% censored, dn = 34 for 90% censored

HT 0.71 (0.18) 24.6 0.0 37.5 24.6 0.67 (0.16) 20.7 0.1 32.6 27.4
GIC 1 0.44 (0.16) 25.5 0.0 38.5 59.2 0.66 (0.18) 19.6 0.0 31.6 9.0
GIC 2 0.37 (0.15) 26.0 0.1 38.9 91.6 0.47 (0.20) 22.0 0.6 33.4 43.8
GIC 3 0.37 (0.15) 25.9 0.0 38.9 93.2 0.40 (0.17) 21.9 0.2 33.8 79.2
EBIC 0.36 (0.14) 25.9 0.0 38.9 92.0 0.41 (0.19) 21.9 0.3 33.6 64.8
Oracle 0.35 (0.14) 26.0 0.0 39.0 100.0 0.37 (0.16) 22.0 0.0 34.0 100.0

RME: estimated relative model error; MAD: median absolute deviation; TN: true negative number
(average number of zero parameters correctly identified as zero); FN: false negative number
(average number of nonzero parameters incorrectly identified as zero); C: average number of
correctly identified parameters (both zero and nonzero); RITM: rate of identifying true model;
HT: hard threshold; GIC 1: an = 1; GIC 2: an = log(n)/2; GIC 3: an = log{log(dn)} log(dn);
EBIC: extended BIC.
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Table 2
Selected genes and estimated coefficients in the breast cancer TCGA data.

HT GIC 1 GIC 2 GIC 3 EBIC
Variable β̂ (ŝe) β̂ (ŝe) β̂ (ŝe) β̂ (ŝe) β̂ (ŝe)

AKT1 0.72 (0.32) 0.54 (0.28) 0 (–) 0 (–) 0 (–)
APC 0 (–) 0.79 (0.35) 0 (–) 0 (–) 0 (–)
BCOR 0 (–) 0.64 (0.32) 0 (–) 0 (–) 0 (–)
CSF3R 0 (–) 0.81 (0.35) 0 (–) 0 (–) 0 (–)
ELF3 −1.22 (0.51) −1.02 (0.44) 0 (–) 0 (–) 0 (–)
KRAS 0.93 (0.36) 0.81 (0.32) 0 (–) 1.03 (0.28) 1.03 (0.28)
MLH1 0.91 (0.29) 0.96 (0.24) 1.09 (0.23) 1.05 (0.23) 1.05 (0.23)
MPL 0 (–) 1.11 (0.31) 0 (–) 0 (–) 0 (–)
PPP2R1A 0.97 (0.41) 1.01 (0.39) 0 (–) 0 (–) 0 (–)
SDHC 0 (–) 0.38 (0.19) 0 (–) 0 (–) 0 (–)

HT: hard threshold; GIC 1: an = 1; GIC 2: an = log(n)/2; GIC 3: an = log{log(dn)} log(dn);
EBIC: extended BIC.
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Tuning parameter selection in Cox model supporting materials 1

Proof of lemma 1. We first consider β̂λ0 , the penalized estimate under the true model. By

definition, β̂λ0 solves the equations

∂`n(β)

∂βj
− nP ′λ0(|βj|)sgn(βj) = 0, j = 1, ..., kn,

where βj is the jth component of β. Since β̂λ0 possesses the oracle property, it must follow that

β̂λ0j converges to β0j in probability and pr{P ′λ(|β̂λ0j|) = 0} → 1. As a result, with probability

tending to one, β̂λ0 solves the equations

∂`n(β)

∂βj
= 0, j = 1, ..., kn,

which are the same equations that the unpenalized estimate β̂α0 solves by definition. This implies

that β̂λ0 = β̂α0 with probability tending to one. It follows that

pr{GIC(λ0) = GIC∗(α0)} → 1. (1)

On the other hand, for any λ ∈ Ω and any model αλ, by the definition of β̂αλ we have

GIC(λ) > GIC∗(αλ). (2)

Lemma 1 follows from (1) and (2).

The log-partial likelihood function under Cox proportional hazards model can be written as

`n(β) =
∑n

i=1 ∆i

(
βTZi(ti)− log

[
n−1

∑n
j=1 Yj(ti) exp{βTZj(ti)}

])
. Since the log-partial like-

lihood is a sum of dependent random variables, we introduce the following intermediate function

to facilitate the theoretical derivation:

¯̀
n(β) =

n∑
i=1

[
βTZi(ti)− log{s(0)

n (β, ti)}
]

∆i,

where s(0)
n (β, t) is defined in Section 3 of the main text. Define supp(β) as the support of β consist-

ing of indices of its nonzero components. Define set Bαλ = {β ∈ B : supp(β) = αλ} ∪ {β0
αλ
}.

Then for any β ∈ Bαλ we define Nαλ = ‖β − β0
αλ
‖ and

Zαλ(β) =
1

n

∣∣∣`n(β)− `n(β0
αλ

)− E{`n(β)− `n(β0
αλ

)}
∣∣∣.
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2 A. Ni and J. Cai

LEMMA 2: Under Conditions (A) to (G), uniformly for all model αλ,

sup
αλ

1

|αλ|Nαλ

Zαλ(β) = Op

[{
log(dn)

n

}1/2
]
.

Proof. We first restate a theorem from van de Geer (2008) that will be used in our proofs.

Theorem A.1 in van de Geer (2008) (Bousquet concentration theorem):

Let X1, ..., Xn be independent random variables in space X and let Γ be a class of real-valued

functions on X satisfying for some positive constants ηn and τn

‖γ‖∞ 6 ηn and
1

n

n∑
i=1

var{γ(Xi)} 6 τ 2
n ∀γ ∈ Γ.

Define Z = supγ∈Γ

∣∣n−1
∑n

i=1{γ(Xi)− Eγ(Xi)}
∣∣. Then for any ε > 0,

pr

[
Z > EZ + ε

{
2(τ 2

n + 2ηnEZ)
}1/2

+
2ε2ηn

3

]
6 exp(−nε2).

We begin by introducing the following two intermediate quantities:

Qαλ(β) =
1

n

∣∣∣¯̀n(β)− ¯̀
n(β0

αλ
)− E{¯̀n(β)− ¯̀

n(β0
αλ

)}
∣∣∣,

Rαλ(β) =
1

n

∣∣∣`n(β)− `n(β0
αλ

)− {¯̀n(β)− ¯̀
n(β0

αλ
)}
∣∣∣.

It is easy to see that Zαλ(β) 6 Qαλ(β) +Rαλ(β) + E {Rαλ(β)}.

We will study the tail probabilities of the above two quantities separately.

To use Theorem A.1 in van de Geer (2008) to establish a probability bound for Qαλ(β), we

first derive a bound for E{Qαλ(β)}. Let ε1, ..., εn be a Rademacher sequence, independent of the

random variables ¯̀
1(β) − ¯̀

1(β0
αλ

), ..., ¯̀
n(β) − ¯̀

n(β0
αλ

). By symmetrization theorem presented in

Lemma 2.3.1 of van der Vaart & Wellner (1996) with F being a class of only the identity function,

we have

E{Qαλ(β)} =
1

n
E
∣∣∣¯̀n(β)− ¯̀

n(β0
αλ

)− E{¯̀n(β)− ¯̀
n(β0

αλ
)}
∣∣∣ 6 2

n
E

∣∣∣∣ n∑
i=1

εi{¯̀i(β)− ¯̀
i(β

0
αλ

)}
∣∣∣∣

=
2

n
E

∣∣∣∣ n∑
i=1

εi
([
βTZi(ti)− log

{
s(0)
n (β, ti)

}]
∆i −

[
(β0

αλ
)TZi(ti)− log

{
s(0)
n (β0

αλ
, ti)
}]

∆i

) ∣∣∣∣
Hosted by The Berkeley Electronic PressHosted by The Berkeley Electronic Press
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6
2

n
E

∣∣∣∣ n∑
i=1

εi
{
βTZi(ti)− (β0

αλ
)TZi(ti)

}
∆i

∣∣∣∣+
2

n
E

∣∣∣∣ n∑
i=1

εi
{

log s(0)
n (β, ti)− log s(0)

n (β0
αλ
, ti)
}

∆i

∣∣∣∣
= I1 + I2.

We first consider I1. By Cauchy–Schwarz inequality and E(ε) = 0,

I1 =
2

n
E

∣∣∣∣ n∑
i=1

εi


|αλ|∑
j=1

(βj − β0
αλj

)Zij(ti)

∆i

∣∣∣∣ =
2

n
E

∣∣∣∣ |αλ|∑
j=1

{
(βj − β0

αλj
)

n∑
i=1

εiZij(ti)∆i

}∣∣∣∣
6

2

n
‖β − β0

αλ
‖E

 |αλ|∑
j=1

{
n∑
i=1

εiZij(ti)∆i

}2
1/2

6
2

n
‖β − β0

αλ
‖

 |αλ|∑
j=1

E

{
n∑
i=1

εiZij(ti)∆i

}2
1/2

6
2

n
‖β − β0

αλ
‖

 |αλ|∑
j=1

[
n∑
i=1

E {εiZij(ti)∆i}2 +
n∑
i=1

n∑
k=1

E {εiZij(ti)∆iεkZkj(tk)∆k}

]1/2

6 2Nαλ|αλ|1/2n−1/2Kn.

Next we consider I2. Due to its lack of Lipschitz property, we cannot study its properties uni-

formly for β as in van de Geer (2008). We instead study its pointwise property for any given β by

mean value theorem. For some β∗αλ that lies between β0
αλ

and β,

I2 =
2

n
E

∣∣∣∣ n∑
i=1

εi∆i

|αλ|∑
j=1

(βj − β0
αλj

)
s

(1)
nj (β∗αλ , ti)

s
(0)
n (β∗αλ , ti)

∣∣∣∣ =
2

n
E

∣∣∣∣ |αλ|∑
j=1

(βj − β0
αλj

)
n∑
i=1

εi∆i

s
(1)
nj (β∗αλ , ti)

s
(0)
n (β∗αλ , ti)

∣∣∣∣,
where s(1)

nj (β, t) denotes the j-th component of s(1)
n (β, t), which is defined in Section 3 of the main

text. By the definition of s(1)
nj (β, t) we have that

s
(1)
nj (β, t) = E

[
Y (t)Zj(t) exp{βTZ(t)}

]
6 KnE

[
Y (t) exp{βTZ(t)}

]
= Kns

(0)
n (β, t).

By Cauchy–Schwarz inequality and E(ε) = 0,

I2 6
2

n
‖β − β0

αλ
‖E

 |αλ|∑
j=1

{
n∑
i=1

εi∆i

s
(1)
nj (β∗αλ , ti)

s
(0)
n (β∗αλ , ti)

}2
1/2

6
2

n
‖β − β0

αλ
‖

 |αλ|∑
j=1

E

{
n∑
i=1

εi∆i

s
(1)
nj (β∗αλ , ti)

s
(0)
n (β∗αλ , ti)

}2
1/2

6
2

n
‖β − β0

αλ
‖

 |αλ|∑
j=1

 n∑
i=1

E

{
εi∆i

s
(1)
nj (β∗αλ , ti)

s
(0)
n (β∗αλ , ti)

}2
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4 A. Ni and J. Cai

+
n∑
i=1

n∑
k=1

E

{
εi∆i

s
(1)
nj (β∗αλ , ti)

s
(0)
n (β∗αλ , ti)

εk∆k

s
(1)
nj (β∗αλ , tk)

s
(0)
n (β∗αλ , tk)

}])1/2

6 2Nαλ|αλ|1/2n−1/2Kn.

It follows that E{Qαλ(β)} 6 I1 + I2 6 4Nαλ|αλ|1/2n−1/2Kn.

Now we check the two conditions for Theorem A.1 in van de Geer (2008). By Cauchy-Schwarz

inequality and mean value theorem, for all i we have∣∣∣¯̀i(β)− ¯̀
i(β

0
αλ

)
∣∣∣ 6 ∣∣∣βTZi(ti)− (β0

αλ
)TZi(ti)

∣∣∣∆i +
∣∣∣ log s(0)

n (β, ti)− log s(0)
n (β0

αλ
, ti)}

∣∣∣∆i

6 |αλ|1/2‖β − β0
αλ
‖Kn + ‖β − β0

αλ
‖

{∑|αλ|
j=1 K

2
ns

(0)
n (β∗αλ , ti)

2
}1/2

s
(0)
n (β∗αλ , ti)

6 2|αλ|1/2NαλKn.

Thus ‖¯̀i(β)− ¯̀
i(β

0
αλ

)‖∞ 6 2|αλ|1/2NαλKn and var{¯̀i(β)− ¯̀
i(β

0
αλ

)} 6 E{¯̀i(β)− ¯̀
i(β

0
αλ

)}2 6

4|αλ|N2
αλ
K2
n. Let ηn = 2|αλ|1/2NαλKn and τ 2

n = 4|αλ|N2
αλ
K2
n. Then by Theorem A.1 in van de

Geer (2008) withXi = ¯̀
n(β)− ¯̀

n(β0
αλ

), γ being the identity function, and Γ = {γ}, for any ε > 0,

pr

[
Qαλ(β) >

4Nαλ |αλ|1/2Kn

n1/2
+ ε

{
2(4|αλ|N2

αλ
K2
n +

16|αλ|N2
αλ
K2
n

n1/2

}1/2

+
4ε2|αλ|1/2NαλKn

3

]

= pr

[
Qαλ(β) > 2|αλ|1/2NαλKn

{
2

n1/2
+ ε(2 +

8

n1/2
)1/2 +

2ε2

3

}]
6 exp(−nε2). (3)

Next we consider Rαλ(β). By mean value theorem, for some β∗αλ that lies between β0
αλ

and β we

have that

Rαλ(β) =
1

n

n∑
i=1

∣∣∣∣
(

log

[
1

n

n∑
j=1

Yj(ti) exp{βTZj(ti)}
s

(0)
n (β, ti)

]

− log

[
1

n

n∑
j=1

Yj(ti) exp{(β0
αλ

)TZj(ti)}
s

(0)
n (β0

αλ
, ti)

])
∆i

∣∣∣∣
6 sup

06t6τ

∣∣∣∣ log

{
S

(0)
n (β, t)

s
(0)
n (β, t)

}
− log

{
S

(0)
n (β0

αλ
, t)

s
(0)
n (β0

αλ
, t)

}∣∣∣∣
= sup

06t6τ

∣∣∣∣(β − β0
αλ

)T

{
S

(1)
n (β∗αλ , t)

S
(0)
n (β∗αλ , t)

−
s

(1)
n (β∗αλ , t)

s
(0)
n (β∗αλ , t)

}
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6 sup
06t6τ

‖β − β0
αλ
‖

 |αλ|∑
j=1

{
S

(1)
nj (β∗αλ , t)

S
(0)
n (β∗αλ , t)

−
s

(1)
nj (β∗αλ , t)

s
(0)
n (β∗αλ , t)

}2
1/2

= sup
06t6τ

‖β − β0
αλ
‖


|αλ|∑
j=1

(
1

S
(0)
n (β∗αλ , t)

[
S

(1)
nj (β∗αλ , t)− s

(1)
nj (β∗αλ , t)

+
s

(1)
nj (β∗αλ , t)

s
(0)
n (β∗αλ , t)

{s(0)
n (β∗αλ , t)− S

(0)
n (β∗αλ , t)}

])2


1/2

6 sup
06t6τ

‖β − β0
αλ
‖


|αλ|∑
j=1

(
1

S
(0)
n (β∗αλ , t)

[
max

16j6|αλ|

∣∣∣∣S(1)
nj (β∗αλ , t)− s

(1)
nj (β∗αλ , t)

∣∣∣∣
+Kn

∣∣∣∣S(0)
n (β∗αλ , t)− s

(0)
n (β∗αλ , t)

∣∣∣∣])2
}1/2

= sup
06t6τ

‖β − β0
αλ
‖|αλ|1/2

1

S
(0)
n (β∗αλ , t)

{
max

16j6|αλ|

∣∣∣∣S(1)
nj (β∗αλ , t)− s

(1)
nj (β∗αλ , t)

∣∣∣∣
+Kn

∣∣∣∣S(0)
n (β∗αλ , t)− s

(0)
n (β∗αλ , t)

∣∣∣∣}
6 ‖β − β0

αλ
‖|αλ|1/2 sup

06t6τ

1

S
(0)
n (β∗αλ , t)

sup
06t6τ

{
max

16j6|αλ|

∣∣∣∣S(1)
nj (β∗αλ , t)− s

(1)
nj (β∗αλ , t)

∣∣∣∣
+Kn

∣∣∣∣S(0)
n (β∗αλ , t)− s

(0)
n (β∗αλ , t)

∣∣∣∣} . (4)

We first bound sup06t6τ{S
(0)
n (β∗αλ , t)}

−1. By Condition (F) we have

inf
β,Z(t)

S(0)
n (β, t) =

1

n

n∑
i=1

Yi(t) exp{− sup
β,Zi(t)

βTZi(t)} = U−1
n

1

n

n∑
i=1

Yi(t).

Since Y (t) is a non-increasing function of t, we have that

inf
06t6τ

S(0)
n (β∗αλ , t) > U−1

n

1

n

n∑
i=1

Yi(τ),

and therefore

sup
06t6τ

1

S
(0)
n (β∗αλ , t)

6 Un

{
1

n

n∑
i=1

Yi(τ)

}−1

.

Define µ = E{Y (τ)}. By Lemma 2 in Kong & Nan (2014),

pr

{
1

n

n∑
i=1

Yi(τ) 6
µ

2

}
= pr

{ 1

n

n∑
i=1

Yi(τ)

}−1

>
2

µ

 6 2 exp

(
−nµ

2

2

)
.
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Therefore,

pr

{
sup

06t6τ

1

S
(0)
n (β∗αλ , t)

>
2Un
µ

}
6 2 exp

(
−nµ

2

2

)
.

By a modification of Lemma 3 and 4 in Kong & Nan (2014) we have for any positive constant ε,

pr

{
sup

06t6τ

∣∣∣∣S(0)
n (β∗αλ , t)− s

(0)
n (β∗αλ , t)

∣∣∣∣ > Unε

}
6

1

5
W 2 exp(−nε2), (5)

pr

{
sup

06t6τ
max

16j6|αλ|

∣∣∣∣S(1)
nj (β∗αλ , t)− s

(1)
nj (β∗αλ , t)

∣∣∣∣ > UnKnε

}
6

1

5
|αλ|W 2 exp(−nε2),

where W is a constant determined by the bracketing number of the class of functions indexed by t,

F =
{
Y (t) exp{βTZ(t)}U−1

n : t ∈ [0, τ ], exp{βTZ(t)} 6 Un
}

. Applying these results to (4) we

have

pr

{
Rαλ(β) >

2Nαλ|αλ|1/2U2
nKnε

µ

}
6 2 exp

(
−nµ

2

2

)
+

1

5
(|αλ|+ 1)W 2 exp(−nε2). (6)

Since Zαλ(β) 6 Qαλ(β) +Rαλ(β) + E{Rαλ(β)}, by (3) and (6) we have that

pr

[
Zαλ(β) > 2NαλKn|αλ|1/2

{
2

n1/2
+ ε(2 +

8

n1/2
)1/2 +

2ε2

3
+
U2
nε

µ

}
+ E{Rαλ(β)}

]
6 2 exp

(
−nµ

2

2

)
+

{
1

5
(|αλ|+ 1)W 2 + 1

}
exp(−nε2). (7)

To establish the stochastic order of random sequences, we use the following result: for any

random sequence Xn, an, bn and any diverging constant sequence γn, pr(Xn > an + bnγn) = o(1)

implies that Xn = Op(an + bn). Let ε = n−1/2γn, where γn is any diverging sequence. Then (7)

becomes

pr

[
Zαλ(β) > 2NαλKn|αλ|1/2

{
2

n1/2
+

γn
n1/2

(2 +
8

n1/2
)1/2 +

2γ2
n

3n
+
U2
nγn

n1/2µ

}
+ E{Rαλ(β)}

]
6 2 exp

(
−nµ

2

2

)
+

{
1

5
(|αλ|+ 1)W 2 + 1

}
exp(−γ2

n). (8)

Using the same method on (6) we get

pr

{
Rαλ(β)µn1/2

2Nαλ |αλ|1/2U2
nKn

> γn

}
6 2 exp

(
−nµ

2

2

)
+

1

5
(|αλ|+ 1)W 2 exp(−γ2

n).

From this tail inequality we can verify thatE{Rαλ(β)µn1/2N−1
αλ
|αλ|−1/2U−2

n K−1
n /2} <∞. There-

fore, E{Rαλ(β)} = Nαλ |αλ|1/2O(n−1/2). Then from (8) it follows that Zαλ(β)N−1
αλ
|αλ|−1/2 =

Op(n
−1/2).
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Now we derive the probability bound for the supremum of Zαλ(β) over all possible models. Let

ε = {|αλ| log(dn)}1/2n−1/2γn in (7), where γn is any diverging sequence. Then,

pr

(
Zαλ(β) >

2NαλKn|αλ|
n1/2

[
2|αλ|−1/2 + γn

{
log(dn)(2 + 8n−1/2)

}1/2
+

2|αλ|1/2 log(dn)γ2
n

3n1/2

+
U2
n{log(dn)}1/2γn

µ
+
E{Rαλ(β)}n1/2

Nαλ |αλ|1/2

])
6 2 exp

(
−nµ

2

2

)
+

{
1

5
(|αλ|+ 1)W 2 + 1

}
exp{−|αλ| log(dn)γ2

n}.

We use the fact that (
dn
k

)
6 (dne/k)k, 0 < k 6 dn, (9)

where e is the Euler’s number, in the following derivation.

pr

(
sup
αλ

1

|αλ|Nαλ

Zαλ(β) >
2Kn

n1/2

[
2|αλ|−1/2 + γn

{
log(dn)(2 + 8n−1/2)

}1/2
+

2|αλ|1/2 log(dn)γ2
n

3n1/2

+
U2
n{log(dn)}1/2γn

µ
+
E{Rαλ(β)}n1/2

Nαλ |αλ|1/2

])
6

dn∑
k=1

∑
|αλ|=k

pr

(
Zαλ(β) >

2NαλKn|αλ|
n1/2

[
2|αλ|−1/2 + γn

{
log(dn)(2 + 8n−1/2)

}1/2

+
2|αλ|1/2 log(dn)γ2

n

3n1/2
+
U2
n{log(dn)}1/2γn

µ
+
E{Rαλ(β)}n1/2

Nαλ |αλ|1/2

])
6

dn∑
k=1

(
dn
k

)[
2 exp

(
−nµ

2

2

)
+

{
1

5
(k + 1)W 2 + 1

}
exp{−k log(dn)γ2

n}
]

6
dn∑
k=1

(
dne

k

)k [
2 exp

(
−nµ

2

2

)
+

{
1

5
(k + 1)W 2 + 1

}
exp{−k log(dn)γ2

n}
]

=
dn∑
k=1

( e
k

)k [
2dkn exp

(
−nµ

2

2

)
+

{
1

5
(k + 1)W 2 + 1

}
d(1−γ2n)k
n

]
. (10)

By Condition (G), {(dn + 1) log(dn)/n} = o(1). Thus ddn+1
n = o{exp(n)} and the first term in

the square brackets in (10) is o(d−1
n ). Since γn diverges to infinity, the second term in the square

brackets in (10) is also o(d−1
n ). Moreover, (e/k)k < 1 for all k > 3. Therefore, it is easy to see that

(10) goes to 0 as n→∞. It follows that

sup
αλ

1

|αλ|Nαλ

Zαλ(β) = Op

[
2Kn

n1/2

(
2|αλ|−1/2 + γn

{
log(dn)(2 + 8n−1/2)

}1/2
+

2|αλ|1/2 log(dn)γ2
n

3n1/2
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+
U2
n{log(dn)}1/2γn

µ
+
E{Rαλ(β)}n1/2

Nαλ |αλ|1/2

)]
= Op

[{
log(dn)

n

}1/2
]
.

LEMMA 3: Under Conditions (A) to (G), uniformly for all model αλ,

sup
αλ

1

|αλ|
∥∥β̂αλ − β0

αλ

∥∥ = Op

[{
log(dn)

n

}1/2
]
.

Proof. Denote ‖β̂αλ−β0
αλ
‖ = Nαλ . Since β̂αλ maximizes `n(βαλ), `n(β0

αλ
) 6 `n(β̂αλ). Since β0

αλ

minimizes the Kullback-Leibler distance, E{`n(β0
αλ

)} > E{`n(β̂αλ)} and ∂E{`n(β0
αλ

)}/∂β = 0,

where the expectation is taken under the true model. It follows that,

0 6 E{`n(β0
αλ

)− `n(β̂αλ)} 6 `n(β̂αλ)− E{`n(β̂αλ)−
[
`n(β0

αλ
)− E{`n(β0

αλ
)}
]
6 nZαλ(β̂αλ).

(11)

By Taylor expansion, for some β∗αλ that lies between β̂αλ and β0
αλ

we have that

E{`n(β̂αλ)− `n(β0
αλ

)} = −n
2

(β̂αλ − β0
αλ

)T In(β∗αλ)(β̂αλ − β0
αλ

) 6 −n
2
N2
αλ
C3. (12)

The last inequality in (12) hold by spectral decomposition on In(β∗αλ) and Condition (E). By (11)

and (12) we have that Nαλ 6 2Zαλ(β̂αλ)N−1
αλ
C−1

3 . In the proof of Lemma 2 we have shown

that Zαλ(β)N−1
αλ

= Op(|αλ|1/2n−1/2). It follows that Nαλ = Op(|αλ|1/2n−1/2). Furthermore, by

dividing both sides of the inequality Nαλ 6 2Zαλ(β̂αλ)}N−1
αλ
C−1

3 by |αλ| and taking supremum we

arrive at

sup
αλ

Nαλ

|αλ|
= sup

αλ

1

|αλ|
∥∥β̂αλ − β0

αλ

∥∥ = sup
αλ

2C−1
3

|αλ|Nαλ

Zαλ(β̂αλ)} = Op

[{
log(dn)

n

}1/2
]
.

The last equality holds by Lemma 2.

LEMMA 4: Under Conditions (A) to (G), uniformly for all model αλ,

sup
αλ

1

|αλ|3/2
∣∣∣`n(β̂αλ)− `n(β0

αλ
)
∣∣∣ = Op[{log(dn)}1/2].

Proof. By the definition of β̂αλ and β0
αλ

, we have that `n(β0
αλ

) 6 `n(β̂αλ) and E{`n(β0
αλ

)} >
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E{`n(β̂αλ)} for any model αλ. Thus,

`n(β̂αλ)− `n(β0
αλ

) 6 `n(β̂αλ)− E{`n(β̂αλ)−
[
`n(β0

αλ
)− E{`n(β0

αλ
)}
]
6 nZαλ(β̂αλ).

Define Nαλ = ‖β̂αλ − β0
αλ
‖. By Lemma 2 we have

sup
αλ

∣∣`n(β̂αλ)− `n(β0
αλ

)
∣∣

|αλ|Nαλ

6 sup
αλ

nZαλ(β̂αλ)

|αλ|Nαλ

= O[{n log(dn)}1/2].

In the proof of Lemma 3 we have established that Nαλ = Op(|αλ|1/2n−1/2) for any αλ. It follows

that supαλ |αλ|
−3/2|`n(β̂αλ)− `n(β0

αλ
)| = Op[{log(dn)}1/2].

LEMMA 5: Under Conditions (A) to (G), uniformly for all model αλ,

sup
αλ

1

|αλ|1/2
∣∣∣`n(β0

αλ
)− E{`n(β0

αλ
)}
∣∣∣ = Op

[
{n log(dn)}1/2

]
.

Proof. Since `n(β0
αλ

) is a sum of dependent random variables, we decompose the quantity in the

statement of the lemma as follows,

sup
αλ

1

|αλ|1/2
∣∣∣`n(β0

αλ
)− E{`n(β0

αλ
)}
∣∣∣

6 sup
αλ

1

|αλ|1/2
{∣∣∣`n(β0

αλ
)− ¯̀

n(β0
αλ

)
∣∣∣+
∣∣∣¯̀n(β0

αλ
)− E{¯̀n(β0

αλ
)}
∣∣∣+ E

∣∣∣`n(β0
αλ

)− ¯̀
n(β0

αλ
)
∣∣∣}

= sup
αλ

1

|αλ|1/2
{I1 + I2 + E(I1)}.

We first consider I1. By mean value theorem,

I1 6 n sup
06t6τ

∣∣∣ log{S(0)
n (β0

αλ
, t)} − log{s(0)

n (β0
αλ
, t)}

∣∣∣ = sup
06t6τ

∣∣∣∣ nS∗n{S(0)
n (β0

αλ
, t)− s(0)

n (β0
αλ
, t)}

∣∣∣∣,
(13)

where S∗n lies between S(0)
n (β0

αλ
, t) and s(0)

n (β0
αλ
, t). It follows from (5) that S(0)

n (β0
αλ
, t) converges

to s(0)
n (β0

αλ
, t) in probability uniformly on t ∈ [0, τ ], and so does S∗n. By Condition (D), s(0)

n (β0
αλ
, t)

is uniformly bounded away from 0. Let C5 be a constant satisfying 0 < C5 < inf06t6τ s
(0)
n (β0

αλ
, t).

Define the event An = {S∗n > C5}. Denote A c
n as the complement of A . Consider

pr

[
sup

06t6τ

∣∣∣ log{S(0)
n (β0

αλ
, t)} − log{s(0)

n (β0
αλ
, t)}

∣∣∣ > U2
nε

C5

]
6 pr

[
sup

06t6τ

∣∣∣∣ 1

S∗n
{S(0)

n (β0
αλ
, t)− s(0)

n (β0
αλ
, t)}

∣∣∣∣ > U2
nε

C5

| An

]
+ pr(A c

n ) = J1 + J2.
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By (5) we have

J1 6 pr

[
sup

06t6τ

∣∣∣∣ 1

C5

{S(0)
n (β0

αλ
, t)− s(0)

n (β0
αλ
, t)}

∣∣∣∣ > U2
nε

C5

]
= pr

{
sup

06t6τ

∣∣∣S(0)
n (β0

αλ
, t)− s(0)

n (β0
αλ
, t)
∣∣∣ > U2

nε

}
6

1

5
W 2 exp(−nε2).

Further, we have that J2 = o(1) since S∗n converges to s(0)
n (β0

αλ
, t) in probability uniformly on

t ∈ [0, τ ]. Therefore, by replacing ε with n−1/2ε, from (13) we have that

pr

(
I1 >

n1/2U2
nε

C5

)
6

1

5
W 2 exp(−ε2). (14)

Next we consider I2. For any i, |¯̀i(β0
αλ

)| 6 |(β0
αλ

)TZi(ti)−log{s(0)
n (β0

αλ
, ti)}| 6 |(β0

αλ
)TZi(ti)|+

| log{s(0)
n (β0

αλ
, ti)}| 6 log(Un) + | log(E[Y (ti) exp{(β0

αλ
)TZi(ti)}])| 6 2 log(Un). It implies that

−2 log(Un) 6 ¯̀
i(β

0
αλ

) 6 2 log(Un) for all i. Thus, by Hoeffding’s inequality (Hoeffding, 1963),

for any ε > 0,

pr(I2 > n1/2ε) 6 2 exp

[
− 2nε2∑n

i=1 4{log(Un)}2

]
= 2 exp

[
− ε2

2{log(Un)}2

]
. (15)

From (14) and (15) we get

pr

{
I1 + I2 + E(I1) >

n1/2Unε

C5

+ n1/2ε+ E(I1)

}
6

1

5
W 2 exp(−ε2) + 2 exp

[
− ε2

2{log(Un)}2

]
.

Let ε = {γn|αλ| log(dn)}1/2, where γn is any diverging sequence. Then,

pr

[
I1 + I2 + E(I1) > {nγn|αλ| log(dn)}1/2

(
Un
C5

+ 1

)
+ E(I1)

]
6

1

5
W 2 exp{−γn|αλ| log(dn)}+ 2 exp

[
−γn|αλ| log(dn)

2{log(Un)}2

]
.

From (14) it can be verified that E(I1n
−1/2U−2

n C5) < ∞. Therefore, E(I1) = O(n1/2). By using

(9) we have that

pr

[
sup
αλ

1

|αλ|1/2
{I1 + I2 + E(I1)} > {nγn log(dn)}1/2

(
Un
C5

+ 1

)
+

1

|αλ|1/2
E(I1)

]
6

dn∑
k=1

∑
|αλ|=k

pr

[
I1 + I2 + E(I1) > {nγn|αλ| log(dn)}1/2

(
Un
C5

+ 1

)
+ E(I1)

]

6
dn∑
k=1

( e
k

)k [1

5
W 2dk−kγnn + 2d

k− kγn
2{log(Un)}2

n

]
. (16)

Since γn diverges to infinity, the two terms in the square brackets are both o(d−1
n ). Moreover,
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(e/k)k < 1 for all k > 3. Therefore, (16) goes to 0 as n → ∞. Hence, supαλ |αλ|
−1/2{I1 + I2 +

E(I1)} = Op[{n log(dn)}1/2]. Thus supαλ |αλ|
−1/2

∣∣`n(β0
αλ

)−E{`n(β0
αλ

)}
∣∣ = Op

[
{n log(dn)}1/2

]
.

Proof of Theorem 1. For all model αλ we have that

sup
αλ

1

|αλ|1/2
∣∣∣`n(β̂αλ)− E{`n(β0

αλ
)}
∣∣∣

6 sup
αλ

dn
|αλ|3/2

∣∣∣`n(β̂αλ)− `n(β0
αλ

)
∣∣∣+ sup

αλ

1

|αλ|1/2
∣∣∣`n(β0

αλ
)− E{`n(β0

αλ
)}
∣∣∣. (17)

By Lemma 4 and 5, (17) = Op[dn{log(dn)}1/2] + Op[{n log(dn)}1/2] = Op[{n log(dn)}1/2] under

Condition (G).

Proof of Theorem 2. By Taylor expansion, for some β∗ that lies between β̂αλ and β̂α0 ,

`n(β̂α0)− `n(β̂αλ) = (β̂α0 − β̂αλ)T `′n(β̂αλ) +
1

2
(β̂α0 − β̂αλ)T `′′n(β̂αλ)(β̂α0 − β̂αλ)

+
1

6

n∑
i=1

|αλ|∑
j,k,l=1

`′′′ijkl(β
∗)(β̂α0j − β̂αλj)(β̂α0k − β̂αλk)(β̂α0l − β̂αλl) = I1 + I2 + I3.

Since β̂αλ maximizes `n(βαλ), I1 = 0. In the proof of Lemma 3 we have shown that ‖β̂αλ−β0
αλ
‖ =

Op(|αλ|1/2n−1/2) for any αλ. Since αλ ) α0, β0
αλ

= β0
α0

. Therefore, ‖β̂α0− β̂αλ‖ 6 ‖β̂α0−β0
α0
‖+

‖β̂αλ − β0
αλ
‖ = Op(|αλ|1/2n−1/2). We decompose I2 as

I2 =
1

2
(β̂α0 − β̂αλ)T{`′′n(β̂αλ) + nIn(β̂αλ)}(β̂α0 − β̂αλ)− 1

2
(β̂α0 − β̂αλ)TnIn(β̂αλ)(β̂α0 − β̂αλ)

= I21 − I22,

where In(β̂αλ) is defined in Section 3 of the main text. It can be shown that for `′′njk(β̂αλ) and

Injk(β̂αλ), the (j, k)th component of `′′n(β̂αλ) and In(β̂αλ) respectively, we have that `′′njk(β̂αλ) +

nInjk(β̂αλ) = Op(n
1/2). Thus, I21 6 ‖β̂α0 − β̂αλ‖2Op(n

1/2|αλ|) = ‖β̂α0 − β̂αλ‖2op(n) under

Condition (G). Furthermore, I22 > n‖β̂α0 − β̂αλ‖2eigenmin{In(β̂αλ)}/2 > n‖β̂α0 − β̂αλ‖2C3/2

under Condition (E). It follows that I21 = op(I22). It can be shown that `′′′ijkl(β
∗) is Op(1). Thus,

I3 6 Op{‖β̂α0 − β̂αλ‖3|αλ|3/2n} = op(‖β̂α0 − β̂αλ‖2n) under Condition (G). Thus, I3 = op(I22).
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Let R1 = I21 + I3 = op(I22) = op(|αλ|), then

`n(β̂α0)− `n(β̂αλ) =
1

2
(β̂α0 − β̂αλ)TnIn(β̂αλ)(β̂α0 − β̂αλ) +R1. (18)

On the other hand, by Taylor expansion, for some β∗∗ that lies between β̂αλ and β̂α0 ,

0 = `′n(β̂αλ) = `′n(β̂α0) + {`′′n(β̂α0) + nIn(β̂α0)}(β̂αλ − β̂α0)− nIn(β̂α0)(β̂αλ − β̂α0)

+
1

2

 n∑
i=1

|αλ|∑
j,k=1

`′′′ijk1(β∗∗)(β̂αλj − β̂α0j)(β̂αλk − β̂α0k), ...,

n∑
i=1

|αλ|∑
j,k=1

`′′′ijk|αλ|(β
∗∗)(β̂αλj − β̂α0j)(β̂αλk − β̂α0k)

T

= J1 + J2 − J3 + J4. (19)

Denote the vector J2 as (ν1, ..., ν|αλ|)
T and J3 as (υ1, ..., υ|αλ|)

T . Since we have shown that I21 =

op(I22), it follows that
∑|αλ|

j=1(β̂αλj−β̂α0j)νj = op{
∑|αλ|

j=1(β̂αλj−β̂α0j)υj}. Since `′′n(β0
αλ

)+nIn(β̂α0)

and nIn(β̂α0) are both symmetric matrices, under Condition (E) we have that νj = op(υj) for all

j, and therefore J2 = op(J3) component-wise. Since I3 = op(I22), similar argument gives that

J4 = op(J3) component-wise. Let R2 = J2 + J4 = op(J3), then J1 − J3 + R2 = 0 by (19).

Using proof by contradiction, it is necessary that R2 = op(J1) = op{`′n(β̂α0)} component-wise.

By solving (19) we have that β̂αλ − β̂α0 = n−1{In(β̂α0)}−1{`′n(β̂α0) + R2}. Plug this result into

(18) we get

`n(β̂α0)− `n(β̂αλ)

= −1

2
{`′n(β̂α0) +R2}Tn−1{In(β̂α0)}−1nIn(β̂αλ)n−1{In(β̂α0)}−1{`′n(β̂α0) +R2}+R1.

Since both β̂αλ and β̂α0 converge to β0 in probability, β̂αλ also converges to β̂α0 in probability.

Hence, In(β̂αλ) = In(β̂α0) + op(1). Therefore,

`n(β̂α0)− `n(β̂αλ)

= −1

2
`′n(β̂α0)

Tn−1{In(β̂α0)}−1`′n(β̂α0)− `′n(β̂α0)
Tn−1{In(β̂α0)}−1R2

− 1

2
R2n

−1{In(β̂α0)}−1R2 +
1

2
{`′n(β̂α0) +R2}Tn−2{In(β̂α0)}−2{`′n(β̂α0) +R2}op(1) +R1
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= K1 +K2 +K3 +K4 +R1.

Since R2 = op{`′n(β̂α0)} component-wise, K2 and K3 are both op(K1). Also, K4 = op(K1).

Furthermore, by spectral decomposition and Condition (E),

K1 > ‖`′n(β̂α0)‖2n−1eigenmin[{In(β̂α0)}−1]/2 = Op(|αλ|).

Thus, R1 = op(K1) since R1 = op(|αλ|). For any αλ ) α0, In(β̂α0) is the covariance matrix of

n−1/2`′n(β̂α0), it follows that −2K1 converges to a Chi-square distribution with degree of freedom

|αλ|− |α0|. Therefore, 2{`n(β̂αλ)− `n(β̂α0)} converges to a Chi-square distribution with degree of

freedom |αλ| − |α0| for any αλ ) α0. By the corollary of Lemma 1 in Laurent & Massart (2000),

for ε = γn log(dn)(|αλ| − |α0|) where γn is any diverging sequence,

pr
[
2{`n(β̂αλ)− `n(β̂α0)} > |αλ| − |α0|+ 2

√
(|αλ| − |α0|)2γn log(dn) + 2γn log(dn)(|αλ| − |α0|)

]
= pr

(
2{`n(β̂αλ)− `n(β̂α0)} > (|αλ| − |α0|)

[
1 + 2 {γn log(dn)}1/2 + 2γn log(dn)

])
6 exp {−γn log(dn)(|αλ| − |α0|)} .

Therefore, by using (9) we have that

pr

[
sup
αλ)α0

`n(β̂αλ)− `n(β̂α0)

|αλ| − |α0|
>

1

2
+ {γn log(dn)}1/2 + γn log(dn)

]

6
dn∑

k=|α0|+1

∑
|αλ|=k

pr

(
`n(β̂αλ)− `n(β̂α0) > (|αλ| − |α0|)

[
1

2
+ {γn log(dn)}1/2 + γn log(dn)

])

6
dn∑

k=|α0|+1

( e
k

)k
d{k−(k−|α0|)γn}
n . (20)

Since γn diverges to infinity and k = O(k − |α0|) under Condition (G), d{k−(k−|α0|)γn}
n = o(d−1

n ).

Moreover, (e/k)k < 1 for all k > 3. Therefore, (20) goes to 0 as n→∞. Thus,

sup
αλ)α0

1

|αλ| − |α0|

{
`n(β̂αλ)− `n(β̂α0)

}
= Op

[
1

2
+ {log(dn)}1/2 + log(dn)

]
= Op{log(dn)}.
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