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Variance prior specification for a basket trial
design using Bayesian hierarchical modeling

Kristen Cunanan, Alexia Iasonos, Ronglai Shen, and Mithat Gonen

Abstract

Background: In the era of targeted therapies, clinical trials in oncology are
rapidly evolving, wherein patients from multiple diseases are now enrolled and
treated according to their genomic mutation(s). In such trials, known as basket
trials, the different disease cohorts form the different baskets for inference. Sev-
eral approaches have been proposed in the literature to efficiently use information
from all baskets while simultaneously screening to find individual baskets where
the drug works. Most proposed methods are developed in a Bayesian paradigm
that requires specifying a prior distribution for a variance parameter, which con-
trols the degree to which information is shared across baskets.

Methods: A common method used to capture the correlated endpoints across bas-
kets is Bayesian hierarchical modeling. We evaluate a Bayesian adaptive design
in the context of a basket trial and investigate two popular prior specifications:
an inverse-gamma prior on the basket-level variance and a uniform prior on the
basket-level standard deviation.

Results: From our simulation study, we see the inverse-gamma prior is highly
sensitive to the input hyperparameters. When the prior mean value of the variance
parameter is set to be near zero (<0.5), this can lead to unacceptably high false
positive rates (>40%) in some scenarios. Thus, use of this prior requires a fully
comprehensive sensitivity analysis before implementation. Alternatively, we see
that a prior that moves the mass of the variance parameter away from zero, such
as the uniform prior, displays desirable and robust operating characteristics over
a wide range of prior specifications, with the caveat that the upper bound of the
uniform prior must be larger than 1.



Conclusion: Based on our results, we recommend that those involved in design-
ing basket trials that implement hierarchical modeling avoid using a prior distri-
bution that places a large density mass near zero for the variance parameter. Priors
with this property force the model to share information regardless of the true ef-
ficacy configuration of the baskets. Many commonly used inverse-gamma prior
specifications have this undesirable property. We recommend to instead consider
the more robust uniform prior on the standard deviation.
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Abstract

Background: In the era of targeted therapies, clinical trials in oncology are rapidly evolving, wherein pa-

tients from multiple diseases are now enrolled and treated according to their genomic mutation(s). In such

trials, known as basket trials, the different disease cohorts form the different baskets for inference. Several

approaches have been proposed in the literature to efficiently use information from all baskets while simul-

taneously screening to find individual baskets where the drug works. Most proposed methods are developed

in a Bayesian paradigm that requires specifying a prior distribution for a variance parameter, which controls

the degree to which information is shared across baskets.

Methods: A common method used to capture the correlated endpoints across baskets is Bayesian hierar-

chical modeling. We evaluate a Bayesian adaptive design in the context of a basket trial and investigate two

popular prior specifications: an inverse-gamma prior on the basket-level variance and a uniform prior on the

basket-level standard deviation.

Results: From our simulation study, we see the inverse-gamma prior is highly sensitive to the input hyper-

parameters. When the prior mean value of the variance parameter is set to be near zero (≤ 0.5), this can

lead to unacceptably high false positive rates (≥ 40%) in some scenarios. Thus, use of this prior requires a

fully comprehensive sensitivity analysis before implementation. Alternatively, we see that a prior that moves

the mass of the variance parameter away from zero, such as the uniform prior, displays desirable and robust

operating characteristics over a wide range of prior specifications, with the caveat that the upper bound of

the uniform prior must be larger than 1.

Conclusion: Based on our results, we recommend that those involved in designing basket trials that im-

plement hierarchical modeling avoid using a prior distribution that places a large density mass near zero for

the variance parameter. Priors with this property force the model to share information regardless of the

true efficacy configuration of the baskets. Many commonly used inverse-gamma prior specifications have this

undesirable property. We recommend to instead consider the more robust uniform prior on the standard

deviation.

Keywords: basket trial; phase II; Bayesian method; adaptive design; variance prior
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1 Background

Conventional phase II clinical trials evaluate a single drug in a single disease patient population. Increas-

ingly, investigators are implementing master protocols that consider different subpopulations to investigate

multiple drugs and/or multiple diseases and possibly multiple targets. Such trials have been called basket

or umbrella trials. Basket trials evaluate a single drug targeting a single mutation in multiple disease co-

horts while umbrella trials evaluate multiple drugs (often targeting different mutations) in a single disease

population. There has been overlap on labeling basket versus umbrella for describing the same clinical trial;

however, a key characteristic among all of the designs is multiple molecularly defined cohorts with a common

element between cohorts, either a common drug or a common disease group.

Current basket trials are often designed as a series of independent trials implemented in parallel for each

of the different diseases or indications. This approach is simple and the overall false positive rate can be

controlled with strict decision rules in each basket; however, this approach fails to take into account the

anticipated correlated responses. That is, if results are favorable in one basket there is more chance that

they will also be favorable in other baskets. This poses a need for more creative designs that are simple to

implement. One major design challenge is to capitalize on the correlated responses in baskets where the drug

truly works, while simultaneously screening and dropping baskets where the drug is truly futile. Empiri-

cal results from published trials suggest that we can expect heterogeneity in efficacy across baskets [1, 2, 3, 4].

Several phase II designs applicable to basket trials have been proposed [5, 6, 7, 8, 9, 10] to account for

the anticipated correlated endpoints in a simple framework. Recently, more complex methods have been de-

veloped for more complicated settings, such as: multiple covariates, adaptive randomization, or a continuous

outcome [11, 12, 13, 14]. In this article, we are interested in first understanding design implications in the

simple basket trial setting evaluating a single drug in multiple pre-specified baskets. Most novel approaches

for this setting use Bayesian methods that require a prior specification of at least one parameter that permits

sharing of information across baskets. As compared to independent parallel designs, using methods such as

Bayesian hierarchical modeling in an adaptive design can reduce the trial size and duration and improve

power to identify individual baskets where the drug works. In our investigation of such methods, we have

found the prior specification of the sharing parameter to be very influential. This motivated the research

reported in this article, where we endeavor to provide recommendations on selecting a prior for the variance

parameter in an adaptive basket trial design using hierarchical modeling.

3

Hosted by The Berkeley Electronic Press



Through a simulation study we investigate two commonly used priors: an inverse-gamma prior on the

basket-level variance and a uniform prior on the basket-level standard deviation. Inverse-gamma is by far

the most popular prior of choice in Bayesian hierarchical models. Most analysts are familiar with inverse-

gamma as a prior because of its conditional conjugacy properties in simple models and they simply continue

to use it in more complicated models. In most applications of hierarchical modeling, variances are nuisance

parameters and their prior specification takes a back-seat to the specification of the prior for the means. In

our simulation study, we implement a Bayesian design and model for the analysis but evaluate the overall

performance of our design, model and prior selections based on conventional frequentist operating character-

istics, such as power and false positive rates. We believe a thorough evaluation of such metrics is imperative

for understanding the properties of any proposed basket trial design. Consequently, we calibrate the imple-

mented designs and base our recommendations using these traditional metrics.

The remainder of this manuscript proceeds as follows: Section 2 presents the Bayesian adaptive design,

hierarchical model, prior specifications used, and presents the simulation study, in Section 3 the results, and

Section 4 concludes with recommendations and a brief discussion.

2 Methods

In Section 2.1, we present a Bayesian adaptive design following the design originally proposed by Berry et

al. [5] with pragmatic modifications in implementation to minimize the logistical burden of multiple interim

analyses across diseases in different service departments or possibly centers. The original Berry design per-

formed interim analyses in each basket when 10 patients have been observed in a given basket (and every

5 patients in a basket, thereafter); however, it did not take into account different accrual rates which could

potentially require performing interim analyses in different baskets after every few patients depending on

enrollment. We have modified the design to perform interim analyses based on enrollment for the entire trial

rather than each basket and have added an eligibility rule for analysis.

Let yik be a binary indicator of response for patient i in basket k, for i = 1, . . . , nk and pk be the probability

of response in basket k for k = 1, . . . ,K. Define pa to be the target response rate indicating the drug displays

promising activity and p0 to be the null response rate indicating absence of activity for the drug. These

quantities could be basket-specific but in this article we assume common target and null response rates.
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2.1 Bayesian Adaptive Design

1. Treat the first 10K patients. Perform the first interim analysis and apply early stopping rules to

baskets with at least nmin patients (otherwise continue to next interim analysis). Stop an individual

basket for futility if:

Pr(pk > pmid|data) < 0.05,

where pmid is the midpoint between p0 and pa. Stop an individual basket for efficacy if:

Pr(pk > pmid|data) > 0.90

2. Perform additional interim analyses in baskets with at least nmin patients after every 5K? patients,

where K? is the number of remaining evaluable baskets.

3. Perform the final analysis after the maximum sample size (nmax) is enrolled and apply the final decision

rule to remaining baskets with at least nmin patients:

Pr(pk > p0|data) > γ,

where nmin is the minimum number of patients required in a basket to evaluate efficacy.

The final analysis occurs after the numbers of patients enrolled in the remaining basket(s) have treated

the maximum sample size per basket. Bayesian inference is based on Markov chain Monte Carlo (MCMC)

sampling from the posterior distribution using the Gibbs sampler.

2.2 Bayesian Hierarchical Model

We assume
∑
i yik follows a binomial distribution of size nk with probability pk. Similar to Berry et al. [5],

to obtain the decision probabilities described in Section 2.1 above we apply a logit transformation to the

basket-specific probabilities of a response to facilitate a Bayesian model, as follows:

θk = logit(pk)− logit(p0),

While the original Berry design modeled the change in log-odds from the target response rate, we instead

model the change in log-odds from the null response rate since we believe this quantity can be better pre-

specified by investigators. We define a hierarchical model for the basket-specific model parameters as,

θk ∼ Normal(µ, σ2)
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µ ∼ Normal(mµ, vµ)

σ2 ∼ g(.)

where mµ and vµ are pre-specified mean and variance hyperparameters and g(.) is an appropriate distribu-

tion for the variance (i.e. sharing) parameter σ2, such as the inverse-gamma(α, β). A more interpretable

re-parameterization of the inverse-gamma distribution specifies a prior mean of σ2 (define as mσ2) and prior

effective sample size, i.e. weight (define as wσ2) [15], where α = wσ2/2 and β = m2
σ2wσ2/2.

Other functional forms for g(.) are proposed in the literature. Gelman has investigated numerous prior

distributions for the variance parameter in conventional hierarchical linear models [16], including: inverse-

gamma and uniform on σ2, half-Cauchy and uniform on σ, and uniform on log(σ2). He notes that a “ prior

distribution cannot put an infinite mass near zero, since the data can never rule out a group-level variance of

zero in a hierarchical linear model”, and goes on to recommend using a uniform density on σ, but mentions

the uniform(0, b) prior on σ can lead to overestimation of σ and less than optimal sharing of information

across groups when the number of groups is small. Also, he mentions the inverse-gamma prior is sensitive

to input values when small values of σ are possible in the data, and we note this is likely to occur in our

basket setting (due to small K and also in homogeneous scenarios, where the drug works in all baskets or

none). The conservative artifact of overestimation of σ has the cost of efficiency (in less than optimal sharing

of information across baskets) but this could be a desirable alternative to underestimation of σ at or near

zero which can lead to an unacceptably high overall false positive rate. Gelman’s results were derived in

the traditional framework of hierarchical models with large K. To study whether his findings apply to the

basket trial setting (small K), we investigate a uniform(a, b) prior on σ and compare the results with the

preceding inverse-gamma prior.

2.3 Simulation Study

We performed a simulation study motivated by our experience [17] in these trials to compare the operating

characteristics of these two priors. We focus on the setting of K = 5 baskets and evaluate K + 1

configurations (i.e. scenarios) of the baskets’ true effectiveness. That is A = 0 baskets are active, A = 1

basket is active (assume basket 1 is active), A = 2 baskets are active (baskets 1 and 2 are active), . . . ,

and so forth to A = K = 5 baskets are active. We assume that in each basket the true response rate

pk for k = 1, . . . ,K is either at a null response rate of p0 = 0.15 or at a target effective response rate

of pa = 0.45. Consequently, the true basket-level standard deviation of the model parameters, i.e. the

log-odds of response: σ = 0 when A = 0 or 5 active; σ = 0.68 when A = 1 or 4 active; and σ = 0.84
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when A = 2 or 3 active. We assume a maximum of nmax = 20 patients per basket and at least nmin = 10

patients within a basket are needed for inferences. We also assume equal accrual rates of 2 patients per month.

Operating characteristics from 1000 simulated trials are presented in Section 3. For the inverse-gamma prior,

we consider 35 combinations of mσ2 = {0.1, 0.5, 1, 2, 10} and wσ2 = {0.01, 0.1, 0.5, 1, 2, 5, 10}; and for the uni-

form prior, we consider 36 combinations of a = {0, 0.01, 0.05, 0.3, 0.5, 0.71} and b = {1, 2, 3, 10, 100, 10000},

with each combination corresponding to a different design. The final decision rule (γ, see Section 2.1)

for each prior specification is calibrated to achieve a family-wise error rate of 10% (± 2% margin due to

simulation error) when the drug does not work in any of the baskets, where the family-wise error rate

(FWER) is the proportion of simulated trials in which at least one inactive basket(s) is incorrectly declared

active. All simulations were completed in R version 3.4.0 and Gibbs sampling was completed in JAGS as

called from R using rjags [18]. Within each simulated trial, 10000 MCMC iterations were kept for inference

with 2000 MCMC iterations for burn-in. We set the hyperparameters for the shared mean µ to be mµ = 0

and vµ = 10, to reflect uncertainty that there is no treatment effect.

For each scenario, we consider the following operating characteristics: marginal probabilities of declaring the

drug active in each basket (i.e. marginal power in active baskets and marginal false positive rate in inactive

baskets), family-wise error rate (FWER), and trial size (N). In Tables 1 and 2 for select prior combinations,

we present the average posterior mean estimate of the basket-level standard deviation (σ̂). We display the

performance of each design using the operating characteristics’ average and range over all K + 1 scenarios,

i.e. A = 0, 1, . . . ,K = 5.

3 Results

Table 1 displays the operating characteristics for three prior specifications using an inverse-gamma prior

with different prior means and weights, see first column (mσ2 , wσ2). The first and second strata have the

same weight (wσ2 = 10) but the prior mean is increased away from zero (where a value of zero indicates

homogeneity across all baskets). The second column displays the number of active baskets. Next, we display

the family-wise error rate, marginal rejection probabilities (of the null hypothesis of no treatment effect),

and expected trial size. The final column presents the average posterior mean estimate of the basket-level

standard deviation.

When mσ2 = 0.1 and wσ2 = 10 (Table 1 Stratum 1), the prior strongly suggests little heterogeneity
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between baskets. Subsequently, the family-wise error rate rapidly increases from the calibrated 8% when

the drug is not efficacious in any baskets (0 Active) to 48% when the drug works in only one basket (1

Active) with only 52% power to identify the active basket. The family-wise error rate is as high as 100%

when the drug works in all but one basket (4 Active), while achieving 100% power in the active baskets.

Clearly, this prior specification encourages the model to share information readily regardless of the baskets’

true configuration, as reflected in the consistent estimate of σ̂ = 0.11 across all scenarios. When mσ2 is

instead set to 10 with wσ2 = 10 (Table 1 Stratum 2), which strongly suggests heterogeneity, the family-wise

error rate decreases from the calibrated 9% (in the null scenario) as the number of truly active baskets

increases. Regardless of the number of truly active baskets this design achieves 86-87% power to identify

active baskets with a 2% false positive rate for inactive baskets. Observe that these results show that the

design works essentially like a set of independent trials, with no information sharing. When mσ2 = 1 and

wσ2 = 2 (Table 1 Stratum 3), we place a modest prior belief the treatment effect varies between baskets

and we see this specification displays desirable results over all scenarios. The family-wise error rate ranges

from the calibrated 10% in the null scenario to 15% in the more heterogeneous scenario (3 Active). When

the drug works in one basket the design has 88% power to identify this basket with a 3% false positive

rate in each of the four inactive baskets. Since this prior pushes more mass away from zero compared to

assuming a smaller prior mean (i.e. first stratum), there is a loss in efficiency for the expected trial size in

homogeneous scenarios such as 0 or 5 active but gain in efficiency in heterogeneous scenarios such as 2 or 3

active baskets.

Figure 1 displays summaries of the full simulation results assuming the inverse-gamma prior. In Fig-

ure 1 the top plot displays the average (solid line) and range (dashed lines) over all scenarios (A = 0− 5) of

the marginal power (green lines), marginal false positive rates (blue lines), and family-wise error rate (red

lines); the bottom plot displays the average (solid line) and range (dashed lines) of the trial size. In both

plots, the x-axis displays the 35 combinations of the mean, mσ2 (top x-axis value) and weight, wσ2 (bottom

x-axis value) hyperparameter inputs for the inverse-gamma prior, ordered by the mean values. For example,

the design in the first stratum of Table 1 is represented in the first panel of Figure 1 on the seventh tick of

the x-axis for (mσ2 = 0.1, wσ2 = 10); the family-wise error rate of this design ranges from 8% (0 Active)

to 100% (4 Active) and this range is represented in Figure 1 with the bottom and top red dashed lines,

respectively. In the first top panel of Figure 1 for a small prior value of σ2, as the prior weight increases,

the prior distribution more strongly supports a small estimate of σ2 by putting more mass near zero, which

results in an increase in the average family-wise error rate and decrease in the average power but the range

of both metrics increases (i.e. worse performance in heterogeneous scenarios but better performance in
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homogeneous scenarios). As the prior mean value increases (from 0.1 to 10), the average and range of our

operating characteristics become more desirable. However, for a fixed prior mean value > 1, the range of our

operating characteristics dramatically narrows and the design displays properties similar to implementing

independent designs.

In short, when the prior distribution places too much mass near zero we see a large range in operat-

ing characteristics, that is the design can be over-powered when the drug works in all or most baskets but

can have high false positive rates when the drug works in only some baskets. We observe that this is the

case for many seemingly reasonable prior specifications of the inverse-gamma. However, when we increase

the prior mean value, the range of our operating characteristics narrows. This is because there is little data

to estimate σ2, and so as we push more prior mass away from zero the model encourages less sharing across

baskets and results in a loss of efficiency and decrease in power. Based on these results, the inverse-gamma

prior in an adaptive basket trial is highly sensitive to input values, which is consistent with the findings of

Gelman [16].

Similar to Table 1, Table 2 displays the operating characteristics for three prior specifications using

a uniform prior with different lower and upper bounds. Here, the first column displays the assumed lower

and upper bounds (a, b); the first and second strata have the same lower bound (a = 0.05) but the upper

bound, i.e. domain of σ, is increased. When a = 0.05 and b = 1 (Table 2 Stratum 1), the family-wise

error rate increases from the calibrated 9% under the null scenario to 25% when the drug only works in

Basket 1 with 87% power to identify this basket. As the number of truly active baskets increases, the

family-wise error rate continues to increase to 39% when the drug works in all but one basket, with 99%

power to identify the four active baskets. The narrow domain of the uniform prior from the small upper

bound b = 1 imposes little heterogeneity between baskets and forces the model to share a certain level

of information regardless of the truth which results in the large error rates when the drug works in some

baskets but not all or none. Assuming a larger upper bound of b = 100 with a = 0.05 (Table 2 Stratum

2), results in a more desirable range of family-wise error rates (10-19%, with the largest rate in the most

heterogeneous scenarios) while observing similar power across all scenarios. However, increasing b results in

a more efficient trial should the true configuration of the baskets be heterogeneous (see 2 Active rows) at

the cost of efficiency should the baskets be homogeneous (see 0 Active rows). Finally a = 0.3 and b = 10

(Table 2 Stratum 3), results in better operating characteristics than in the first two strata of Table 2.

Here, the largest family-wise error rate observed is 15% in the most heterogeneous scenario (A = 2) while

observing similar power to the other two designs across all scenarios. This design observes similar efficiency
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to the design with the larger upper bound b = 100 when the baskets are truly heterogeneous but the cost is

a larger expected trial size in the homogeneous scenarios.

Figure 2 displays summaries of the full simulation results from our investigation of the uniform prior. Similar

to Figure 1, the top plot of Figure 2 displays the average and range of the marginal rejection probabilities

and family-wise error rates; and the bottom plot displays the average and range of the trial size. In both

plots, the x-axis displays the 36 combinations of a and b hyperparameter inputs for the uniform(a, b) prior,

ordered by a. For example, the design Table 2 Stratum 1 is represented in Figure 2 with the first tick in the

third panel; here, the family-wise error rate ranges from 9% to 39% and is displayed with the bottom and

top red dashed lines in Figure 2, while the average family-wise error rate across all scenarios (not displayed

in Table 1) is displayed with the red solid line. Looking across panels in the top plot of Figure 2, we see

the average and range for the power and error rates decrease as we increase the lower bound of our uniform

prior on σ away from zero; in the bottom plot, the range of the expected sample sizes decreases as we

increase a but the average remains fairly constant.

In short, decreasing the lower bound a results in efficient trial sizes and slightly higher power in homogeneous

scenarios, at the cost of slightly higher error rates in heterogeneous scenarios. Similar to the inverse-gamma’s

hyperpameter mσ2 , as we increase the lower bound a of the uniform prior away from zero, we see the range

of our operating characteristics narrows. This is because we are artificially imposing at least a2 amount

of variability into the model which encourages less sharing of information across baskets as a increases,

and results in a loss of efficiency and decrease in power in more homogeneous scenarios. Based on these

results, the uniform prior in an adaptive basket trial is fairly robust assuming an upper bound greater than 1.

In the foregoing analyses the combination of hyperparameters (m2
σ and w2

σ for inverse-gamma; a and

b for uniform) were not selected to achieve comparable prior distributions and subsequently are not equally

calibrated in regards to prior information incorporated into the model; instead hyperparameters were

selected to capture both commonly used input values and extreme model behavior. To relate the two prior

specifications, Supplementary Materials Table 1 displays quantiles of each prior distribution considered.

For example, assuming (mσ2 = 0.1, wσ2 = 0.01) [5] places 99% of the prior distribution below 4e-06. This

prior is akin to assuming a uniform prior with a an extremely small domain, say (0,4e-06), which would

never be considered a credible prior in practice. This points to another advantage of the uniform prior:

the parameters are readily interpretable and weaknesses of a particular prior choice would be immediately

evident.
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4 Conclusion

When designing an adaptive basket trial using Bayesian hierarchical modeling, we recommend using a

prior distribution that places a large density mass away from zero, such as a uniform(a, b) prior on the

basket-level standard deviation with the upper bound b set to a value greater than 1. In our investi-

gation, we found the inverse-gamma prior to be very sensitive to input values depending on the true

configuration of the baskets. On the other hand, in our simulation study we found the uniform prior to

display desirable and robust operating characteristics over a wide range of prior distributions considered.

Furthermore, our conclusions remain consistent when we vary accrual rates (see Supplementary Figures 1-4).

Bayesian hierarchical models are widely studied and used for larger experimental or observational

studies. It is important to note our findings are limited to the cases where the number of groups (to share

information across) is small and there is limited information in the data about σ2. This is a challenge

that is particular to basket trials; most other applications of hierarchical models will have several (in some

cases hundreds of) random effects [16]. There is also the issue that the variance parameter in hierarchical

models is central to the questions posed by a basket trial, whereas in many applications it is considered

a nuisance parameter. Finally, as we argued before, the choice of inverse-gamma is more habitual than

carefully-considered in many cases and specifying such a prior in a conventional Bayesian manner can have

severe implications in erroneously declaring the drug works in futile baskets.

The ability to estimate the basket-level variability is gravely limited if the number of baskets is

small (say 4 or 5), which is often the case in the setting of basket trials, and it is clear the prior

distribution strongly influences the final posterior of σ2. Therefore, it is our conclusion that it is

impossible for a prior distribution to be non-informative in this basket trial setting and thus, it is essen-

tial to use a prior distribution with more robust and conservative properties such as the uniform distribution.

The heterogeneous scenarios where the drug works in some baskets but not all or none, have been

empirically shown to be likely, based on previously published basket trials, and in such cases the particular

exchangeability we assumed in this Bayesian hierarchical model is violated. Alternate approaches that do not

require such an assumption can be pursued, however, other prior specifications can be just as cumbersome

and less easily understood. More complex modeling approaches to remedy the lack of exchangeability

across all baskets, such as Bayesian hierarchical mixture modeling, have been proposed in the literature [9]

to design a basket trial. We believe these approaches have the potential to be beneficial in many basket
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trial settings and have found in preliminary work the results in our simulation study are applicable to these

other complex models (such as mixture models) that use a shared variance parameter in an adaptive basket

trial but more work is needed to verify.

In our investigation, we examined the average and range of operating characteristics across all sce-

narios to evaluate the performance of the various prior specifications. In practice, a more formal utility

function could be developed to help guide prior selection, taking into account the desired trade-off between

efficiency, power, and false positive rates across all possible configurations. Furthermore, we chose to

calibrate each design to weakly control the FWER at 10% when A = 0 active baskets; we acknowledge

other calibration schemes may be optimal and should be investigated. Other preliminary results (not

shown), reveal model shrinkage behavior is consistent for other calibration approaches considered. The

purpose of this simulation study is to evaluate two commonly used variance priors in a basket trial with

recommendations; and we recommend that investigators avoid using the inverse-gamma prior and instead

consider a uniform prior with a modest domain on the standard deviation.

R code for the simulation study presented in Section 2.3 is provided at: https://gist.github.

com/kristenmay206/461384bb6c082c49bf855447db5c66cd
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Table 1: Operating Characteristics: Inverse-Gamma Prior

(mσ2 , wσ2) Scenario FWER Marginal Rejection Probability (%) N σ̂
Basket 1 Basket 2 Basket 3 Basket 4 Basket 5

(0.1,10) 0 Active 8 4 4 4 4 4 66 0.11
1 Active 48 52 38 38 38 38 85 0.11
2 Active 84 85 85 80 80 80 102 0.11
3 Active 98 99 99 99 98 98 99 0.11
4 Active 100 100 100 100 100 100 81 0.11
5 Active - 100 100 100 100 100 67 0.11

(10,10) 0 Active 9 2 2 2 2 2 85 9.05
1 Active 8 86 2 2 2 2 85 8.99
2 Active 6 87 87 2 2 2 85 8.94
3 Active 4 87 87 87 2 2 87 8.87
4 Active 2 87 87 87 87 2 86 8.81
5 Active - 86 86 86 86 86 86 8.74

(1,2) 0 Active 10 2 2 2 2 2 81 1.00
1 Active 13 88 3 3 3 3 89 1.19
2 Active 14 90 90 5 5 5 92 1.24
3 Active 15 95 95 95 8 8 93 1.18
4 Active 11 96 96 96 96 11 90 1.04
5 Active - 97 97 97 97 97 83 0.85

mσ2 is the prior mean value of σ2 and wσ2 is the prior weight value for mσ2 ; scenario displays the number of
baskets in which the drug truly works; FWER is the family-wise error rate; marginal rejection probabilities
for declaring the drug works in active (power) and inactive baskets (false positive); N is the expected trial
size; σ̂ is the average posterior estimate of the standard deviation.
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Table 2: Operating Characteristics: Uniform Prior

(a, b) Scenario FWER Marginal Rejection Probability (%) N σ̂
Basket 1 Basket 2 Basket 3 Basket 4 Basket 5

(0.05, 1) 0 Active 9 3 3 3 3 3 74 0.47
1 Active 25 87 8 8 8 8 90 0.64
2 Active 32 94 94 15 15 15 99 0.68
3 Active 39 98 98 98 25 25 98 0.67
4 Active 39 99 99 99 99 39 90 0.59
5 Active - 100 100 100 100 100 76 0.42

(0.05, 100) 0 Active 10 2 2 2 2 2 79 1.49
1 Active 19 89 6 6 6 6 89 2.10
2 Active 19 93 93 7 7 7 92 2.11
3 Active 19 96 96 96 11 11 93 1.88
4 Active 18 97 97 97 97 18 89 1.32
5 Active - 98 98 98 98 98 79 0.63

(0.3, 10) 0 Active 12 3 3 3 3 3 82 1.38
1 Active 14 88 4 4 4 4 88 1.88
2 Active 15 93 93 6 6 6 92 1.93
3 Active 14 95 95 95 8 8 92 1.74
4 Active 13 96 96 96 96 13 89 1.37
5 Active - 98 98 98 98 98 82 0.82

a and b are the lower and upper bounds, respectively; scenario displays the number of baskets in which the
drug truly works; FWER is the family-wise error rate; marginal rejection probabilities for declaring the drug
works in active (power) and inactive baskets (false positive); N is the expected trial size; σ̂ is the average
posterior estimate of the standard deviation.

Average over all A
Range over all A
Power
Error
FWER
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