
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Advances on Adaptive Fault-Tolerant System
Components: Micro-processors, NoCs, and

DRAM

ALIRAD MALEK

Division of Computer Engineering
Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2017

Advances on Adaptive Fault-Tolerant System Components:
Micro-processors, NoCs, and DRAM
Alirad Malek
Göteborg, Sweden, 2017
ISBN: 978-91-7597-666-2

Ioannis Sourdis Advisor Assoc. Professor at Chalmers University of Technology
Vassilis Papaefstathiou Co-Advisor Post Doctoral researcher at FORTH-ICS
Onur Mutlu Thesis Opponent Professor at ETH Zürich
Yiannakis Sazeides Grading Committee Assoc. Professor at University of Cyprus
Ramon Canal Grading Committee Assoc. Professor at Universitat Politecnica de Catalunya
Stefanos Kaxiras Grading Committee Professor at Uppsala University

Copyright c© Alirad Malek, 2017.

Doktorsavhandlingar vid Chalmers Tekniska Högskola
Ny serie Nr 4347
ISSN 0346-718X

Technical Report No. 150D
Department of Computer Science and Engineering
Chalmers University of Technology

Contact Information:

Division of Computer Engineering
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 GÖTEBORG, Sweden
Telephone: +46 (0)31-772 10 00
http://www.chalmers.se/cse/

Author’s e-mail: aliradm@chalmers.se

Printed by Chalmers Reproservice
GÖTEBORG, Sweden 2017

http://www.chalmers.se/cse/

To my family, Naghmeh, Alma and ...

Advances on Adaptive Fault-Tolerant System Components:
Micro-processors, NoCs, and DRAM
Alirad Malek
Department of Computer Science and Engineering
Chalmers University of Technology, Sweden

Abstract

The adverse effects of technology scaling on reliability of digital circuits have made the use
of fault tolerance techniques more necessary in modern computing systems. Digital designers
continuously search for efficient techniques to improve reliability, while keeping the imposed
overheads low. However, unpredictable changes in the system conditions, e.g. available resources,
working environment or reliability requirements, would have significant impact on the efficiency of
a fault-handling mechanism. In the light of this problem, adaptive fault tolerance (AFT) techniques
have emerged as a flexible and more efficient way to maintain the reliability level by adjusting to
the new system conditions. Aside from this primary application of AFT techniques, this thesis
suggests that adding adaptability to hardware component provides the means to have better trade-off
between achieved reliability and incurred overheads. On this account, hardware adaptability is
explored on three main components of a multi-core system, namely on micro-processors, Networks-
on-Chip (NoC) and main memories. In the first part of this thesis, a reliable micro-processor array
architecture is studied which can adapt to permanent faults. The architecture supports a mix of
coarse and/or fine-grain reconfiguration. To this end, the micro-processor is divided into smaller
substitutable units (SUs) which are connected to each other using reconfigurable interconnects.
Then, a design-space exploration of such adaptive micro-processor array is presented to find the
best trade-off between reliability and its overheads, considering different granularities of SUs and
reconfiguration options. Briefly, the results reveal that the combination of fine and coarse-grain
reconfiguration offers up to 3× more fault tolerance with the same overhead compared to simple
processor level redundancy. The second part of this thesis, presents RQNoC, a service-oriented
NoC that can adapt to permanent faults. Network resources are characterized based on the particular
service they support and, when faulty, they can be bypassed through two options for redirection,
i.e. service merging (SMerge) and/or service detouring (SDetour). While SDetour keeps lanes
of different services isolated, suffering longer paths, SMerge trades service-isolation for shorter
paths and higher connectivity. Different RQNoC configurations are implemented and evaluated in
terms of network performance, implementation results and reliability. Concisely, the evaluation
results show that compared to the baseline network, SMerge maintains at least 90% of the network
connectivity even in the presence of 32 permanent network faults, which is more than double versus
SDetour, but will impose 51% more area, 27% more power and has a 9% slower clock. Finally, the
last part of this thesis presents a fault-tolerant scheme on the DRAM memories that enables the
trade-off between DRAM capacity and fault tolerance. We introduce Odd-ECC DRAM mapping,
a novel mechanism to dynamically select Error-Correcting-Codes (ECCs) of different strength
and overheads for each allocated page of a program on main memories. Odd-ECC is applied to
memory systems that use conventional 2D, as well as 3D-stacked DRAMs and is evaluated using
various applications. Our experiments show that compared to flat memory protection schemes,
Odd-ECC reduces ECCs capacity overheads by up to 39% while achieving the same Mean Time to
Failure (MTTF).
Keywords: Adaptive fault tolerance, Micro-processors, Network-on-Chip, Main memory,
Reliability analysis, Quality-of-Service, Error-Correcting Codes

List of Publications

Parts of the contributions presented in this thesis have previously been published in the
following manuscripts

. Alirad Malek, Evangelos Vasilakis, Vassilis Papaefstathiou, Pedro Trancoso, Ioannis
Sourdis, “Odd-ECC: On-demand DRAM Error Correcting Codes”, International
Symposium on Memory Systems (MEMSYS), October, 2017.

. Alirad Malek, Ioannis Sourdis, Stavros Tzilis, Yifan He, Gerard Rauwerda, “RQNoC:
A Resilient Quality-of-Service Network-on-Chip with Service Redirection”, ACM
Transactions on Embedded Computing Systems (TECS), 15, no. 2 (2016): 28.

. Ioannis Sourdis, Danish Anis Khan, Alirad Malek, Stavros Tzilis, Georgios Smaragdos,
Christos Strydis, “Resilient chip multiprocessors with mixed-grained reconfigurability”,
IEEE Micro. 2016 Jan; 36(1):35-45.

. Alirad Malek, Stavros Tzilis, Danish Anis Khan, Ioannis Sourdis, Georgios Smaragdos,
Christos Strydis, “Reducing the performance overhead of resilient CMPs with substitutable
resources”, International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), October, 2015, pp.191-196.

. Alirad Malek, Stavros Tzilis, Danish Anis Khan, Ioannis Sourdis, Georgios Smaragdos,
Christos Strydis, “A probabilistic analysis of resilient reconfigurable designs”, International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
October, 2014, pp.141-146.

. Georgios Smaragdos, Danish Anis Khan, Ioannis Sourdis, Christos Strydis, Alirad Malek,
Stavros Tzilis, “A Dependable Coarse-grain Reconfigurable Multicore Array”, in 21st
Reconfigurable Architectures Workshop (RAW), 2014.

The following papers are related but not covered in this thesis.

. I. Sourdis, C. Strydis, A. Armato, C.S. Bouganis, B. Falsafi, G.N. Gaydadjiev, S. Isaza, A.
Malek, R. Mariani, D.K. Pradhan, G. Rauwerda, R.M. Seepers, R.A. Shafik, G. Smaragdos,
D. Theodoropoulos, S. Tzilis, M. Vavouras, S. Pagliarini, and D. Pnevmatikatos, “DeSyRe:
On-Demand Adaptive and Reconfigurable Fault-Tolerant SoCs ”, in 10th Int’l Symp. on
Applied Reconfigurable Computing (ARC), pp. 312-317, 2014.

vii

viii LIST OF PUBLICATIONS

. I. Sourdis, C. Strydis, A. Armato, C.-S. Bouganis, B. Falsafi, G. Gaydadjiev, S. Isaza, A.
Malek, R. Mariani, D.N. Pnevmatikatos, D.K Pradhan, G. Rauwerda, R. Seepers, R.K.
Shafik, K. Sunesen, D. Theodoropoulos, S. Tzilis, M. Vavouras, “DeSyRe: on-Demand
System Reliability”, in Elsevier Microprocessors and Microsystems, Special Issue on
European Projects in Embedded System Design, November, 2013.

Acknowledgments

No road is too long with good company. On the verge of completing this seemingly
never-ending chapter of my life, I would like to take this opportunity to thank everyone
who helped me reach this point.

First of all, I would like to express my deepest gratitude to my advisor Yiannis Sourdis
for his invaluable guidance and inspiring patience. I admire his encouraging enthusi-
asm for our work and I appreciate all his efforts to make me a better researcher in the field.

My warmest thanks goes to my co-advisors Vassilis Papaefstathiou and Pedro Tran-
coso for all those great discussions and insightful comments. It was a great honor and
pleasure to work with you.

I would like to sincerely appreciate my examiners during these years, Georgi Gaydadjiev,
Per Stenström and Jan Jonsson for their constructive feedback and advice. Special thanks
to Sally McKee and Lars Svensson for their kind support and guidance during different
phases of my research.

Next, I like to thank all my friends and colleagues in the Department of Computer
Science and Engineering: Risat, Miquel, Angelos, Prasanth, Petros, Albin, Prajith, Ste-
fano, Negin, Bhavishya, Jacob, Madhavan, Behrooz, Fatemeh, Dmitry, Waqar and anyone
who, one way or another, helped me during this time. Special thanks to Vaggelis for huge
technical and moral supports during final stages of my work. I learned a lot from you guys.

During all these years, our office was my second home and that’s all thanks to my
great office-mates Stavros and Ahsen. Thank you for the pleasant working environment
and your kind-hearted support during my research.

I would like to express my sincere gratitude to our kind administrative staff in the
department, Eva Axelsson, Monica Månhammar, Marianne Pleen-Schreiber and Rune
Ljungbjörn for their help and support.

This work has been partly funded by the European Union’s Framework Programme
7 DeSyRe project (grant agreement 287611), EMC2 project (grant agreement 621429)

ix

x ACKNOWLEDGMENTS

and Horizon 2020 Programme ECOSCALE project (grant agreement 671632).

Many thanks to my close friends, Hessam, Dorreh, Nojan, Behnaz, Homayoun, Mi-
tra, Kamyar and all others with whom I’ve got a lot of great memories.

I am cordially grateful to my parents and my sisters for their unconditional support
and chances they’ve given me over the years. Thanks Mom. Thanks Dad.

Finally, I would like to thank my wife, Naghmeh for her love and patience over all
these years and the joy she brings to my life. None of this would have been possible
without you. Thank you.

Alirad Malek
Göteborg, December 2017.

Contents

Abstract v

List of Publications vii

Acknowledgments ix

1 Introduction 1
1.1 The Problem: Overheads of Fault Tolerance 2
1.2 Thesis Statement: HW Adaptivity for Better Reliability-Overheads Trade-

Off . 2
1.3 Thesis Objectives . 3

1.3.1 Adaptive Fault-tolerant Micro-processors 3
1.3.2 Adaptive Fault-tolerant Network-on-Chip (NoC) 5
1.3.3 Adaptive Error-Correcting-Codes (ECCs) for Main Memories . 6

1.4 Contributions . 8
1.4.1 Adaptive Fault-tolerant Micro-processors 8
1.4.2 Adaptive Fault-tolerant NoC 8
1.4.3 Adaptive Error-Correcting-Codes (ECCs) for Main Memories . 9

1.5 Thesis Outline . 9

2 Analysis of Repairable Adaptive Micro-processors 11
2.1 Related Work . 12
2.2 Reconfigurable Designs for Tolerating Permanent Faults 13
2.3 A Reconfigurable Adaptive RISC Processor 15
2.4 Probabilistic Analysis of Reconfigurability 17
2.5 Evaluation . 20

2.5.1 Reconfigurability Overheads 20
2.5.2 Evaluating Pipelined Reconfigurable Interconnects 21
2.5.3 Fault tolerance of Reconfigurable Designs 27

2.6 Conclusions . 29

xi

xii CONTENTS

3 Resilient service-oriented NoC 31
3.1 Related Work . 32
3.2 The QNoC Architecture . 34
3.3 RQNoC: a Resilient QoS NoC . 36

3.3.1 SDetour: Service Detour . 37
3.3.2 SMerge: Service Merge . 39
3.3.3 Combining SDetour and SMerge 45
3.3.4 Resilient Links . 45
3.3.5 Fault Model, Diagnosis and Reconfiguration 46

3.4 Evaluation . 47
3.4.1 Implementation Results . 48
3.4.2 Performance Results . 52
3.4.3 Network Connectivity and Fault Tolerance 54
3.4.4 Comparison . 57

3.5 Conclusion . 58

4 Adaptive Fault-tolerant Main Memories 61
4.1 Application Reliability Analysis . 63

4.1.1 Application Data Regions . 64
4.1.2 Application Sensitivity Analysis 65
4.1.3 Application MTTF Study . 65
4.1.4 Application Analysis Results 69

4.2 Odd-ECC Memory Reliability . 72
4.2.1 Odd-ECC Data Layout . 73
4.2.2 Odd-ECC Tier One (T1) . 73
4.2.3 Odd-ECC Tier Two (T2) . 75
4.2.4 Hardware/Software Modifications 75

4.3 Odd-ECC in 2D DRAMs . 77
4.3.1 T1 ECC . 78
4.3.2 T2 ECC . 79
4.3.3 Address Mapping . 81
4.3.4 Extensions to Other 2D-DRAM Memory System Configurations 82

4.4 Odd-ECC in 3D-stacked DRAMs . 83
4.4.1 T1 ECC . 84
4.4.2 T2 ECC . 84
4.4.3 Address Mapping . 86

4.5 Evaluation . 87
4.5.1 Experimental Setup . 87
4.5.2 Experimental Results . 89
4.5.3 Summary . 91

4.6 Related Work . 92
4.7 Conclusion . 95

CONTENTS xiii

5 Conclusion 97
5.1 Summary . 97
5.2 Contributions . 99

5.2.1 Adaptive Fault-Tolerant Micro-Processors 99
5.2.2 Adaptive Fault-Tolerant NoC 100
5.2.3 Adaptive Fault-tolerant Main Memories 101

5.3 Proposed Research directions . 102

xiv CONTENTS

List of Figures

1.1 Adaptive processor in a chip-multiprocessor. 4
1.2 Tolerating Permanent faults in a service-oriented NoC. 6
1.3 Adaptive ECC memory mapping scheme. 7

2.1 A design with coarse (CG) and fine-grain (FG) reconfigurability. . . . 14
2.2 An adaptive processors array with substitutable stages. 15
2.3 Four different configurations of the adaptive processor. 23
2.4 Execution cycles for EEMBC benchmarks normalized to the baseline . 24
2.5 Execution cycles for each case using custom benchmark. 24
2.6 Execution time for EEMBC benchmarks. 25
2.7 Execution time for each custom benchmark. 25
2.8 Power consumption for EEMBC benchmarks. 26
2.9 Power consumption for each custom benchmark. 26
2.10 Energy consumption for EEMBC benchmarks. 27
2.11 Energy consumption for each custom benchmark. 27
2.12 Average availability and probability of guaranteed availability. 28

3.1 The architecture of QNoC. 36
3.2 Format of a detoured packet. 37
3.3 Possible turns in X-Y routing and West-First turn model. 38
3.4 Basic concept of SVC detour. 39
3.5 Example of a fault not mitigated by detour. 40
3.6 An example of Service Merge. 42
3.7 Credit handling example in a RQNoC router with Service Merge. . . . 44
3.8 Configuration Array. 45
3.9 Spare wires and shifting mechanism. 46
3.10 RQNoC performance evaluation with 1 permanent fault. 49
3.11 RQNoC performance evaluation with 8 permanent faults. 50
3.12 RQNoC performance evaluation with 32 permanent faults. 51
3.13 Mean and ±3σ range of connectivity values for the proposed RQNoC. 55
3.14 RQNoC connectivity under different fault densities. 56

4.1 Virtual address space for a typical application in x86_64 architecture. . 64

xv

xvi LIST OF FIGURES

4.2 Rate of observing SDC or crash for 2D-DRAM. 68
4.3 Rate of observing SDC or crash for 3D-stacked DRAM. 70
4.4 Placement of pages and cachelines in one pool. 72
4.5 Overview of 2D-DRAM memory system. 78
4.6 Physical layout of pages and cachelines for 2D-DRAM. 79
4.7 The structure of T2 ECC in 2D-DRAM. 81
4.8 2D-DRAM address mapping. 82
4.9 Overview of 3D-stacked memory system. 83
4.10 Page and cachelines mapping for 3D-stacked memory. 85
4.11 3D-stacked address mapping. 86
4.13 MTTF and Capacity of Odd-ECC vs flat protection in 2D-DRAM. . . 88
4.14 MTTF and Capacity of Odd-ECC vs flat protection in 3D-stacked DRAM. 88
4.14 Improving capacity when using Odd-ECC in 2D DRAM DIMMs. . . . 91
4.15 Improving capacity when using Odd-ECC in 3D-stacked DRAM. . . . 92
4.16 Improving MTTF when using Odd-ECC in 2D DRAM DIMMs. 93
4.17 Improving MTTF when using Odd-ECC in 3D-stacked DRAMS. . . . 94

List of Tables

2.1 Place and Route Timing measurements for our CMP 23
2.2 Area cost of an adaptive core (FT Design). 26

3.1 Specification of four considered traffic classes 35
3.2 Implementation results of the QNoC and RQNoC designs. 48

4.1 Classification of applications outcomes. 66
4.2 Failure rates for 2D DRAM. 69
4.3 Failure rates for 3D-stacked DRAM. 71
4.4 Starting column address for unprotected (T0) and T1 protected cachelines. 74
4.5 Example 2D-DRAM memory system configuration 77
4.6 Starting column address for 2D-DRAM memories. 80
4.7 Example 3D-stacked memory system configuration 84
4.8 System parameters for our evaluation. 89
4.9 Applications used for Odd-ECC evaluation and their data regions sizes. 89

xvii

xviii LIST OF TABLES

1
Introduction

Advances in semiconductor technology have resulted in the emergence of new challenges
in the design of reliable computing systems. As transistors’ feature sizes continue to
shrink, they become more susceptible to fault-factors such as manufacturing defects,
environmental disturbances and wear-out phenomena [1]. In a digital circuit, these
fault-factors will manifest as transient, intermittent or in more severe cases as permanent
faults [2]. Without any mechanism to tolerate faults, even a single faulty circuitry could
threaten the correct functionality of the system or make an entire chip unusable. This
issue is even more crucial for embedded systems in mission/safety-critical domains such
as medical, aerospace and automotive, where, if not handled appropriately, faults could
have catastrophic consequences.

There have been many efforts to improve the reliability and availability of systems
in the past. In general, modern computing systems can be equipped with various
fault tolerance techniques applied to their comprising components, e.g. processors,
interconnection infrastructure and memory elements, which altogether aim to increase
the overall reliability of the system. Compared to end-to-end holistic system level
fault tolerance, dealing with each component separately gives the designer more
flexibility in addressing component specific faults, i.e. faults that might occur only
in particular components, or in adjusting the reliability level based on the criticality of
the component. Regardless of the target component, these techniques always employ
some form of redundancy, i.e. information, temporal or spatial redundancy, to provide
fault resilience [3].

This introductory chapter is a short overview for the work presented in this thesis.
The remainder of this chapter is organized as follows: Section 1.1 describes the main
problem statement, and subsequently, section 1.2 presents the main statement of this
research. Section 1.3 covers an overview of thesis objectives. Section 1.4 summarizes the
main contributions and finally, section 1.5 provides an outline for the rest of this thesis.

1

2 CHAPTER 1. INTRODUCTION

1.1 The Problem: Overheads of Fault Tolerance

Adding the fault tolerance property to any system imposes undesirable overheads.
Depending on the employed redundancy scheme, these overheads could be in terms
of design complexity, performance, silicon area or consumed energy. In fact, in all fault
tolerance approaches, there is a direct relation between at least one of these overheads and
the achieved reliability level, where higher reliability comes at higher costs. Hence, the
problem that dependable system designers face is how to have an efficient fault handling
mechanism which offers sufficient reliability while the overheads are within acceptable
thresholds.

On the other hand, due to inevitable dynamic changes in system conditions, sustaining
the efficiency of a fault tolerance mechanism can be challenging. There are several factors
that might change in a system during its lifetime, creating the need for more flexible
fault tolerance techniques that can adapt to changes. The source of these changes could
be: (i) changes in systems status, e.g. number of available resources after occurrence of
permanent faults, (ii) changes in the working environment that might affect the fault-rates,
(iii) or changes in the reliability requirements based on the user’s application [4]. Failure
to adapt to these changes could potentially reduce the efficiency of the employed fault
tolerance technique. In this regard, Adaptive Fault Tolerance (AFT) techniques have
been proposed as an approach for providing the flexibility needed for designing efficient
fault-tolerant systems [4–6]. The main purpose of AFT techniques is to dynamically
satisfy the reliability requirements by adapting to changes in the system conditions [7, 8].

1.2 Thesis Statement: Hardware Adaptivity Offers
Better Reliability-Overheads Trade-Off

In this thesis we study the design of fault-tolerant system components that provide
hardware support for adaptive fault tolerance techniques. We exploit hardware flexibility
to improve the efficiency of fault handling schemes in different system components.
Ultimately, in this thesis we seek out to show that:

Adding adaptability to the hardware, enables components to
demonstrate better trade-offs between reliability and its overheads.

In other words, although the main purpose of using adaptive fault tolerance is to
maintain a fixed level of fault tolerance, while adapting to changes in the system, the
flexibility of such designs opens up an opportunity to achieve better balance between
reliability and its overheads.

Accordingly, our goal in this thesis is to investigate the validity of the aforementioned
statement, focusing on three main components of a multi-core system: micro-processors,
a Network-on-Chip (NoC) as the communication infrastructure, and off-chip Dynamic
Random Access Memories (DRAMs).

1.3. THESIS OBJECTIVES 3

1.3 Thesis Objectives: Adaptive Fault-Tolerant System
Components

In the following, we present an overview of the work in this thesis for each of the
components at hand: micro-processors, NoC and main memories.

1.3.1 Adaptive Fault-tolerant Micro-processors

In the first part of this thesis, we study a chip-multiprocessor (CMP) with substitutable
units that can adapt to permanent fault. Our main objective in this part is:

to find the granularity of substitutable units as well as the reconfiguration mix
that achieve, for a given fault-rate, the best trade-off between reliability and incurred
overheads (i.e. area, performance and power).

As our use-case, we consider a CMP with multiple identical processors, i.e. simple
MIPS-like in-order RISC. The architecture is modified to support either coarse or fine-
grain reconfiguration, as well as combination of both, henceforth referred to as mixed-
grain, for adapting to permanent faults. To this end, the processor is divided into
smaller substitutable units (SUs) which are connected to each other using reconfigurable
interconnects. In coarse-grain (CG) reconfiguration, when a permanent fault is detected
on a processor, the affected unit is isolated and other fault-free units of the processor will
be used as spares for the faulty processors on the CMP. When the option of fine-grain
(FG) reconfiguration is available, it is possible to instantiate the affected SU on the FG
fabric and use reconfigurable interconnects to replace it with the newly configured one.
Figure 1.1 shows the two options of coarse-grain and fine-grain reconfiguration for an
array of four adaptive processors.

Considering this reconfigurable architecture, whether or not fine- and/or coarse-grain
reconfiguration is employed, is a design choice which depends on the desired level of
fault tolerance and accepted overheads. Thus, two important issues that arise are how
to measure and compare: achieved fault tolerance and incurred overheads for the two
reconfiguration alternatives. Evidently, these issues need to be addressed considering
different fault densities and also how they associate with the granularity, i.e size of SUs.
Overcoming these issues will eventually help us to find which reconfiguration mix and
granularity of SUs will result in having the best trade-off between fault tolerance and
overheads in each case. Concisely, in the first part of this thesis we:

(i) analyze the reliability and the overheads of coarse and fine-grain reconfigurable
CMPs with SUs;

(ii) perform a design space exploration of adaptive fault-tolerant CMPs to find the
most efficient reconfiguration mix for a given fault rate.

4 CHAPTER 1. INTRODUCTION

FPGA-like
 Fabric

sususu

su

susususu

susususu

su

sususu
susususu

susususu

susususu

su

susususu

Memory Device

R R R R

R R R R

CG FG

NI

GPP

One Core

GPP
NI

NI

NI

L1I L1D

L1I L1D

L1I L1D

L1I L1D

R R R R

R R R R

NI

Core L1I L1D

NI

ASIC
MEM

NI

DSP

MEM

NI

Sched Ctrl

FG: Fine-Grain Reconfiguration
CG: Coarse-Grain Reconfiguration
SU: Substitutable Unit
L1I: Level-1 Instruction Cache
L1D: Level-1 Data Cache
Sched: Memory Scheduler
Ctrl: Memory Controller

R: Router
MEM: Memory
NI: Network Interface
DSP: Digital Signal Processor
GPP: General Purpose Processor
ASIC: Application-Specific
Integrated Circuit

Figure 1.1: Adaptive processor in a chip-multiprocessor where permanent faults can be
tolerated by using coarse-grain and fine-grain reconfiguration.

Related Work: Prior work have proposed several online-testing mechanism that can be
used to detect and locate permanent hardware faults/bugs in microprocessors [9–12] or
in other uncore components of a system-on-chip [13, 14]. A widely used approach for
tolerating the detected faults is hardware adaptation in which a component is divided
into smaller entities, i.e. SUs, that can be isolated and replaced by spares when required.
The granularity of SUs can be from an entire core [15–17], down to gates/wires in a
design [18]. Well-known examples of core-level redundancy are high-availability systems
such a IBM-ZSeries [15] and HP-NonStop [16] servers, that employ triple-modular
redundancy and dual-modular redundancy, respectively. For finer-than-core granularities,
researchers have proposed reconfiguration at the level of functional units [19], and more
commonly at processors pipeline stages, e.g. CCA [20], StageNet [21] and Viper [22]. At
even finer granularities, there have been proposals for using spare bits in the processors
data-path [18], or using field programmable gate array (FPGA) and programmable logic
array (PLA) to instantiate permanently faulty parts of a design [23–25]. Contrary to the
prior works, instead of selecting a particular SU granularity, the adaptive micro-processors
proposed in this part of the thesis can employ a mix of both coarse- and fine-grained
reconfiguration options, offering higher flexibility to combat permanent faults.

Generally, the mechanism to isolate and replace a faulty SU requires modifications
to add adaptability to the hardware. Evidently, the chosen granularity of SUs has a
significant effect on the level of reliability and its overheads. In the past, there have
been some studies which explored the impact of SU granularity on the reliability and

1.3. THESIS OBJECTIVES 5

overheads of reconfigurable architectures [26–28]. However, the scope of these studies
are limited to FPGA based designs. In a more recent work, researchers analyzed how area
and delay overheads of a reconfigurable design change with the chosen granularity [29].
Nevertheless, to the best of our knowledge, the work presented in this thesis is the
first study that describes a methodology to perform a design space exploration of
reconfigurable designs, considering different granularities of SUs, reconfiguration options
and fault densities.

1.3.2 Adaptive Fault-tolerant Network-on-Chip (NoC)

In the second part of this thesis, we focus on a reliable NoC architecture that can adapt to
changes in the available resources as a result of permanent faults. Our key objective is:

to design and evaluate a service-oriented NoC that enables us to trade service-
isolation for reliability.

Reliable interconnects are essential for the correct functionality of system-on-chips
(SoCs) with multiple communicating components. In modern SoC designs, NoCs have
become the prominent choice for on-chip communication backbones due to their regular
and robust structures. On the other hand, the diversity of transmitted messages between
on-chip components has raised the demand for NoCs which can support different traffic
classes with different attributes. Thus, service-oriented NoCs that support certain quality
of service (QoS), e.g. latency and throughput, are gaining more and more attention. In
a commonly practiced approach, the quality of service is guaranteed through utilizing
isolated, physical-lanes per traffic class [30, 31].

In this thesis, we consider a service-oriented NoC architecture that supports different
traffic classes, each corresponding to a specific service. Each router in the network
has multiple data-paths, one per service, while packets of all services share the links
connecting the routers in the network. The inherent intra-router and inter-router
redundancies in this NoC architecture can be exploited to improve the fault tolerance of
the network. However, the physical isolation of different service-lanes will be impacted
by such fault tolerance schemes, which opens up a trade-off between reliability and
performance of different traffic classes. Figure 1.2 shows an example of tolerating
permanent faults, leveraging the redundancies inside a service-oriented NoC1. Based on
these descriptions, in the second part of this thesis we:

(i) design a fault-tolerant service-oriented NoC that is able to adapt to permanent
faults through breaching the isolation of its physical service-lanes;

(ii) evaluate and compare our proposed techniques in terms of offered reliability
and performance costs.

1More implementation details can be found in Chapter 3.

6 CHAPTER 1. INTRODUCTION

(a) (b)

 R

Link

S1

S2

S3

S4 1
2&3

4

A

C

 D B

S1,3,4

S2

 R: Router : Crossbar S#: Service #

Alternative intra-router paths Alternative inter-router paths

Figure 1.2: Tolerating Permanent faults in a service-oriented NoC using: intra-router (a)
and, inter-router (b) redundancies.

Related Work: In the past a plethora of techniques have been suggested to combat
permanent faults in NoCs. Many approaches modify the routing algorithm of a NoC to be
dynamically adaptive and avoid faulty links or routers [32–38]. Other techniques re-route
packets without modifying the actual routing algorithm. Instead, they perform a detour,
selecting an intermediate destination for packets that would normally need to pass through
some faulty links or routers [39–42]. In addition to rerouting of packets, faulty network
parts can be bypassed in hardware [1, 43–48]. Besides Kakoee et al. [47], none of the
above techniques is addressing fault tolerance on a service-oriented NoC nor analyzes the
affect of faults to the performance of individual traffic classes. Moreover, the techniques
proposed in this thesis are aimed to increase the network connectivity, therefore, are
orthogonal to adaptive routing algorithms which can benefit from the existence of more
paths between network elements. We provide more details on related work in Chapter 3.

1.3.3 Adaptive Error-Correcting-Codes (ECCs) for Main Memories

In the last part of this thesis, we focus on the design of reliable off-chip main memories
that can adapt to changes in the reliability requirements. Our key objective is:

to design and evaluate a fault tolerance mechanism that allows us to trade capacity
for reliability within a DRAM module.

In particular, we look for an adaptive solution which enables us to pay only a capacity
cost –needed for a memory protection scheme– which is proportional to the critically of
the data stored in the memory.

Recent studies show that faults in different data regions of an application have different

1.3. THESIS OBJECTIVES 7

Figure 1.3: Adaptive ECC memory mapping scheme allows systems to select dynamically
on-demand different protection levels (ECCs) for different allocated pages.

effect on the applications outcome and, hence on the reliability of the system [49, 50].
Consequently, fault tolerance schemes that offer flat, i.e. fixed, level of protection,
potentially, impose unnecessary overheads on the DRAM capacity and performance.
Motivated by this observation, the last part of thesis is dedicated to the design of flexible
Error-Correcting-Codes (ECCs) that can adapt to the reliability requirements of different
data regions, providing the possibility to trade memory capacity for reliability. We
explicitly focus on DRAM modules and study how to provide support for dynamic ECC
constructs in conventional 2D, as well as 3D-stacked DRAMs. In particular, we aim at
designing an adaptive ECC DRAM mapping in which different data regions within a
single DRAM DIMM are protected by different ECCs, i.e. Tier0, Tier1 and Tier2, as
illustrated in Figure 1.32. Concisely, in the third part of this thesis we:

(i) analyze the sensitivity of applications to faults in each part of their data, to gain
insight about criticality of different data-regions;

(ii) design and evaluate a new DRAM mapping scheme which allows us to have
different protection levels, i.e. ECCs, for different allocated pages inside a DRAM
module.

Related Work: In the past there have been many works describing different metrics and
methodologies to analyze applications sensitivity to faults [51–57]. The outcome of such
analysis is used by some researchers to motivate different reliability techniques, applied
to software and hardware [49, 50, 53, 56, 58, 59]. In this part of our work, we follow the
same strategy and perform a comprehensive sensitivity analysis aiming to observe the
impact of faults that happen in different data regions, on the outcome of an application.
However, we further extend the analysis and propose a methodology to explore the impact
of different protection levels per data region, on the applications reliability.

Tolerating faults in main memories has been widely studied in prior works, both on
conventional 2D [60–70], as well as emerging 3D-stacked DRAMs [71–74]. Among the

2Mapping details can be found in Chapter 4.

8 CHAPTER 1. INTRODUCTION

techniques proposed for tolerating faults in 2D-DRAMs, some offer the flexibility to use
different levels of protection [60–64, 75, 76]. However, except for [76], the flexibility of
these techniques cannot be exploited to save DRAM capacity. Moreover, some of the
resilience schemes are designed for specific memory system configurations, requiring
multiple memory channels [65, 75], using ECC-DIMMs [66–68, 76], access granularity
prediction [62] or data compression [69, 70].

On the other hand, most of the reliability techniques proposed for 2D-DRAMs can
not be directly applied to 3D-stacked DRAMs. Therefore, in recent years there have
been new proposals, addressing the reliability issues of 3D memory structures [71–74].
However, none of the proposed schemes supports having different protection regions
within a single 3D-stacked DRAM.

With respect to the current techniques for improving the reliability of main memory
systems, the work presented in this thesis provides different protection levels for data
stored in the memory system, enabling the user to trade DRAM capacity for reliability.
The proposed technique is applied to conventional non-ECC 2D-DRAM modules, as well
as to generic 3D-stacked DRAMs. More detailed related work is provided in Chapter 4.

1.4 Contributions
According to the above objectives, this section presents a summary of the main
contributions of this thesis for each of the three components at hand, i.e. micro-processors,
NoC and main memories.

1.4.1 Adaptive Fault-tolerant Micro-processors
In the first part, we study the design of reliable fault-tolerant micro-processors that can
adapt to permanent faults. We aim to find the most efficient granularity of substitutable
units which delivers the best trade-off between the achieved reliability and overheads. In
essence, this part of the thesis makes the following contributions:

We introduce a generic methodology for analyzing the reliability of reconfigurable
components with substitutable units. We take into account the area overhead
of both reconfiguration options, i.e. coarse and/or fine-grain reconfiguration, at
different granularities of substitutable units. The methodology is then used to
perform a comprehensive design space exploration of an adaptive reliable micro-
processor array at different fault densities. Our study allows us to identify the most
efficient design choice, i.e. with specific reconfiguration options and granularity of
substitutable units, at a particular fault density.

1.4.2 Adaptive Fault-tolerant NoC
In the second part of this thesis, we focus on the design of a reliable service-oriented
NoC which can adapt to permanent faults. The key objective is to design a fault tolerance

1.5. THESIS OUTLINE 9

scheme that enables us to trade service-isolation for reliability. Briefly, our contributions
in this part are as follows:

We categorize network resources based on the particular service that they support
and, when faulty, bypass them, allowing the respective traffic class to be redirected.
We propose two alternatives for service redirection: (i) Service Detour that uses
longer alternative paths through resources of the same service to bypass faulty
network parts, keeping traffic classes isolated, (ii) Service Merge that uses resources
of other services providing shorter paths but allowing traffic classes to interfere
with each other. The above fault tolerance techniques are extensively evaluated in
terms of network performance (latency, throughput), implementation results (area,
power, frequency) and also the percentage of successful packet delivery. Finally, a
network connectivity model is created and used to measure the obtained reliability
under different fault densities.

1.4.3 Adaptive Error-Correcting-Codes (ECCs) for Main Memories
In the last part of this thesis, we focus on the design of reliable off-chip main memories.
Our main objective is to design flexible ECC constructs that enable us to trade DRAM
capacity for reliability. Accordingly, this part of our work makes the following
contributions:

We analyze various applications, measuring their sensitivity (Mean-Time to Failure)
to faults injected in different regions of their data. We introduce Odd-ECC, a
new flexible memory mapping scheme that allows systems to select dynamically
on-demand different protection levels (ECCs) for different allocated pages. We
show how Odd-ECC is applied to both traditional 2D and 3D-stacked DRAMs.
Afterwards, using the same applications studied and guided by their MTTF analysis,
we select combinations of fault tolerance levels (i.e. Tier0, Tier1, Tier2) for each
data region to be supported by the proposed Odd-ECC scheme. These Odd-ECC
setups are then compared with flat fixed memory fault tolerance levels in terms of
the overall MTTF of the application at hand, as well as in terms of overheads in
memory capacity, system performance and energy costs.

1.5 Thesis Outline
The remainder of the thesis is organized as follows:

In Chapter 2, a probabilistic reliability analysis of a generic reconfigurable design
is presented. The analysis is then used to evaluate the reliability of an adaptive micro-
processor architecture. We first describe different forms of reconfiguration and identify
the required architectural modifications of our use-case processor. Furthermore, we
present a probabilistic method to calculate the fault tolerance of such designs. Different
designs of the adaptive processor are then evaluated in terms of area, performance and

10 CHAPTER 1. INTRODUCTION

power. Moreover, the performance impact of pipelining reconfigurable interconnects,
which connect SUs of the CMPs, is explored. Finally, based on the results of evaluation
and the probabilistic calculation, a comprehensive design space exploration is presented.

In Chapter 3, an adaptive service-oriented NoC architecture is designed and
implemented which supports inter-router and intra-router traffic redirection mechanisms,
thereby providing tolerance to permanent faults. We first introduce our baseline service-
oriented NoC and its specifications. Afterwards, we introduce our proposed NoC
architecture where different fault-tolerant techniques are described to improve NoC
reliability in presence of permanent faults at the links and the routers. More specifically,
we present the Service Merge and Service Detour schemes as the main contributions
of our work. Our techniques are subsequently compared with each other using a cycle-
accurate simulator. Further, in order to evaluate the reliability of different schemes,
an analytical study is performed to calculate the network connectivity in presence of
different number of faults.

In Chapter 4, an adaptive ECCs scheme is proposed for DRAM main memories.
We first perform an extensive applications reliability analysis and confirm that an
application may have different sensitivity to faults in different subsets of the data it
uses. Furthermore, we define a methodology to explore the impact of different protection
levels per data region, on the applications reliability. Afterwards, we describe Odd-ECC
DRAM mapping strategy that supports three different levels of protection. Finally, we
evaluate Odd-ECC mechanism in terms of achieved applications reliability, performance
and energy for both 2D and 3D-stacked DRAM memories.

In the end, Chapter 5 presents the concluding remarks. The chapter summarizes the
content of this thesis, outlines contributions and findings and finally discusses possible
future research directions.

2
Analysis of Repairable Adaptive

Micro-processors

As technology scales chips become less reliable. Shrinking device features make
circuits more susceptible to permanent faults due to manufacturing defects and wear-out
phenomena [2]. Even a single permanent fault can damage an entire chip lowering
production yields or jeopardizing availability when it appears in field. The wide use of
embedded systems in various application domains and the fact that such systems tend to
become more complex and advanced as time passes, makes reliability and availability an
even more pressing issue. Moreover, there is a number of mission-critical applications
whereby faults are unacceptable; e.g. in the space, automotive, and medical domains.
Such applications require high fault tolerance to deal with the increasing number of faults
in emerging technologies.

In this chapter, we focus on System-on-Chip (SoC) recovery from permanent faults –
simply denoted in here as faults – aiming at increased system availability and reliability
at high fault densities. One general approach to fault tolerance relies on dividing a design
into basic blocks identical to each other, called Substitutable Units (SUs), whereupon
so-called sparing strategies are employed: A faulty block of a system can be substituted
by a spare (functioning) one. Clearly, this strategy requires redundancy of components
and reconfigurability to replace damaged parts so as to keep the system functional.

Previous approaches divide a chip into smaller redundant SUs that can be isolated
and replaced, if damaged, by spare identical parts. Such redundancy may appear in
various granularities. In a multiprocessor SoC, core-redundancy is the most common
choice [17, 77]. Alternatively, smaller parts, such as pipeline stages and functional units,

11

12 CHAPTER 2. ANALYSIS OF REPAIRABLE ADAPTIVE MPSOC

can be used as spares to repair a failing component [19–22]. At the other end of the
design space, fine-grain logic (e.g., gate-level redundancy) can be used: for instance,
Field-Programmable Gate Arrays (FPGAs) tolerate permanent faults by changing the
configuration and/or the placement of a design [24]. The particular granularity (size
of SU) chosen in a design introduces a trade-off between reliability and overheads.
Finer granularities are more resilient to faults, but also less efficient in terms of area,
performance and power consumption. Coarser redundancy tolerates fewer faults, but
incurs lower overheads to a design.

This chapter presents a probabilistic analysis of the fault tolerance offered by hardware
reconfigurability. Considering a generic design of components divided to SUs, we
analytically estimate the resilience of different granularities. Thereby, we determine the
most efficient fault-tolerant reconfigurable design choice for a particular fault density.
Concisely, the main contributions of this work are the following:

• We analytically calculate the probability of constructing a certain number of fault-
free components via reconfiguration having as an input parameter the fault density.

• Then, we measure the area overheads of reconfigurability using a reconfigurable
RISC processor with substitutable parts as a use-case component.

• We evaluate various reconfiguration options, measuring the average number of
fault-free components as well as the probability of delivering a minimum number
of fault-free components in a given silicon area. In so doing, we identify the most
efficient fault-tolerant design that gives us the best trade-off between reliability
and incurred overheads, at a particular fault density.

In the remainder of this chapter, related work is presented first in Section 2.1, then
Section 2.2 describes reconfigurable design alternatives for repairing faulty components.
Section 2.3 details the design of the particular reconfigurable processor used in this study.
Section 2.4 offers a probabilistic analysis of fault tolerance in reconfigurable designs
while Section 2.5 evaluates the fault tolerance of different design points. Finally, in
Section 2.6 overall conclusions are drawn.

2.1 Related Work
In the past, a large number of design techniques have been introduced for tolerating
permanent faults. They consider different SU sizes ranging from entire components,
e.g. micro-processors, to fine-grain logic and have different fault tolerance and design
overheads.

Existing commercial systems offering high availability, such as the IBM z-series [15]
and the HP NonStop systems, [16], provide redundant cores and dual modular redundancy
(DMR) to combat permanent faults. LaFrieda et al. [17] showed that DMR of dynamically
coupled cores improves fault tolerance. Disabling [78] and isolating [77] permanently
faulty cores can sustain degraded performance, while dark silicon makes it possible to
have additional spare components [79]. Moreover, partly damaged cores can potentially
be used with degraded functionality by allowing affected threads to migrate to other

2.2. RECONFIG. DESIGNS FOR TOLERATING PERM. FAULTS 13

cores [80], or even to be rescued using advanced diagnostics and voltage/frequency tuning
to reverse some of the wear-out phenomena [81].

In order to deal with the increasing number of permanent faults, designers turned to
finer granularities. The SUs may be functional units [19] or pipeline stages [20–22]. In
the latter case, processors — mostly simple RISCs — are modified to support dynamic
replacement of stages.

Finer granularities further increase the fault tolerance of a design. A processor
data-path can be protected by adding spare-bits [18], while a control-path can use
field-programmable control logic to tolerate faulty states [23]. Finally, FPGAs and
Programmable Logic Arrays (PLA) can be used as the hardware substrate of a fault
tolerant SoC [24].

Following a passive fault-avoidance approach (disabling [78], isolating [77]) is
inherently inefficient as it sacrifices availability when permanent faults occur. On the
other hand, fault tolerance through sparing, replacing or repairing faulty components
requires flexible wiring and multiplexing of the SUs, which not only adds significant
delays to the design, but increases area and power consumption.

In general, larger SU sizes incur lower overheads, but also offer lower flexibility
and hence lower fault tolerance. To the best of our knowledge, this is the first study
to find the reconfigurable-design choices that maximize component availability for a
given technology and a particular fault density. We explore a design space of various
granularities of SUs using either coarse- or fine-grain reconfigurability, or a mix of both
and analyze how component availability scales in different fault-densities.

2.2 Reconfigurable Designs for Tolerating Permanent
Faults

We discuss next the two options of reconfigurability, studied in this chapter, to combat
permanent faults. A component can be partitioned into SUs that are interconnected with
reconfigurable interconnects to allow one to substitute another; we call this coarse-grain
reconfigurability. A second option is using fine-grain, FPGA-like, reconfigurable logic,
shared among components and used to replace damaged parts when lacking identical
spares; this is denoted as fine-grain reconfigurability. A faulty SU can be replaced
by either an identical spare unit, presumably taken from a neighboring unused/faulty
component, or instantiated in the fine-grain reconfigurable logic. We consider that a
reconfigurable design may offer either one of the two reconfiguration options (coarse- or
fine-grain) or both at different sizes of SUs (granularities).

A generic example of a reconfigurable design that offers both coarse- and fine-grain
redundancy is illustrated in Figure 2.1. The partitioning of the design is depicted as an
array. Each column comprises identical, interchangeable, SUs, and each row represents a
component in its fault-free configuration. The block at the top represents the shared fine-
grain logic. A functioning component can be constructed connecting a single undamaged
cell from each column; in case there is no fault-free cell for a particular column, the

14 CHAPTER 2. ANALYSIS OF REPAIRABLE ADAPTIVE MPSOC

Fine-Grain Reconfigurable
Fabric

A1 B1 C1 D1

B2 C2

B3 C3 D3

A4 B4 C4 D4

Component

Substitutable
Unit (SU)

D2

A3

A2

(a) Four components with 4 Substitutable units (SUs) each and a fine grain logic block.

Faulty SU

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

(b) Example of CG reconfiguration constructing 2 fault-free components: component-1
(A1, B2, C1, D1) and component-2 (A3, B3, C3, D2).

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

Instantiation
of an ”A ”unit

(c) Example of CG and FG reconfiguration constructing 3 fault-free components:
component-1 (A{FG}, B2, C1, D1), component-2 (A1, B3, C2, D2), and component-3
(A3, B4, C3, D4).

Figure 2.1: A design of four identical components with coarse (CG) and fine-grain (FG)
reconfigurability.

2.3. A RECONFIGURABLE ADAPTIVE RISC PROCESSOR 15

fine-grain block can be used as a wild card to replace it.
The granularity of a design affects its area overheads. The largest SU of a component

defines the minimum size of the fine-grain block, consequently, it is more efficient to
partition a component into units of similar size. Moreover, a larger number of smaller
SUs requires more wiring, but also needs a smaller fine-grain block.

An array consisting of 4 components, with 4 Susbtitutable units (Sus) in each component (a). With

several SUs being faulty, the remaining ones can form two logical components, shaded in pink and blue

(b). If we make use of the wild card provided by the fine-grain reconfigurable area (configuring it into an

”A” unit), we can form three logical components, green, pink and blue (C).

An Adaptive Processors with substitutable
units

Faulty SU

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

Instantiation
of an ”A ”unit

Fine-Grain Reconfigurable Fabric

A1 B1 C1 D1

B2 C2

B3 C3 D3

A4 B4 C4 D4

Component

Substitutable
Unit (SU)

D2

A3

A2

MEMIF DEC EX

MEM

 REG

IF DEC

 REG REG REG

EX

Switch

Fine-Grain Reconfigurable Fabric

 REG

 REG REG REG REG REG

Figure 2.2: An adaptive processors array with substitutable stages.

2.3 A Reconfigurable Adaptive RISC Processor
In order to conduct our design-space exploration and retrieve real measurements for
the area overheads of reconfigurability, we consider as a use-case a coarse-grain
reconfigurable RISC architecture with substitutable parts, previously described in [82].
Moreover the architecture is modified to additionally support fine-grain reconfiguration
[83].

Our use case is a 32-bit, in-order RISC processor with four pipeline stages: Instruction
Fetch (IF), Decode (DC), Execute (EX), and Memory (ME). The processor has a local
instruction- and data-memory (32Kbyte each) and a 16-entry register file (RF). The
architecture offers decoupled pipeline stages, which can be substituted by any other
identical stage or by fine-grain reconfigurable logic. This is achieved using reconfigurable
interconnects. Interconnects that traverse across different processors are expected to
be used infrequently. We therefore implement them as bidirectional interconnects and
use switches with tri-states to go across different components of the same processor.
Compared to unidirectional interconnects, this halves the wiring resources needed, but
adds some extra delay to the switches.

In order to minimize the additional delay introduced by the reconfigurable
interconnects and switches, interconnects that span across the processor boundaries

16 CHAPTER 2. ANALYSIS OF REPAIRABLE ADAPTIVE MPSOC

are also pipelined, as depicted in Figure 2.2. Thereby, sharing stages from neighboring
cores introduces additional stages to a pipeline. As a consequence, we need to support a
variable pipeline depth in different configurations, but operating frequency scales better
with the number of components [82]. The direct effect of this is that the architecture must
adapt and operate correctly while remaining oblivious to the number of (extra) stages
added to its pipeline; that is, reconfigurability needs to be transparent to the application
level guaranteeing binary compatibility among different processor configurations. The
performance impact of pipelining the interconnects that connect the SUs of processors is
studied in section 2.5.2.

This design requirement calls for several micro-architectural changes in the data flow
and control flow of the processor. Allowing a variable number of stages per processor
and eliminating global control directly influences the hazard resolution in a typical RISC
architecture. Briefly, these issues have been addressed in the proposed architecture,
described in [82], as follows:

1. Data-hazard resolution: As in between the original four stages (in the fault-free
configuration) new empty pipeline stages may be inserted when substituting faulty
parts, the data-hazard resolution cannot be supported with traditional bypassing
mechanisms. Instead, we store the produced, yet uncommitted, results in bypass
buffers at the stages they are produced and may possibly be reused. These bypass
buffers are located in the EX and MEM stages.

2. Control-hazard resolution, Global stalls, pipeline flushing: All three aspects are
supported via pipeline flushing in a distributed way. Similar to the StageNet [21],
instructions carry an extra bit, read at the IF stage, indicating the flow they belong
to. This bit is compared with a similar instruction-flow bit stored at the EX stage.
A mismatch prevents the instruction from being executed. In order to flush the
pipeline, the bit stored at the EX stage is inverted (e.g. after a branch mis-prediction
identified at the EX stage) and all the subsequent instructions are flushed until the
equivalent Instruction-flow bit stored at the IF stage is updated.

The architecture presented in [82] is further modified to support fine-grain
replacement of a faulty part. This needs the following additions [83]: When implemented
in the fine-grain logic, the EX stage requires substantially more area and has longer delay
than any other SU of our processor. To reduce this imbalance, we further partition the
EX stage into three concurrent sub-units, each roughly containing a chunk of the ALU.
Thereby we keep the size of the SUs balanced – as the EX stage occupies more area than
the IF, DC or MEM – and consequently reduces the area needed for the fine-grain logic.
A second modification is performed to improve the speed of the processor when part of
the EX stage is implemented in the fine-grain logic. We add the option to further pipeline
the EX stage (breaking the ALU logic in two stages) when part of it is instantiated in the
fine-grain logic.

2.4. PROBABILISTIC ANALYSIS OF RECONFIGURABILITY 17

2.4 Probabilistic Analysis of Reconfigurability

Considering the generic design described in Section 2.2, we next present a probabilistic
analysis used in our evaluation to assess the fault tolerance of various design options. In
particular, we derive the probability of having exactly M fault-free components out of
N (Pff (N,M)) as well as the probability of having at least M fault-free components
out of N (P≥(N,M)) for different numbers of faults in area A for two different design
approaches: (i) coarse-grain reconfigurability1 and (ii) a mix of coarse- and fine-grain
reconfigurability which offers the option of a faulty SU to be replaced either by an
identical spare unit (coarse-grain replacement) or by fine-grain logic.

Assuming that an area A is divided into N SUs of equal size and that there are k
faults in total in the area with a uniform random distribution, then the probability of a SU
to have exactly i out of the k faults is:

Pf=i(k,N) =

(
k

i

)
×
(1
N

)i × (1− 1

N
)k−i (2.1)

That is, there are
(
k
i

)
combinations of having exactly i out of k faults located in one

SU (and exactly k− i faults located in the rest of area A) and the probability of each case
is equal to

(
1
N

)i × (1− 1
N)k−i.

Then, the probability of a SU to be faulty, Psf (k,N), is equal to the sum of
probabilities of having 1, 2, ..., k faults:

Psf (k,N) =

k∑
i=1

Pf=i(k,N) (2.2)

Considering that the Psf , for a specific number of faults2 k in the area, of a single SU
is known based on the equation 2.2, it is possible to calculate the probability of having
exactly M fault-free SUs out of N , denoted as Pff (N,M) [84]:

Pff (N,M) =

(
N

M

)
× PN−M

sf × (1− Psf)M (2.3)

where
(
N
M

)
enumerates possible ways of having exactly M non-faulty substitutable units

out ofN and PN−M
sf ×(1−Psf)M is the combined probability of having (N−M) faulty

and M non-faulty SUs. It is also possible to expand this formula to get the probability of

1Component redundancy is an extreme case of coarse-grain reconfigurability where the entire component is
a SU.

2Henceforth, k is omitted from the equations, we consider that the analysis is continued for a specific k and
repeated for the range of faults considered in the evaluation, e.g. 0 to 20 faults.

18 CHAPTER 2. ANALYSIS OF REPAIRABLE ADAPTIVE MPSOC

having at least M non-faulty SUs out of N for a specific Psf , here indicated as P≥:

P≥(N,M) =

N∑
i=M

Pff (N, i) (2.4)

which is the sum of probabilities of having i = {M, · · · , N} fault-free SUs [84].
In a design with coarse-grain reconfigurability, each component is divided into a

specific number of SUs. Considering the example illustrated in Figure 2.1 which depicts
four components each of which are divided into four SUs, it can be observed that for
having a fault-free (working) component, there should be at least one fault-free SU at
each column available. Therefore, the number of fault-free components that can be
constructed is defined by the minimum number of fault-free SUs in each column. For
calculating the probability of having a specific number of fault-free components, we first
calculate the probability of having at least M fault-free SUs out of N in one column,
which is derived by equation 2.4:

P col≥ (N,M) = P≥(N,M) (2.5)

Expanding this formula over the total number of columns will result in the probability
of having at least M SUs in each column, which is equal to the probability of having at
least M fault-free components available in a coarse-grain (cg) reconfigurable design:

P cg≥ (N,M) =
(
P col≥ (N,M)

)c
(2.6)

The exponent c is the total number of columns, which also defines the coarse-
grain granularity3. In order to find the probability of having exactly M fault-free
components in this case, we exclude from the probability of having at least M fault-
free components (P cg≥ (N,M)) the probability of having at least (M + 1) fault-free
components (P cg≥ (N,M + 1)):

P cgff (N,M) = P cg≥ (N,M)− P cg≥ (N,M + 1) (2.7)

As mentioned in the previous sections, fine-grain logic can also be used in order to
instantiate different SUs and increase the resilience in the presence of permanent faults.
We can calculate the probability of having a specific number of fault-free components
when both fine-grain and coarse-grain reconfigurability is employed by modifying the
probabilities for coarse-grain designs derived above.

Figure 2.1 can be used again as an example that depicts a design with four components,
each divided into four SUs, having both fine- and coarse-grain reconfigurability. When
only coarse-grain replacement is used, having two faulty SUs on one column and at most
one in the remaining columns limits the number of fault-free components to two. In a

3The number of SUs in a component.

2.4. PROBABILISTIC ANALYSIS OF RECONFIGURABILITY 19

coarse-grain design the above event is included in the probability of having exactly two
fault-free components. Introducing fine-grain logic to replace one faulty SU, rescues one
additional component in the above example. Consequently, this event (two faulty units at
one column and at most one in the remaining columns) should be included in the list of
events which are counted under the probability of having three fault-free components and
should be removed from the events that are considered under the probability of having
two fault-free components.

Finding events that should be removed or added to the “coarse-grain" probability
depends on the number of SUs that can fit inside the fine-grain logic. In this work we
only consider the case where the fine-grain can be used to replace exactly one faulty SU.
As all events are independent, it is possible to separately compute their probability and
append it to the P cgff (N,M) of equation 2.7. P+

append(N,M) denotes the probability of
events originally considered in the probability of having (M − 1) fault-free components
but when using fine-grain logic are becoming part of the probability for M fault-free
components. Similarly, P−

append(N,M) is the probability of events originally counted in
P cgff (N,M), but using fine-grain replacement moves them to the probability of having
(M + 1) fault-free components.

P+
append(N,M) =

(
c

1

)
× [Pff (N,M − 1)]1 × [P≥(N,M)]c−1 (2.8)

where c is the number of columns,
(
c
1

)
enumerates all possible choices of one column out

of c, [Pff (N,M −1)]1 is the probability of having exactly (M −1) fault-free SUs out of
N in one column and [P≥(N,M)]c−1 is the probability of having at least M fault-free
SUs in (c− 1) columns. Similarly, P−

append(N,M) can be calculated:

P−
append(N,M) =

(
c

1

)
× [Pff (N,M)]1 × [P≥(N,M + 1)]c−1 (2.9)

where [Pff (N,M)]1× [P≥(N,M +1)]c−1 is the probability of having exactly M fault-
free SUs in one column and at least (M + 1) fault-free SUs in (c− 1) columns. Then,
the probability of having exactly M fault-free components out of N for a design which
uses fine-grain logic in addition to coarse-grain replacement is:

P cg+fgff (N,M) =P cgff (N,M)

+P+
append(N,M)− P−

append(N,M)
(2.10)

Similar to the previous cases, in order to find the probability of having at leastM fault-
free components out of N in a design with both fine and coarse-grain reconfigurability,
it is possible to add all probabilities of having exactly M,M + 1, ..., N fault-free

20 CHAPTER 2. ANALYSIS OF REPAIRABLE ADAPTIVE MPSOC

components:

P cg+fg≥ (N,M) =

N∑
i=M

P cg+fgff (N, i) (2.11)

The probabilities of having at least M fault-free components out of N in the different
design approaches considered (P cg≥ (N,M), P cg+fg≥ (N,M)) are used in the evaluation
section to measure the probability of a design to guarantee a particular availability of
components.

The probabilities of having exactly M fault-free components out of N in the
considered design alternatives (P cgff (N,M), P cg+fgff (N,M)) are used to evaluate the
average number of fault-free components in a given area as described below. For a
specific number of faults, k, the above probability (P jff (N,M), where j is “cg" or
“cg + fg") is used to calculate the average number of fault-free components, x, as the
weighted average of the individual probabilities:

x =

N∑
i=1

P jff (N, i)× i (2.12)

where N is total number of components.

2.5 Evaluation
In this section, we first measure the reconfigurability overheads based on our use-case
RISC processor. Moreover, the effect of pipelining reconfiguration interconnects is
explored based on post place and route measurements. Finally we evaluate the fault
tolerance of various reconfigurable designs using our probabilistic analysis.

2.5.1 Reconfigurability Overheads
Our use-case component is implemented using 65nm STM technology for the ASIC parts
(an array of RISC processor and reconfigurable interconnects) and the Xilinx Virtex-5
65nm FPGA substrate for the fine-grain logic [83]. The area overhead of the fine-grain
logic required to implement a SU is roughly 6× the area of the same unit implemented in
ASIC4 technology. The area overhead of the reconfigurable interconnects is measured
considering a coarse-grain reconfigurable array of four processors, each divided in four
SUs (pipeline stages); in that design reconfigurable interconnects add 12.8% more area
to each processor [82]. In order to estimate the overhead of reconfigurable interconnects
for coarser and finer granularities5, we use Rent’s rule [85] to estimate the number of

4In order to keep the area requirements of the fine-grain logic low, we consider that memory blocks, pipeline
registers and buffers are implemented in ASIC, which is more area-efficient than in an FPGA implementation.
Consequently, even when using a fine-grain block, only logic is mapped to FPGA logic cells.

5Number of SUs a component is divided into.

2.5. EVALUATION 21

interconnects per SU, as follows:

W = K × (Np)
β (2.13)

W , is the estimated number of interconnects for a component, K is the average number
of interconnects per SU, Np is the total number of SUs in the component and β is the
Rent’s exponent which is normally 0.5 ≤ β ≤ 0.7. In this study, we consider β = 0.5,
which is a typical value for a microprocessor design. The estimated overheads are used
in order to define the number of components which can be accommodated in a fixed area
for each case of this analysis.

It should be noted that the reconfigurable RISC processor presented in Section 2.3,
operates at 450 MHz when considering only coarse-grain redundancy. This is 10% lower
compared to the same baseline processor before the micro-architectural modifications
required to make its stages interchangeable6. Finally, the slowest SU when instantiated
in fine-grain logic operates at 200 MHz, which limits any processor configuration using
the fine-grain reconfigurable part to the same frequency.

2.5.2 Evaluating the Effect of Pipelining the Reconfigurable
Interconnects

This section explores the performance impact of using pipelined interconnects versus
non-pipelined ones. We describe our experimental setup, used benchmarks and designs
under study. Subsequently, the results are presented and evaluated and a comparison is
performed. Pipelining maintains a high frequency but increases the number of stages in
an adaptive processor, thereby potentially increasing the number of cycles for executing
a program.

For our experiments, we acquired an RTL implementation of the processor using a
high level description language (Lisa 2.0) through the Synopsys Processor and Compiler
Designer tool. Different designs are then synthesized using Cadence RTL compiler and
place & route is performed using Cadence SOC encounter.

Our evaluation is carried out by employing EEMBC CoreMark and Telebench 1.17

benchmarks [86]. Furthermore, a set of small custom benchmarks is created with the
main purpose of evaluating the processor under extreme cases. These benchmarks are
small C programs, running in loops and are briefly described as follows:

• Function-Argument Heavy: An application with large number of instructions
prone to data hazards between memory operation and arithmetic.

• Heavy Read-After-Write Conflict: An application with large number of
instructions prone to read after write (RAW) hazards.

6The original baseline RISC processor has an operating frequency of 500 MHz
7The FFT benchmark is not included as it requires floating point operations, which the under study processors

do not currently support.

22 CHAPTER 2. ANALYSIS OF REPAIRABLE ADAPTIVE MPSOC

• Heavy Branch-Miss-predict: An application with large number of non-taken
branches.

• Normal-C for-loop: Code with typical C for-loop.

Our evaluation is performed for variants of our adaptive processor with coarse-grain
(CG) reconfiguration. In addition to the baseline processor, we have defined different
versions of the fault-tolerant (FT) design as follows.

• FT Design w/o switches: The adaptive processor without switches for
reconfiguration. This case is used to study the effect of micro-architectural changes
inside the processor.

• FT Design w/o registers: The adaptive processor, being part of a 4-core CMP,
without registers on the reconfigurable interconnects. This case is used to study the
benefits of pipelined interconnects.

• FT Design w/ registers every 2 cores: In this case, considering the adaptive
processor in a 4-core CMP, reconfigurable interconnects are pipelined at every
other processor. This design is an intermediate case between two extremes of
having fully pipelined and no-pipelined interconnects.

• FT Design fault-free: The adaptive processor, being part of a 4-core CMP,
considering the fault-free scenario. Interconnects are fully pipelined. This case is
illustrated in Figure 2.3a.

• FT Design 2 extra stages: The adaptive processor, being part of a 4-core CMP
with fully pipelined interconnects, with 2 extra stages, imposed by reconfiguration.
The two extra stages are result of using one stage of a neighboring core to construct
a processor as shown in Figure 2.3b.

• FT Design 6 extra stages: The adaptive processor, being part of a 4-core CMP
with fully pipelined interconnects, with 6 extra stages, imposed by reconfiguration.
The six extra stages are result of using one stage of the farthest core to construct a
processor as shown in Figure 2.3c.

• FT Design 12 extra stages: The adaptive processor, being part of a 4-core CMP
with fully pipelined interconnects, with 12 extra stages, imposed by reconfiguration.
The twelve extra stages are result of having an extreme case where every stage
is connected to the farthest next stage to construct one processor as shown in
Figure 2.3d.

It is worth noting that the overall efficiency of the CMP depends on the occurrence
rate of various configurations. The configurations studied here are enforced by the
density and location of faults and thus it is possible to calculate the probability of each
of these cases to happen. With the fault density of one fault per baseline core, 38%,

2.5. EVALUATION 23

IF DEC EX MEM

a

IF DEC EX MEM

IF DEC EX MEM

b

IF DEC EX MEM

IF DEC EX MEM

IF DEC EX MEM

IF DEC EX MEM

IF DEC EX MEM

IF DEC EX MEM

IF DEC EX MEM

IF DEC EX MEM

c d

Figure 2.3: Four different configurations of the adaptive processor, being part of a 4-core
CMP with fully pipelined interconnects: a. fault-free configuration, b. replacing the DEC
stage with the one from the neighboring processor creates two extra stages, c. replacing
the MEM stage with the one in the farthest processor creates 6 extra (empty) stages, d.
Worst case scenario where the DEC and MEM stages are replaced with the ones three
processors away creating 12 extra (empty) stages.

60%, and 2%, of the configurations in a CG design have zero, 1-4 and 5-12 extra stages,
respectively [82].

We first evaluate the performance of the above designs measuring their operating
frequency, number of clock cycles and absolute time for executing the benchmarks used.
Table 2.1 presents the operating frequency of the baseline and the four FT designs. Whilst
the clock period of the baseline design is measured at 2.5ns, the micro-architectural
changes required for tolerating a variable pipeline depth (due to pipelined reconfigurable
interconnects) introduce 16.4% increase in delay, yielding a clock period of 2.91ns (FT
design w/o switches). The fault-free configuration of the adaptive processor incurs a 41%
overhead compared to the baseline having a cycle time of 3.53ns. A 4-core FT CMP with
non-pipelined reconfigurable wires has an increased critical path delay of 8.53ns, that is
about 3.5× longer than the baseline and 2.4× compared to the FT CMP with pipelined
reconfigurable interconnects. Finally, the design with pipeline registers at every other
core has a clock period of 7.1ns.

Table 2.1: Place and Route Timing measurements for our CMP

Design Clock
Period

(ns)

Overhead

vs Baseline vs Adaptive Processor
w/o switches

Baseline 2.5 - -
FT Design w/o switches 2.91 16.4% -
FT Design (fault-free) 3.53 41% 21.3%
FT Design w/o registers 8.53 241% 193%
FT Design w/ registers every 2 cores 7.1 184% 143%

Figure 2.4 shows the measured execution cycles of the baseline, FT design with
no faults and FT designs with 2, 6 and 12 extra stages for the EEMBC benchmarks.
All values are normalized to the baseline. The FT design with no faults requires the
same number of cycles as the baseline processor and the FT core with non-pipelined

24 CHAPTER 2. ANALYSIS OF REPAIRABLE ADAPTIVE MPSOC

reconfigurable interconnects. However, configurations that add 2, 6 and 12 extra stages
(due to pipelined interconnects) increase the number of execution cycles by 18%,
37% and 100%, respectively. We performed the same evaluation using our custom
benchmarks. As depicted in Figure 2.5 the fault-free configuration of the FT design
introduces a small overhead in terms of cycles. This overhead is more noticeable for
the Argument-Heavy benchmark (7.5% increase), which is explained by frequent use
of the flush/reload mechanism in this benchmark. FT design with 2 extra stages exhibit
acceptable performance with around 20% overhead in cycle count. Furthermore, the two
extreme cases of having 6 and 12 extra stages, increase the number of execution cycles
by 1.8× and 2.5×, respectively.

Figure 2.4: Execution cycles for EEMBC benchmarks normalized to the baseline. (*)
The execution cycles for the design with non-pipelined interconnects (w/o registers) are
considered to be similar to the baseline.

Figure 2.5: Execution cycles for each custom benchmark normalized to the baseline. (*)
The execution cycles for the design with non-pipelined interconnects (w/o registers) are
considered to be similar to the baseline.

In the next step, combining the measured operating frequencies with execution cycles,
we calculate the overall execution time of each benchmark. Figure 2.6, depict the results
for EEMBC benchmarks. The results clearly indicate that the FT design without pipelined
interconnects suffers from the longest execution time which is almost 3.5× of the baseline.
Using registers at every other core just slightly reduces the performance overhead to
nearly 3× of the baseline. Moreover, the fault-free configuration of the fully pipelined
adaptive processor increases the execution time by 1.4×, due to the lower clock frequency.

2.5. EVALUATION 25

The configurations with 2, 6 and 12 extra stages achieve an execution time that is roughly
1.7×, 1.9× and 2.8× higher than the baseline, respectively. Our custom benchmarks
show almost the same results for the execution time as depicted in Figure 2.7. The
overhead of execution time for the designs with 6 and 12 extra stages degrades to 2.6×
and 3.5× of the baseline, respectively.

Figure 2.6: Execution time for EEMBC benchmarks normalized to baseline values.

Figure 2.7: Execution time for each custom benchmark normalized to baseline values.

The power consumption of our designs is shown in Figures 2.8 and 2.9 for the
EEMBC and the custom benchmarks, respectively. The power consumption of the FT
design in the fault-free configuration is similar to the baseline, while for configurations
with 2, 6, and 12 extra stages power consumption increases up to 26% for EEMBC
and 39% for the custom benchmarks. The FT design with non-pipelined interconnects
consumes only 40% of the baseline power due to their lower operating frequency, while
adding registers every other core consumes 49% of the baseline power.

Figures 2.10 and 2.11 depict the energy consumption of the two benchmark sets. The
FT design in fault-free configuration, requires 42% more energy than the baseline. The
FT design with non-pipelined and semi-pipelined interconnects has 41% higher energy
consumption than the baseline. Finally, the FT design configurations with 2, 6 and 12
extra stages consume 1.9− 4.8× more energy than the baseline.

Furthermore, the area overheads of the microarchitectural modifications and the
reconfigurable interconnects with and without pipeline registers are measured. Employing
non-pipelined interconnects in the FT Design incurs the area overhead of 3.3% compared

26 CHAPTER 2. ANALYSIS OF REPAIRABLE ADAPTIVE MPSOC

to the baseline. The FT-CMP micro-architectural changes, needed for tolerating variable
pipeline depths, increase area costs by 4.3% as shown in Table 2.2. This stems from the
bypass mechanisms in EX and MEM, the bypass buffers and the additional logic required
by the flush/reload-mechanism for data- and control hazard resolution. Compared to the
baseline, adding pipelined reconfigurable interconnects to support sparing of SUs has an
area overhead of 14.1%.

Table 2.2: Area cost of an adaptive core (FT Design) with and without reconfigurable
interconnects.

Design Area in mm2

Baseline 0.574
FT Design w/o registers 0.593 (+3.3%)
FT Design w/o switches 0.599 (+4.3%)
FT Design (fully pipelined) 0.655 (+14.1%)

In summary, our experiments showed that even in a 4-core resilient CMP design the
interconnects added for sparing the SUs of adaptive processors introduce a considerable
delay. Using post place and route results we measured that this delay reduces operating
frequency 3.5×. CCA [20] is the only related work that addresses the above overhead
applying clock borrowing. However, clock borrowing can save at best half of the original

Figure 2.8: Power consumption for EEMBC benchmarks normalized to the baseline.

Figure 2.9: Power consumption for each custom benchmark normalized to the baseline.

2.5. EVALUATION 27

Figure 2.10: Energy consumption for EEMBC benchmarks normalized to the baseline.

Figure 2.11: Energy consumption for each custom benchmark normalized to the baseline.

clock period in a design [87]; as shown in Table 2.1, non-pipelined reconfigurable
interconnects add more than 6 nsec delay to the baseline 2.5 nsec clock period, making
clock borrowing an infeasible option at higher clock rates. We further showed that
pipelining the reconfigurable interconnects achieves better performance compared to
reducing the clock frequency. The fault-free configuration of an adaptive processor with
pipelined reconfigurable interconnects increases the baseline execution time by only
41% and is 2.4× faster than the alternative of scaling down the clock. Even processor
configurations with longer pipelines are up to 2.3× faster and in all cases not slower than
a design with non-pipelined interconnects. Finally, the energy consumption of these two
design alternatives is similar unless multiple (6 to 12) extra-stages are used.

2.5.3 Fault tolerance of Reconfigurable Designs
We take into account the area overheads for each reconfigurable design and evaluate their
fault tolerance. We consider designs that offer only coarse-grain (CG) reconfiguration
or both coarse and fine-grain (CG+FG), varying their granularity (SU size). All designs
occupy roughly the same area8 and therefore, due to their particular resource overheads,
each design fits a different number of components in the fault-free case. We consider a
fault density that causes up to 20 faults in the silicon area. This translates, even for our

8The silicon area constraint in our design-space exploration is equal to that of 9 baseline components. A
baseline component is a component with granularity equal to 1 (the entire component is considered as one SU).

28 CHAPTER 2. ANALYSIS OF REPAIRABLE ADAPTIVE MPSOC

small use-case microprocessor, to a probability of a single transistor to fail to be up to
2.2× 10−6.

0
0.5

1
1.5

2

0

0.5

1
0

1

2

3

4

5

6

Defect rate

Mixed Grain Plane

Granularity

Av
ai

ab
ilit

y

0

1

2

3

4

5

6

CG+FG

0
0.5

1
1.5

2

0

0.5

1
0

2

4

6

8

10

Defect rate

Coarse Grain Plane

Granularity

Av
ai

ab
ilit

y

0

1

2

3

4

5

6

7

8

9

CG
(a) Average number of fault-free components.

0
0.5

1
1.5

2

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Defect rate

Mixed Grain Plane

Granularity

R
el

ia
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CG+FG
0

0.5
1

1.5
2

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Defect rate

Coarse Grain Plane

Granularity

R
el

ia
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CG
(b) Guaranteed availability of at least 4 fault-free components.

Figure 2.12: Average availability and probability of guaranteed availability (4 fault-free
components) of coarse-grain (CG) and coarse+fine-grain (CG+FG) reconfigurable designs with
various granularities at different fault densities. Granularity is the fraction of a component that
constitutes a SU. All designs use area smaller or equal to 9 baseline components; that is a component
with granularity equal to 1.

Figure 2.12 depicts the average number of fault-free components that can be
constructed in each design at a particular fault density (number of faults), as well as the
probability of a design to deliver at least four fault-free components.

The average number of available components is measured as explained in Section 2.4
based on equation 2.12 by analytically calculating the probability of constructing correctly
functioning components for the given reconfiguration options offered by each design.
Figure 2.12(a) shows that for low number of faults (≤2), component redundancy provides
a higher number of fault-free components, as the area overheads of reconfigurability are

2.6. CONCLUSIONS 29

not capitalized yet. For higher number of faults (≤ 8), coarse-grain reconfigurability of
granularity 1

8 (CG(18)) maximizes availability of components. Adding fine-grain logic at
smaller SU sizes (CG+FG(1

16)) is up to 13.5% better for fault densities beyond that point.
Even at high number of faults, CG+FG(1

16) provides almost five available components,
tolerating over 3× and 2× more faults than component-redundancy (CG(1)) and other
CG points, respectively.

Guaranteed availability is measured using equations 2.6 and 2.11 as the probability of
a design to deliver at least 4 fault-free components at a particular fault density. As shown
in Figure 2.12(b), the probability for the CG+FG(1

16) design does not drop below 99%
for up to 20 faults. On the contrary, component redundancy (CG(1)) is below 90% and
50% beyond 6 and 10 faults, respectively. Finally, the best CG granularity crosses the
threshold of 90% for more than 17 faults.

2.6 Conclusions
A probabilistic analysis was presented for estimating the number of fault-free components
that can be constructed in various reconfigurable designs at the presence of permanent
faults. Adding fine-grain logic in a design can increase availability, tolerating 3× more
faults than mere component redundancy. Different fault densities require different
granularities of substitutable component-parts in order to maximize fault tolerance.
Component redundancy is better for a low number of faults. As the number of faults
increases, coarse-grain and mixed-grain reconfigurability (of granularity 1

8 and 1
16 ,

respectively) provide the best availability.
Moreover, the effect of pipelining the reconfiguration interconnects was explored, in

terms of operating frequency and execution time. The results showed that in the processor
with no pipelined interconnects, the frequency and execution time both increase by
almost 3.5×, compared to the baseline. Adding pipeline registers shows significantly
better performance where for the fault-free case the overhead of operating frequency and
execution time are 1.41× and 1.7×.

3
Resilient service-oriented NoC

In a multicore system, a faulty processor can be isolated using runtime mechanisms to
redistribute its workload to other available cores. However, tolerating permanent faults
at the interconnects can be less simple. A Network-on-Chip (NoC) shares its resources
with every component on a chip. It interconnects multiple processing elements, memory
blocks and IO and therefore constitutes a single point of failure for an entire System-
on-Chip (SoC). A fault-tolerant NoC architecture is therefore critical for the design of a
fault-tolerant SoC [1, 88].

The NoC of an advanced embedded system needs to support multiple traffic classes
with certain quality of service (QoS) requirements, such as latency and throughput. This
is often achieved using virtual channels and priorities among different classes of traffic
related, for instance, to control messages or data-exchange. However, many systems
require their traffic classes to interfere as little as possible with each other in order to
best fit their particular QoS constraints. In the past years, several service-oriented NoCs
address this design objective by statically allocating their resources to different traffic
classes (services). For example, QNoC provides four separate router data-paths each
supporting different services [31], moreover, Tilera’s iMesh is composed of five separate
NoCs entirely isolating each traffic class of their tiled architecture [30].

This chapter addresses a single challenge pertaining to the design of future reliable
multicore systems: the tolerance of permanent faults on a service-oriented NoC through
traffic redirection. We categorize network resources based on the service they support and
provide mechanisms to bypass them when faulty, allowing a traffic class to be redirected.
Traffic redirection can be performed either by modifying its routing while sustaining the
isolation between different services, or alternatively, by using a router data-path dedicated
to a different service, thus allowing service-isolation breach. Network resources that

31

32 CHAPTER 3. RESILIENT SERVICE-ORIENTED NOC

are common to all services, such as the links and the router control, employ additional
mechanisms for fault tolerance. Concisely, the main contributions of this work are the
following:

• We extend previous detour techniques, allowing the network to selectively detour
traffic per service, rather than detouring all packets to avoid faulty network
parts, substantially improving NoC reliability as well as significantly increasing
performance.

• Within a router, multiple services can be merged, still preserving their priorities, in
order to bypass the damaged data-path of one or multiple services.

• We analyze the trade-offs between the two proposed approaches for redirecting
a NoC service, namely (i) using alternative resources of the same service and (ii)
using resources of a other services. In the former approach, lanes of different
services are isolated in expense of using longer paths, while in the latter approach,
service-isolation is traded for shorter path and higher connectivity. We measure
the area and power overheads of the above techniques, evaluate their impact on
performance and QoS and estimate their effect on reliability.

In the remainder of this chapter, first related work is presented in Section 3.1. The
description of the baseline service-oriented NoC used in this study follows in Section 3.2.
Then, Section 3.3 details the proposed mechanisms for tolerating permanent faults on the
NoC. Section 3.4 evaluates the fault tolerance of our approach, measures its area, power
and performance overheads, and compares with related work. Finally, in Section 3.5
overall conclusions are drawn.

3.1 Related Work
In the past a plethora of techniques, some of them summarized in [89], have been
suggested to combat permanent faults in Networks-on-Chip. They are applied at different
levels of a NoC design: ranging from entire network regions (entire routers or links) down
to individual wires of a link, a single buffer or crossbar of a router. Some techniques
modify the routing of packets to bypass faulty links and routers, others divide routers or
links to smaller parts and isolate, spare them or share them to tolerate permanent faults.
In general, the finer the granularity of the considered fault-model the better the fault
tolerance, but the higher the design overhead. Bellow, a brief overview of such techniques
is presented elaborating more on the techniques most relevant to our approach.

Many approaches modify the routing algorithm of a NoC to be dynamically adaptive
and avoid faulty links or routers [32–36, 38]. Faults on links or routers are broadcasted to
all nodes in order to update their routing tables and avoid damaged network parts [34].
Packets are sent across multiple non-intersecting paths to ensure that they are delivered
correctly [32]. Feng et al. [33] introduced deflection routing where the packets are
routed based on a defect map of the neighboring links and switches. Maze is new fully-
distributed, low-cost fault-tolerant routing which guarantees packet delivery in presence

3.1. RELATED WORK 33

of a physical path [36]. In the works presented by Parikh et al. [35] and and Aisopos et
al. [38], routing tables and routing paths are updated, respectively, based on the detected
faults in order to avoid faulty components in a distributed way. In general, methods
that adapt the routing according to the faulty components of the network introduced low
area and power overheads (∼5% in Murali et al. [32]), however they provide limited
fault tolerance. On the other hand, a routing algorithm based on reinforcement-learning
improves fault tolerance but suffers from high area and power overheads (90% and 120%,
respectively) [33].

Other techniques re-route packets without modifying the actual routing algorithm.
Instead, they perform a detour selecting an intermediate destination for packets that
would normally need to pass through some faulty links or routers. Although detour does
not change the routing algorithm, deadlocks need to be reconsidered in case packets
are not stored entirely in the intermediate destination. ReliNoC [47] performs detour
using a Logic-based Distributed Routing table proposed by Rodrigo et al. [39] . Routing
reconfiguration through intermediate destinations uses the turn model to avoid deadlocks
in Fick et al. [40]. Han and Fu [41] have also described a detouring technique for a 2D
mesh with XY-routing and avoid deadlocks considering the turn-model. Furthermore,
Vitkovskiy et al. [42] proposed a technique where detour is handled locally at network
regions that suffer from faulty resources; a packet entering such region is redirected
through an alternative path. In general, detour introduces low area and power overheads
(less than 10%), but the performance decreases rapidly with increasing number of faults,
since even partially faulty components are omitted from network resources.

Besides rerouting of packets, faulty network parts can be bypassed in hardware. An
alternative path from an input port to the output is employed to bypass a faulty router
by Koibuchi at al. [43]. A faulty crossbar is bypassed in a similar manner in Vicis [44].
Finally, a single input buffer can be bypassed in RoCo [45]. In order to contain a fault in
the router, RoCo additionally splits the router in two distinct parts responsible for either
row or column traversal of packets.

Evripidou et al. [46] exploited the redundancy offered by Virtual Channels (VC) and
proposed renaming of the VC buffers. They modified the input ports of a router to be
able to avoid faulty buffers and redirect traffic classes through the remaining available
VCs. ReliNoC considers a NoC that has two separate physical networks one for traffic
that requires some QoS and one for normal traffic [47]. ReliNoC considers that the two
physical networks have interchangeable links and routers. In essence, a faulty link or
router of a physical network can be replaced by the equivalent part of the second network.
As a consequence, upon the occurrence of permanent faults some links or routers need to
accommodate both traffic classes.

At the router level, Vicis reduces the impact of faulty input and output ports using
port swapping [44]. This technique allows to pair on-demand input and output ports of
neighboring routers in order to increase the connectivity of the network at the presence
of faults. Furthermore, Liu et al. [48] partition links and router data-path in four slices,
then, only the fault-free slices are used in a time-division multiplexing manner. Besides
the performance overhead, slicing has a significant area cost (about 65%).

34 CHAPTER 3. RESILIENT SERVICE-ORIENTED NOC

The above approach by Liu et al. [48] allows, among others, to use partly faulty links.
Another approach for protecting links is proposed by Lehntonen et al. [90] ; they use
spare wires at the links to replace faulty ones. Moreover, Vitkovskiy et al. [42] used
shifting and retransmission of flits to communicate correctly data across partially faulty
links. In doing so, they can tolerate up to 50% faulty wires on a link, suffering however,
the performance overhead of one retransmission. Both approaches have high area cost
(about 75% and 30%, respectively).

Finally, BulletProof router introduced by Constantinides et al. [1] described a method
to automatically inject sparing logic to the netlist of a router and be able to replace faulty
circuitry. However, this method has a substantial area overhead of up to 3.4×.

Besides ReliNoC, none of the above techniques is addressing fault tolerance on a
service-oriented NoC nor analyzes the affect of faults to the performance of individual
traffic classes. Even ReliNoC considers only two classes of traffic (one for QoS and one
for best-effort), not discussing scalability to a higher number of services. Supporting only
one QoS traffic class together with best-effort traffic is expected to simplify arbitration
and flow control; presumably this is the reason why these aspects of ReliNoC are not
elaborated [47]. Moreover, Virtual Channel renaming has some similarities with the
proposed Service Merge [46], however, it can be applied to a NoC with VCs rather than a
service oriented NoC with separate router data-paths such as the QNoC. VC renaming
has complex buffer management that uses pointers to stored packets and suffers from
fragmentation. It further increases the minimum buffer size to allow multiple virtual
channels on a physical one, while priorities are fixed between physical buffers. Finally,
VC renaming protects only the input buffers rather than an entire router data-path. On
the contrary, this work offers a complete solution for tolerating permanent faults on a
service-oriented NoC, which is scalable to multiple traffic classes, presenting flow control
and credit handling modifications to support service redirection. As shown in Section 3.3,
RQNoC does not affect the input buffers and offers the flexibility to maintain traffic class
priorities despite the physical datapath they use. It should be mentioned that the hardware
techniques employed in the design of RQNoC are intended to increase the availability
of network resources and thus, are orthogonal to fault-tolerant routing algorithms that
guarantee deal-lock free packet delivery.

3.2 The QNoC Architecture
We use the QNoC architecture as our basis to apply our fault-tolerant techniques [31].
QNoC can be positioned between two extreme approaches for providing service-oriented
interconnects. The first one is using different virtual channels for different traffic classes.
At the other end of the spectrum, iMesh uses separate physical networks per service [30].
iMesh may not increase the area cost of the routers compared to a network with virtual
channels and the same buffersize1 and wiring of separate links per service may be cheap
in current technologies [92], however, the power consumption of a NoC with multiple

1that is due to the fact that buffers occupy the largest part of a NoC router [91].

3.2. THE QNOC ARCHITECTURE 35

links is expected to be increased. QNoC offers separate router data-paths per service
however links are shared between all services and are allocated using priority arbitration
at the output ports. Gilbert et al. [93] showed that a NoC architecture with shared links
and separate router data-paths per service can be more efficient in terms of area, power
and performance compared to using virtual channels.

Table 3.1: Specification of four considered traffic classes

Traffic Classes Traffic Classes Average Packet
Size [flits] Proirity

Signaling (Control signals, interrupts)
5%

(Very Low)
5

(Very small) Very High

Real-Time data (Streaming)
15%

(Medium)
20

(Large) High

Single Read/Write
10%

(Low)
10

(Medium) Low

Block Read/Write
70%

(High)
20

(Large) Very Low

QNoC is a packet switched network composed of routers with service flow control
interconnected on a 2-D mesh topology. It uses XY routing with multi-class wormhole
routing [31]. It supports four distinct services (SVCs) to accommodate equal number of
traffic classes for signaling, real-time data, single read/write (short data access) and block
read/write (large data access) as shown in Table 3.1. Traffic parameters are chosen based
on requirements and specification of the particular MPSoC, used in the DeSyRe research
project [94]. Signaling traffic includes critical control messages and interrupts, these
are infrequent short packets that require low latency and high priority. Consequently,
in our setup signaling traffic is 5% of the total traffic, uses 5-flit packets and has the
highest priority. The second highest priority class is dedicated to real-time/data streaming.
Streaming/dataflow processing requires data to have a continuous flow in order to achieve
good processing throughput, consequently large packets of high priority are required.
For our systems this represents 15% of the traffic using 20-flit packets. The third traffic
class is dedicated to Single Read-Write. These are medium-size (10 flits) packets as they
constitute a single memory access. This traffic is not critical for the system hence it is
assigned low priority, and it is consider to be 10% of the entire traffic. Finally, the lowest
priority is assigned to Block Read-Write traffic which is used for passing large packets of
data and constitutes the largest volume of our traffic (70%).

A router connects to each neighbor with two 40-bit links (32-bit data, 8-bit control),
one per direction. It further provides four local connections, one per SVC, through a
Network Interface (NI) to the local component(s). A hop-by-hop credit based flow control
is used; each router sends credits per SVC to its neighbors corresponding to available
input-buffer slots. XY routing guarantees deadlock freeness. Starvation is avoided by
setting boundaries for maximum traffic in each SVC, i.e. services of high priority are set
to have a low upper bound of traffic load and vice versa [31].

36 CHAPTER 3. RESILIENT SERVICE-ORIENTED NOC

CRTRC

CRTRC

CRTRC

CRTRC

Service
Selector FA

/4
Incoming Credits

Priority
Arbiter

Credit
Handling

Link

Link

· CRT: Current Routing Table
· FA: Fair Arbiter
· RC: Routing computation

Router

Peripheral device
Network Interface

Input Stage Switching Stage Output Stage
/4 Credit Control

Outgoing Credits

Figure 3.1: The architecture of QNoC.

As illustrated in Figure 3.1, a QNoC router has three stages: input, switching, output.
At the input stage, flits are sent to the corresponding input buffer based on their SVC. In
case of a header flit, the output port is computed at the Routing Computation (RC) unit
and stored for the remaining flits of the same packet in the Current Routing Table (CRT).
Subsequently, flits are switched from the input buffer to the selected output port buffer,
through a crossbar (one per SVC) according to the CRT information. When multiple
packets of a single service, located at different input ports, compete for the same crossbar
output, a round-robin mechanism is used for fair arbitration (FA). At the output, the
output buffer stores flits ready to be sent. The SVCs are then multiplexed and access the
output port based on their priority and their available credits. In summary, each SVC has
a separate data-path in the router and the only logic shared between them is related to the
priority arbiter at the output. In our implementation, flits are 40-bits, input buffers store 2
flits and output buffers store 1 flit.

3.3 RQNoC: a Resilient QoS NoC
Tolerating permanent faults in a service-oriented NoC can be achieved considering each
SVC separately. Faulty SVC resources can be bypassed either allowing the respective
traffic class to be redirected using an alternative path of the same service, called Service
Detour (SDetour) or alternatively redirect it through the router data-path of another
service, called Service Merge (SMerge). Each of the two options have their advantages
and disadvantages. Service Detour prevents services to interfere with each other, but
increases the latency of traffic that belongs to the faulty service. Service Merge has a
lower performance overhead as the packet route remains the same, however, it allows

3.3. RQNOC: A RESILIENT QOS NOC 37

services to share the same router data-path and consequently to affect each other’s
performance. In order to prevent in an RQNoC with SMerge traffic classes with hard QoS
requirements to share router-resources with other traffic, we further introduce Service
Renaming, which allows dynamic assignment of router data-paths to a particular traffic
class. To provide a complete fault-tolerant solution, the remaining network resources that
are common for all services need to be protected, too. Links can tolerate faults by adding
to a shifting technique spare wires, thereby increasing the number of faulty wires they
can sustain. Finally, the common control of a router2 is protected using Triple Modular
Redundancy (TMR). Next, we describe separately each proposed technique.

3.3.1 SDetour: Service Detour

(a)

(b)

H

In
te

rm
ed

ia
te

D

es
ti

n
at

io
n

1

H

0

PT

So
u

rc
e

So
u

rc
e

Fi
n

al

D
es

ti
n

at
io

n

Detour
Flag

Detour
Header

H

1

H

0

PT H

1

H

0

PT H

0

PTH

0

PT

Source
Node

Intermediate
Destination

Final Destination

NI

Figure 3.2: General format of a detoured packet (a). After reaching the intermediate
destination, the detour header is discarded and for the rest of the path to final destination,
the real header will be considered in the routing computation units (b).

Detour is a well-known technique for mitigating permanent faults at links and
routers. It allows to bypass faulty network regions without however modifying the
routing algorithm. This simplifies the design compared to adaptive routing techniques for
fault tolerance. We describe first the general (global) detour mechanism applied in the
proposed RQNoC and subsequently explain how it is selectively used per service.

Packets that, according to the routing algorithm, need to traverse a path through
damaged links or routers, can still reach their destination taking a detour through an
intermediate node. Such cases are detected at the source NI using a detour table, which is
computed based on the defect map of the NoC. Before a packet is sent to its destination,

2Practically the service selector in the input ports and the priority arbiter in the output ports.

38 CHAPTER 3. RESILIENT SERVICE-ORIENTED NOC

the detour table is consulted to check whether there is a detour to be taken. In such case
an additional detour-header flit will be added before the original header flit indicating
the intermediate node as the first destination.

In addition, one bit in the header is reserved for a detour flag that distinguishes detour
headers from normal headers. The detour flag of a header flit is checked at each input
port of a router. If the detour flag is set and the current node is the detour intermediate
destination, then the detour header is discarded at the output of the input buffer. From
that point on, the next flit (the original packet header) is considered as the header, as
depicted in Figure 3.2. This approach allows detour to scale to multiple intermediate
destinations as multiple header flits can be added to a packet and one-by-one be discarded
at each intermediate destination.

Allowed Turns

Not Allowed Turns

X-Y Routing

West-First

Routing

Figure 3.3: Possible turns in X-Y routing and West-First turn model.

There might be several candidates to be used as intermediate nodes. We choose
the one that minimizes the path and avoids deadlocks. XY routing is deadlock-free,
however detoured packets are not entirely stored-and-forwarded at the intermediate
node, for performance reasons, and therefore may create dependency loops. Such loops
are avoided considering a turn model. As depicted in Figure 3.3, the additional turns
introduced by detour should be the ones of West-First turn model, a subset of which is
XY routing. As a consequence, intermediate nodes are selected so that the packets use
only the turns allowed by the turn model. The routing algorithm (in our case XY) and the
restrictions posed by the turn model may not allow a destination to be reached although
it may still be connected to the rest of the network. To exemplify, Figure 3.5 shows that
a packet from any node (X,Y), where Y≤2, cannot be sent to (0,0) when the vertical
link between (0,3) and (0,2) is broken, although the node is still connected to the rest of
the network; that is because the North-West turn is not allowed by the turn model. This
introduces a disadvantage compared to the subsequent SMerge technique described in
the next subsection. It should be noted that deadlocks due to detour could be avoided
by storing the entire packet at the NI of the intermediate node before forwarding it to its
final destination, however this would significantly increase communication latency.

3.3. RQNOC: A RESILIENT QOS NOC 39

Service 0,1,3

Fault in Service 2

Service 2

00

PE

01

PE

NI

02

PE

03

PE

13

PE

23

PE

33

PE

32

PE

31

PE

30

PE

10

PE

20

PE

21

PE

22

PE

12

PE

11

PE

NI

NI NI NI NI

NINI

NINI NINI

PE: Processing Element
NI: Network Interface

NINININI

Fault in Link
02à03

Not Allowed turns

00

PE

01

PE

NI

02

PE

03

PE

13

PE

23

PE

33

PE

32

PE

31

PE

30

PE

10

PE

20

PE

21

PE

22

PE

12

PE

11

PE

NI

NI NI NI NI

NINI

NINI

NI NI

NINI

NINI

Figure 3.4: Basic concept of SVC detour.

In our approach faults are detected in the granularity of a service (router data path
dedicated to a particular SVC). Consequently, upon the detection of a fault, only the
traffic class belonging to the faulty SVC needs to be detoured, the remaining traffic can
still use the original paths. This is achieved by modifying the detour table at the NI to
store intermediate destinations per service. Figure 3.4 illustrates an example of Service
Detour as described above. Packets sent from node (0,3) to (1,1) are routed through node
(1,3) using XY. In case the data path of service 3 in router (1,3) is faulty, then service 2 is
detoured through (0,2). The traffic of the remaining services still enjoy the original route.
Service Detour does not introduce any additional turns. As described in the previous
paragraphs intermediate nodes are selected according to the West-first turn model.

In the worst case, SDetour doubles the number of hops a packet needs to take from
its source to a destination and consequently doubles worst case packet latency. This is
taken into account for traffic classes with hard packet latency requirements as follows:
an intermediate node is selected that does not exceed the maximum allowed number of
hops of a particular traffic class. In case that is not possible then the system should need
seek other mitigation techniques described below, or discard (if possible) the respective
destination node in order to avoid system failure.

3.3.2 SMerge: Service Merge

The redundant data-paths per service in a QNoC router can be exploited for fault tolerance.
As opposed to Service Detour, this approach allows a router with a faulty service to still
be used by the respective traffic class redirecting (merging) it to the data-path of another

40 CHAPTER 3. RESILIENT SERVICE-ORIENTED NOC

Service 0,1,3

Fault in Service 2

Service 2

00

PE

01

PE

NI

02

PE

03

PE

13

PE

23

PE

33

PE

32

PE

31

PE

30

PE

10

PE

20

PE

21

PE

22

PE

12

PE

11

PE

NI

NI NI NI NI

NINI

NINI NINI

PE: Processing Element
NI: Network Interface

NINININI

Fault in Link
02à03

Not Allowed turns

00

PE

01

PE

NI

02

PE

03

PE

13

PE

23

PE

33

PE

32

PE

31

PE

30

PE

10

PE

20

PE

21

PE

22

PE

12

PE

11

PE

NI

NI NI NI NI

NINI

NINI

NI NI

NINI

NINI

Figure 3.5: Example of a fault not mitigated
by detour.

service. Each service data-path in the proposed RQNoC router is able to host the traffic of
any other service. Such data-path is called host and the services it hosts are called guests.
In general, an RQNoC router can be configured to host any combination of guests in each
service data-path. In the extreme case, a single data-path may host all four services.

3.3.2.1 Router modifications

In order to support SMerge, the architecture of the original QNoC router needs to be
modified as follows. The input port should be able to merge packets of different services
to a single data-path and the output port to send them out separately based on their
original SVCs. In addition, each neighboring router needs to be aware of merging
decisions and handle correctly the credits received. Different credits correspond to the
input buffers of different SVCs, consequently, credits of faulty SVCs should be ignored.
The configuration of a router, indicating which services are merged through which data-
paths, is encoded in a configuration array (CA). In the following, these modifications
are detailed and an example of consecutive routers merging different services is used, as
illustrated in Figure 3.6.

At the input port of the router, each arriving flit is sent through the SVC multiplexer
to its corresponding SVC data-path, in particular to its input buffer. For SMerge, the
select of the SVC multiplexer is configurable. In essence, a packet is sent to a particular
datapath considering, besides its traffic class, the SMerge configuration of the router
,i.e. CA. Moreover, in order to keep track of the original SVC of the flits and be able to
distinguish them at the output, each flit is tagged with its original SVC-id. This adds 2

3.3. RQNOC: A RESILIENT QOS NOC 41

extra bits in the data-path.
Flits guided to a particular SVC datapath are stored to the corresponding input buffer

and subsequently switched to the correct output port as described in the QNoC: RC
computes the output port when the header flit arrives and updates the CRT which is used
to route the upcoming flits of the packet. Each SVC datapath has its own crossbar which
uses fair arbitration. In our current implementation, even when multiple traffic classes
are hosted in the same SVC data-path, switching is still performed with fair arbitration.

At the output port, flits are stored in the output buffer and wait for permission
to be sent out. A flit is sent out based on its priority and the available credits in
the corresponding credit counter. The priority arbiter is modified to support SMerge.
Originally, the id of the output buffers (each corresponding to a service data path) was
used to grant access to the link. However, in the RQNoC flits of different traffic classes
may share the same data-path. In order to maintain priority arbitration between the
original services (even when sharing the same data-path) the arbitration logic is modified
to consider the original SVC of the flit using the SVC-id bits added to the datapath.

Additional changes were made so that the neighboring routers can send packets to
a faulty router (for correct credit handling). Neighboring routers should consider the
merging decisions at the faulty router, discarding credits that belong to faulty paths and
consuming credits that correspond to the actual receiving buffer. This is achieved by
modifying the credit handling module located in the output port and by adding two new
modules, namely the Preemption unit and the Counter-mask.

In credit-based flow control, each SVC has a dedicated credit counter at each output
port which keeps track of the credits received from the immediate neighboring router
and used in a service. Each counter indicates the available SVC input-buffer space of the
next router. The credit counter corresponding to a faulty SVC data-path of a neighboring
router should be masked. This is achieved by the counter mask module. In practice, the
counter mask is a multiplexer that for each output buffer points to the right counter that
holds the available credits. This multiplexer is controlled by the SVC-id of the first flit in
the buffer and the merging configuration of the next router. In the example of Figure 3.6,
the credit counter of SVC2 in router-0 will be ignored and the counter mask module will
redirect the priority arbiter to look at the credit counter of SVC3 instead; this is because
in router-1 traffic of SVC2 is redirected to the data-path of SVC3. Traffic of SVC3 will
still use its original credit counter.

Credit Handler increments and decrements the credit counters based on the credits
received and the flits sent. This is performed considering how multiple traffic classes are
merged in the receiving router as follows:

• received credits for a particular SVC increment the respective counter, unless that
SVC is faulty (and disabled) in the receiving router; in that latter case the credits
are ignored. In the example of Figure 3.6, credits sent from router-2 to router-1
increment their respective counter normally unless they belong to the faulty SVC-1,
in which case they are ignored.

• Sent flits consume credits from the counter that corresponds to the SVC datapath

42 CHAPTER 3. RESILIENT SERVICE-ORIENTED NOC

R
o

u
te

r
0

(F
au

lt
 F

re
e)

R
o

u
te

r
1

(F
au

lt
 in

 S
V

C
2

. S
V

C
2

 p
ac

ke
ts

 w
ill

go

 t
h

ro
u

gh
 S

V
C

3
 d

at
a

p
at

h
)

R
o

u
te

r
2

(F
au

lt
 in

 S
V

C
1

. S
V

C
1

 p
ac

ke
ts

w

ill
 g

o
 t

h
ro

u
gh

 S
V

C
2

 d
at

a
p

at
h

)

Se
rv

ic
e

Se
le

ct
o

r

C
A

3

P
ri

o
ri

ty

A
rb

it
er

P
re

em
p

ti
o

n
u

n
it

C
o

u
n

te
r

M
as

k

N
C

A

C
re

d
it

H

an
d

lin
g

2

3

1
0

C
h

an
n

el

Se
rv

ic
e

Se
le

ct
o

r

C
A

1
0

2

·

C
A

: C
o

n
fi

gu
ra

ti
o

n
 A

rr
ay

·

N
C

A
: N

ei
gh

b
o

u
rs

 C
o

n
fi

gu
ra

ti
o

n
-A

rr
ay

M
er

ge
d

M
er

ge
d

1
 f

lit
 p

er
 c

yc
le

C
re

d
it

s
 (

1
 b

it
 p

er
 S

V
C

)

P
ri

o
ri

ty

A
rb

it
er

P
re

em
p

ti
o

n
u

n
it

C

o
u

n
te

r
M

as
k

N
C

A

C
re

d
it

H

an
d

lin
g

C
re

d
it

s
 (

1
 b

it
 p

er
 S

V
C

)

C
h

an
n

el

1
 f

lit
 p

er
 c

yc
le

2

3

1
0

Figure 3.6: An example of Service Merge.

3.3. RQNOC: A RESILIENT QOS NOC 43

that hosts their traffic class in the receiving router. For example, in router-0 of
Figure 3.6, sending a flit of SVC2 will decrement the credit counter of SVC3, as in
router-1 it is mapped to the SVC3 data-path.

Finally, it should be noted that flits of different services cannot be interleaved when
sharing the same SVC data-path. That is due to a packet-integrity check performed at the
input port, which ensures that flits of a packet come in order. Then, mixing packets of
different services at the same SVC data-path requires an additional mechanism to ensure
that. The Preemption unit module, guarantees that a neighboring router will send to a
faulty router all flits of a packet that belongs to a specific traffic class, before selecting
flits of other class that shares the same SVC data-path. In the example of Figure 3.6,
router-0 sends to router-1 an entire packet of SVC2 and then selects flits of SVC3 as both
traffics are mapped to the SVC3 datapath of router-1.

An SMerge example: To give a better insight on credit handling we detail further
the SMerge configurations of of router-1 and router-2 in Figure 3.6. SVC2 in router-1 is
faulty and therefore the traffic classes of service 2 and 3 share the data-path of SVC3.
SVC1 in router-2 is faulty which forces traffic classes of service 1 and 2 to share the
data-path of SVC2. Figure 3.7(a) shows how the credit counters in router-1 are linked
with each traffic class. Each counter corresponds to a particular SVC of the receiving
router (in this case router-2). At the output of router-1, the SVC-id of the first flit in
each buffer is checked. The Counter Mask unit assigns a counter for each flit on an
output buffer, based on the flit SVC-id and the Neighbors Configuration-Array (NCA).
Consequently, in this example the counter-1 in router-1 is always ignored as SVC1 in
router-2 is faulty. Then, packets of SVC2 (which are hosted in datapath of SVC3) and
packets of SVC1 (in the datapath of SVC1) are mapped to counter-2, as in the next
router they share datapath of SVC2. Finally, packets of SVC3 and packets of SVC0 will
consult counters 3 and 0, respectively, as they use their original data-paths in router-2.
After checking the value of the assigned counters, the Priority Arbiter (PA) grants link
access to the flit with the highest priority SVC-id, regardless of which buffer it resides in.
Afterwards, the Credit Handling unit updates counter values based on the id of the fit
which is sent to the link, incoming credits and NCA.

Figure 3.7(b) shows a timing diagram of the same example. The initial credit counter
values are 0,-,2,2 for counters 0, 1, 2 and 3, respectively. In our example, router-1 receives
credits from router-2 only in the first cycle. As mentioned before, counter-1 is isolated
and all SVC1 credits from router-2 are ignored. In the first cycle, one credit per service is
received from router-2. The highest priority flit is P0 in SVC0 and the incoming credit
makes it possible for router-1 to send it on the next cycle. Thus, one flit of SVC0 is sent
and counter values are updated to be 0,-,3,3; although counter-0 received a credit, it was
not incremented as a service-0 flit was sent. In the next cycle, T0 in SVC0 cannot be
sent as counter-0 has zero credits. For sending T1 counter-2 is checked for credits as in
router-2 SVC1 is hosted in SVC2. Counter-2 has credits so T1 is sent and counter-2 is
decremented. In the third cycle, counter-0 is still zero and there is no waiting flit in SVC1.
Therefore, the PA sends T3 in SVC3 on the link and Credit Handling unit decrements
counter-3. In the next cycle, the next flit available in SVC3 buffer is H2. Based on the

44 CHAPTER 3. RESILIENT SERVICE-ORIENTED NOC

(a)

Merged

Router 2

SVC0

SVC1

SVC2

SVC3

Router 1

SVC0

SVC1

SVC2

SVC3

00010111NCA
CA 00101111

Merged

C0
 1bit Credit

 1bit Credit

 1bit Credit

C1

C2

C3

P0 P0 H0

P1

P3

T0 P0

T1

P2 H2P2 T3

Counter
Mask

++--

SVC ID
(of the

outgoing flit)

Counter
update

Ci

Incomming
Credit

SVC ID
 (of the flit in the

buffer)

NCA

CO
C1
C2
C3

Counter
selection

 1bit CreditCredit Handler

Credit Handler

Credit Handler

Credit Handler

Counter
Mask

Counter
Mask

Counter
Mask

Traffic Direction

(b)

 SVC: 0 1 2 3
Counter

Values (CV)
- 20 2

- 30 3

- 20 3

- 20 2

1 0 1 1

SVC0 FLIT
Sent

SVC1 FLIT
Sent

SVC3 FLIT
Sent

SVC2 FLIT
Sent

SVC2 FLIT
Sent

- 10 2

- 00 2

R1 R2

 SVC: 0 1 2 3

 SVC: 0 1 2 3

 SVC: 0 1 2 3

 SVC: 0 1 2 3

 SVC: 0 1 2 3

Credits Sent
R2àR1

CV:

CV:

CV:

CV:

CV:

NCA

Figure 3.7: Credit handling example in a RQNoC router with Service Merge.

flit SVC-id, i.e. SVC2, and NCA, counter-2 is checked, H2 is sent and the counter is
decremented. Similarly, the next flit that belongs to service 2 are sent next and counter-2
is decremented to zero.

3.3.2.2 Service renaming

An RQNoC with SMerge allows different traffic classes to share router resources. This
may not be acceptable for some high priority traffic classes such as SVC0 (Signaling) and
SVC1 (Real-time data). In order to overcome this problem the proposed RQNoC router
architecture allows the router data-paths to be dynamically assigned to a traffic class via
Service renaming. In practice, this is supported by the credit handling mechanism, which
reassigns the credit counters, and by the service selector at the input ports.

3.3.2.3 Service Merge policy

A faulty service data-path is merged with the data-path of the next lowest priority. This
ensures that higher priority services are not affected. At the output port arbitration of
merged traffic is performed considering the original packet priorities. The only exception
to this policy is when the lowest (SVC3) or the highest (SVC0) priority traffic is faulty.
In the first case, SVC3 is merged with the next available higher priority service data-
path. Even so, arbitration in the output port is performed considering the original packet
priorities. In the latter case, when faulty the highest priority SVC0 should not be merged
for QoS reasons. It is then renamed to an available router data-path and lower priority
SVCs are merged together. For an RQNoC that requires its highest priority traffic class to
be isolated, each router should have at least 2 out of its 4 data-paths available or otherwise
an SDetour should be taken as explained below.

3.3. RQNOC: A RESILIENT QOS NOC 45

3.3.3 Combining SDetour and SMerge
An RQNoC may use either SDetour or SMerge to mitigate faults or combine them both
to maximize fault tolerance. In the latter case, a fault is first attempted to be tolerated
with SMerge and if this is not possible then SDetour is employed. It would be inefficient
to apply the two techniques in the opposite order. Applying SDetour first to bypass a
faulty service on a router would prevent the local port from sending traffic of that service
and therefore reduce network connectivity from the first fault. On the contrary, applying
first SMerge allows the packets of a faulty service to be injected through another SVC
data-path. All three alternative RQNoC designs provide fault-tolerant links as described
next and protect common router control logic with TMR.

3.3.3.1 Configuration arrays

At each port of the router an 8-bit configuration-array (CA) is stored. Service merging
decisions are made off-line and the information about the current status of each SVC is
stored in the CA at each router. Figure 3.8 illustrates the default format of the CA. Each
2-bits of CA are dedicated to one SVC ,i.e. bits 7-6 for SVC3, 5-4 SVC2, 3-2 SVC1, 1-0
SVC0. The value of each 2-bits indicates the SVC data-path that host the corresponding
traffic class. For instance, a CA configuration of 11101000 indicates that SVC0 and
SVC3 use their own resources, SVC1 and SVC2 use the SVC2 resources. Each router
is also aware of the CA of its neighboring routers in order to send correctly packets to
faulty routers. We call this Neighbors Configuration-Array (NCA). The NCA is a copy
of the CA of the immediate neighboring router.

00100111

00010111

00111111

00001111

SVC3 SVC2 SVC1 SVC0

 Each service uses it’s own resources

SVC1 is faulty and will use resources of SVC2

SVC1 and SVC2 will use SVC3 resources

SVC1 and SVC2 are faulty. SVC1 will be redirected to
SVC0 and SVC2 will be redirected to SVC3 resources.

01010101 SVC0, SVC1, SVC2 and SVC3 all will use SVC2 resources

 Configuration Array

Figure 3.8: Configuration Array.

3.3.4 Resilient Links
A single faulty wire may render an entire link unusable. In order to tolerate faulty wires
at a link and use with a degraded bandwidth, Vitkovskiy et al. [42] suggested shifting
and retransmission of flits traversing a partially faulty link. Thereby, the flit data will be
able to be sent across the fault-free wires after multiple retransmissions. The number of
retransmission required depends on the number and location of faulty wires. A flit needs

46 CHAPTER 3. RESILIENT SERVICE-ORIENTED NOC

to be shifted by one bit and retransmitted to tolerate one faulty wire and in the best case
up to 50% of the wires being faulty; this reduces the link bandwidth to half. Consecutive
fault wires have a more severe impact on performance. In general, N consecutive faulty
wires require N shifting and retransmissions of the same flit substantially affecting the
bandwidth of the link. In order to reduce the performance overhead of the shifting method
we added two spare wires to each link. In effect, this allows to tolerate two faulty wires
before degrading link bandwidth at all.

Router 1
Output

Port

Shifting Control
(Link’s Fault vector)

Spare wire 2

Spare wire 1

0

39

Shifting Control
(Link’s Fault vector)

Shifting Shift back

S2

S1

i+2i+2

i+1

i

i-1

i-1

1

0

39

39

i

0

1

/38

1

Router 2
input
Port

i+2i+2

i+1

i

i-1

i-1

1

0

39

i+2
i+1
i

i-1
i-2

i

Figure 3.9: Two spare wires and a shifting mechanism can tolerate up to 2 faults without
compromising link performance. More faults are tolerated by shifting and retransmission
at reduced link bandwidth.

Figure 3.9, shows the design of the links used in our approach providing spare wires
and shifting. At every output port of a router, the 40 bits of a link provide input to 42
5-to-1 multiplexers in order to support shifting. In particular, the ith multiplexer receives
input from bits i− 2, i− 1, i, i+1, i+2 and the multiplexers corresponding to the spare
wires have the same inputs as the 39th and 40th multiplexer. At the other end of the link
5-to-1 multiplexers are used to shift back transmitted data to their original form. When
retransmission, the output buffer is controlled to keep the transmitted flits and the input
buffer is controlled to overwrite the respective bits of the flit. We do not allow more than
one retransmission, as this would need additional hardware changes in order to shift the
previously shifted values, requiring the insertion of registers at the two ends of the links.

3.3.5 Fault Model, Diagnosis and Reconfiguration
From the above techniques it is evident that our fault model distinguishes faulty resources
– due to manufacturing defects or aging faults – in the following granularity: single router
data-path (dedicated to one service), router control, and individual link wires. Such faults
are permanent, manifested first as (repeated) transient faults which subsequently trigger

3.4. EVALUATION 47

an online diagnosis test. Consequently, detection mechanisms are required to determine
whether each one of the above network parts are faulty.

RQNoC packets are protected with Error-Detection Code (EDC) which are checked
at each input and output port of a router, similar to Grecu et al. [88] and Kohler et al. [95].
This allows us to locate the particular link or router data-path where the fault occurred.
Each EDC checker in addition provides a simple mechanism to keep track of multiple
faults using a simple Finite State Machine (FSM), similar to Kohler et al. [95]. When
multiple repeated faults are detected on a link or a router data-path, then a test packet
is generated by the NIs of the respective and a neighboring router(s)3. The neighboring
routers are informed to send test packets via dedicated wires. A router in test mode will
have a fixed control directing the test packets to the correct output port as it cannot rely on
the test packet. Test packets for links and router data-paths are constructed considering
the test vectors of Vitkovskiy et al. [42] in order to diagnose particular faulty wires on
a link. The same test pattern is also used for testing the data-paths. During testing, the
same test packets are replicated at the demultiplexer of the input port to all four service
data-paths; thereby the control logic which is repeated per service (RC, CRT, FA) can be
tested. Finally, faults at the common parts of the router control are detected via TMR and
an FSM is used to detect repeated faults. Then, a consistently faulty copy of the control
is disabled; at a second permanent control fault the entire router is considered faulty.

All three techniques presented above require a way to communicate the test results
and modify the configuration of the network in order to tolerate the faults. Service
Detour requires the detour table at the NI to be updated according to the status of network
resources. Service Merge needs the configuration arrays of the faulty router and its
neighbors to be updated. Also the link configuration needs to be updated in order to
bypass the faulty wires. This is performed via control packets generated and broadcasted
from the NI receiving the test packets. In cases where this is not possible (the faulty
router cannot communicate the results of a test), a time out at the nodes that initiated the
tests will declare the router under test faulty, inform the rest of the network and update
their configuration accordingly. In general, broadcasting of detected faults is performed
to all connected network nodes using a flooding algorithm supported in the network
interfaces [96]. The outcome of the network tests are forwarded by each node to its
immediate neighbors. Considering that a single fault occurs at a time, then, all connected
nodes get informed. Subsequently, the detour tables, merging and link configurations are
updated by software running locally at each receiving node based on the new detected
faults.

3.4 Evaluation

In this section, we evaluate three variations of the proposed RQNoC. We measure
networks performance and fault tolerance, in terms of network connectivity preserved in

3A faulty link requires a test packet from the neighboring NI and a faulty router data-path from the NIs of
all neighbors as well as the local NI towards the output port that reported multiple detected faults.

48 CHAPTER 3. RESILIENT SERVICE-ORIENTED NOC

the presence of faults, all contributing to the QoS provided by the networks. Moreover, we
retrieve post-synthesis results analyzing the overheads of our techniques in the operating
frequency, power consumption and area of the QNoC. The RQNoC designs are compared
to the baseline QNoC and a QNoC with global detour.

3.4.1 Implementation Results
We have implemented in RTL three 4x4 RQNoC 2D mesh designs that provide (i) Service
Detour (RQNoC SDetour), (ii) Service Merge (RQNoC SMerge), or (iii) both (RQNoC
SMerge+SDetour). We further implemented a baseline 4x4 QNoC 2D mesh (QNoC
baseline) and a QNoC providing global detour4 (QNoC GDetour). All designs, except the
baseline, tolerate permanent faults at the links and router-control as described in Section
3.3.

The designs are implemented using ST 65nm low-power library in Synopsis Design
compiler. Link delay, area and power values were measured separately considering 1 mm
link length. Place & Route was used for estimating link delay and Orion [97] for link area
and power. Networks power consumption was evaluated annotating the design netlist
with the switching activity retrieved from simulating a set of scenarios. These scenarios
consider fault-free networks with uniform random traffic at various injection rates.

Table 3.2 summarizes the overheads in operating frequency, power consumption and
silicon resources of the three alternative RQNoCs versus the baseline QNoC. The QNoC
GDetour has the same area and frequency with the RQNoC SDetour and is therefore
omitted from the table. Supporting Service Detour increases the area by 9%; 2

5 of it is
due to the fault-tolerant links, 2

5 due to the triplication of the common router control parts,
and the remaining 1

5 due to the changes in flit handling for the additional detour header.
SDetour power consumption is increased by 7.3% and its operating frequency is equal to
the baseline. SMerge introduces a higher area overhead of 22.4% primarily due to the
changes in the control needed for merging services and to a smaller extend due to a few
data-path additions for tagging packets of different services. SMerge power consumption
increases compared to the baseline by 26.8% and its clock rate decreases by 9.1% due to
the complexity of the router control. Finally, an RQNoC integrating both SDetour and
SMerge requires 24% additional resources mainly due to SMerge and consumes 31.7%
more power, having 9.1% slower clock.

Table 3.2: Implementation results of the QNoC and RQNoC designs in a 4x4 2D-mesh.

Design Power (Watt) Area (µm2) Frequency (MHz)
Baseline QNoC 1.64 2501k 1100
RQNoC SMerge 2.08 (+26.8%) 3060k (+22.4%) 1000 (-9.1%)
RQNoC SDetour
(also QNoC GDetour) 1.76(+7.3%) 2749k (+9%) 1100

RQNoC SMerge + SDetour 2.16 (+31.7%) 3108k (+24%) 1000 (-9.1%)

4All services are redirected the same way.

3.4. EVALUATION 49

SMerge SDetour GDetour Fault−Free

Uniform Random Traffic

0 20 40 60 80 100

10

15

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 0

0 20 40 60 80 100
30

40

50

60

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 1

0 20 40 60 80 100
20

30

40

50

60

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 2

0 20 40 60
0

40

80

120

180

220

260

0

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 3

0 20 40 60
30

70

110

150

190

230

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

All Traffic

Hot-Spot Traffic

0 20 40 60 80 100

10

15

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 0

0 20 40 60
30

50

70

90

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 1

0 20 40 60 80 100
20

30

40

50

60

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 2

0 20 40 60
0

40

80

120

180

220

260

0

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 3

0 20 40 60
30

70

110

150

190

230

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

All Traffic

Uniform Random Traffic

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 0

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 1

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 2

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 3

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

All Traffic

Hot-Spot Traffic

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 0

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 1

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 2

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 3

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

All Traffic

Packet completion rate (uniform random traffic used)
SVC0

32

68% 32% 9% 82%

69% 32% 9% 85%

72% 31% 9% 85%

16

8

100% 71% 14%

100% 50% 11%

100% 71% 14%

100% 50% 11%

4 1

100% 100% 90%

100% 90% 90%

100% 90% 90%

100% 100% 90%

72% 31% 9% 84%

71% 31% 8% 84%
16

100% 53% 12%

100% 98% 90%

32

8

4

1

SVC1

32

68% 32% 9% 82%

69% 32% 9% 85%

72% 31% 9% 85%

16

8

100% 71% 14%

100% 50% 11%

100% 71% 14%

100% 50% 11%

4 1

100% 100% 90%

100% 90% 90%

100% 90% 90%

100% 100% 90%

72% 31% 9% 84%

71% 31% 8% 84%
16

100% 53% 12%

100% 98% 90%

32

8

4

1

SVC2

32

68% 32% 9% 82%

69% 32% 9% 85%

72% 31% 9% 85%

16

8

100% 71% 14%

100% 50% 11%

100% 71% 14%

100% 50% 11%

4 1

100% 100% 90%

100% 90% 90%

100% 90% 90%

100% 100% 90%

72% 31% 9% 84%

71% 31% 8% 84%
16

100% 53% 12%

100% 98% 90%

32

8

4

1

SVC3

32

68% 32% 9% 82%

69% 32% 9% 85%

72% 31% 9% 85%

16

8

100% 71% 14%

100% 50% 11%

100% 71% 14%

100% 50% 11%

4 1

100% 100% 90%

100% 90% 90%

100% 90% 90%

100% 100% 90%

72% 31% 9% 84%

71% 31% 8% 84%
16

100% 53% 12%

100% 98% 90%

32

8

4

1

All Traffic

32

68% 32% 9% 82%

69% 32% 9% 85%

72% 31% 9% 85%

16

8

100% 71% 14%

100% 50% 11%

100% 71% 14%

100% 50% 11%

4 1

100% 100% 90%

100% 90% 90%

100% 90% 90%

100% 100% 90%

72% 31% 9% 84%

71% 31% 8% 84%
16

100% 53% 12%

100% 98% 90%

32

8

4

1

Figure 3.10: Network latency, throughput, and percentage of successfully transmitted packets
(per service and total), for the RQNoC and QNoC designs. Each network has 1 permanent fault.

50 CHAPTER 3. RESILIENT SERVICE-ORIENTED NOC

SMerge SDetour GDetour Fault−Free

Uniform Random Traffic

0 20 40 60 80 100
5

10

15

20

25

30

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 0

0 20 40 60
10

30

50

70

90

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 1

0 20 40 60 80 100
10

30

50

70

90

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 2

0 20 40 60
0

20

40

60

80

100

120

140

160

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 3

0 20 40 60
30

70

110

150

190

230

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

All Traffic

Hot-Spot Traffic

0 20 40 60 80 100
5

10

15

20

25

30

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 0

0 20 40 60
10

30

50

70

90

110

130

150

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 1

0 20 40 60 80 100
10

30

50

70

90

A
v
e
ra

g
e
 N

e
tw

o
rk

 d
e
la

y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 2

0 20 40 60
0

20

40

60

80

100

120

140

160

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 3

0 20 40 60
30

70

110

150

190

230

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

All Traffic

Uniform Random Traffic

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

T
h

ro
u

g
h

p
u

t
(F

lit
s
/C

y
c
le

s
/N

o
d

e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 0

0 20 40 60 80 100
0

0.05

0.1

0.15

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 1

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 2

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 3

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

All Traffic

Hot-Spot Traffic

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

T
h

ro
u

g
h

p
u

t
(F

lit
s
/C

y
c
le

s
/N

o
d

e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 0

0 20 40 60 80 100
0

0.05

0.1

0.15

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 1

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 2

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 3

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

All Traffic

Packet completion rate (uniform random traffic used)
SVC0

32

68% 32% 9% 82%

69% 32% 9% 85%

72% 31% 9% 85%

16

8

100% 71% 14%

100% 50% 11%

100% 71% 14%

100% 50% 11%

4 1

100% 100% 82%

100% 90% 82%

100% 91% 83%

100% 100% 76%

72% 31% 9% 84%

71% 31% 8% 84%
16

100% 53% 12%

100% 98% 78%

32

8

4

1

SVC1

32

68% 32% 9% 82%

69% 32% 9% 85%

72% 31% 9% 85%

16

8

100% 71% 14%

100% 50% 11%

100% 71% 14%

100% 50% 11%

4 1

100% 100% 82%

100% 90% 82%

100% 91% 83%

100% 100% 76%

72% 31% 9% 84%

71% 31% 8% 84%
16

100% 53% 12%

100% 98% 78%

32

8

4

1

SVC2

32

68% 32% 9% 82%

69% 32% 9% 85%

72% 31% 9% 85%

16

8

100% 71% 14%

100% 50% 11%

100% 71% 14%

100% 50% 11%

4 1

100% 100% 82%

100% 90% 82%

100% 91% 83%

100% 100% 76%

72% 31% 9% 84%

71% 31% 8% 84%
16

100% 53% 12%

100% 98% 78%

32

8

4

1

SVC3

32

68% 32% 9% 82%

69% 32% 9% 85%

72% 31% 9% 85%

16

8

100% 71% 14%

100% 50% 11%

100% 71% 14%

100% 50% 11%

4 1

100% 100% 82%

100% 90% 82%

100% 91% 83%

100% 100% 76%

72% 31% 9% 84%

71% 31% 8% 84%
16

100% 53% 12%

100% 98% 78%

32

8

4

1

All Traffic

32

68% 32% 9% 82%

69% 32% 9% 85%

72% 31% 9% 85%

16

8

100% 71% 14%

100% 50% 11%

100% 71% 14%

100% 50% 11%

4 1

100% 100% 82%

100% 90% 82%

100% 91% 83%

100% 100% 76%

72% 31% 9% 84%

71% 31% 8% 84%
16

100% 53% 12%

100% 98% 78%

32

8

4

1

Figure 3.11: Network latency, throughput, and percentage of successfully transmitted packets
(per service and total), for the RQNoC and QNoC designs. Each network has 8 permanent fault.

3.4. EVALUATION 51

SMerge SDetour GDetour Fault−Free SMerge + SDetour

Uniform Random Traffic

0 20 40 60 80 100
4

8

12

16

20

24

28

32

A
v
e
ra

g
e
 N

e
tw

o
rk

 d
e
la

y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 0

0 20 40 60
20

40

60

80

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 1

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

A
v
e
ra

g
e
 N

e
tw

o
rk

 d
e
la

y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 2

0 20 40 60
20

30

40

50

60

70

80

90

100

110

120

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 3

0 20 40 60 80 100
10

30

70

110

150

190

230

A
v
e
ra

g
e
 N

e
tw

o
rk

 d
e
la

y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

All Traffic

Hot-Spot Traffic

0 20 40 60 80 100
4

8

12

16

20

24

28

32

A
v
e
ra

g
e
 N

e
tw

o
rk

 d
e
la

y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 0

0 20 40 60
20

40

60

80

100

120

140

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 1

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

A
v
e
ra

g
e
 N

e
tw

o
rk

 d
e
la

y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 2

0 20 40 60
20

30

40

50

60

70

80

90

100

110

120

A
v
e

ra
g

e
 N

e
tw

o
rk

 d
e

la
y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

SVC 3

0 20 40 60 80 100
10

30

70

110

150

190

230

A
v
e
ra

g
e
 N

e
tw

o
rk

 d
e
la

y
 (

c
y
c
le

s
)

Injection rate (Flit/Cycle/Node %)

All Traffic

Uniform Random Traffic

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

T
h

ro
u

g
h

p
u

t
(F

lit
s
/C

y
c
le

s
/N

o
d

e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 0

0 20 40 60 80 100
0

0.05

0.1

0.15

T
h

ro
u

g
h

p
u

t
(F

lit
s
/C

y
c
le

s
/N

o
d

e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 1

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

T
h

ro
u

g
h

p
u

t
(F

lit
s
/C

y
c
le

s
/N

o
d

e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 2

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

T
h

ro
u

g
h

p
u

t
(F

lit
s
/C

y
c
le

s
/N

o
d

e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 3

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

All Traffic

Hot-Spot Traffic

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

T
h

ro
u

g
h

p
u

t
(F

lit
s
/C

y
c
le

s
/N

o
d

e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 0

0 20 40 60 80 100
0

0.05

0.1

0.15

T
h

ro
u

g
h

p
u

t
(F

lit
s
/C

y
c
le

s
/N

o
d

e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 1

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

T
h

ro
u

g
h

p
u

t
(F

lit
s
/C

y
c
le

s
/N

o
d

e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 2

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

T
h

ro
u

g
h

p
u

t
(F

lit
s
/C

y
c
le

s
/N

o
d

e
s
)

Injection rate (Flit/Cycle/Node %)

SVC 3

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

T
h
ro

u
g
h
p
u
t
(F

lit
s
/C

y
c
le

s
/N

o
d
e
s
)

Injection rate (Flit/Cycle/Node %)

All Traffic

Packet completion rate (uniform random traffic used)
SVC0

32

68% 32% 9% 82%

69% 32% 9% 85%

72% 31% 9% 85%

16

8

100% 71% 14%

100% 50% 11%

100% 71% 14%

100% 50% 11%

4 1

100% 100% 82%

100% 90% 82%

100% 91% 83%

100% 100% 76%

72% 31% 9% 84%

71% 31% 8% 84%
16

100% 53% 12%

100% 98% 78%

32

8

4

1

SVC1

32

68% 32% 9% 82%

69% 32% 9% 85%

72% 31% 9% 85%

16

8

100% 71% 14%

100% 50% 11%

100% 71% 14%

100% 50% 11%

4 1

100% 100% 82%

100% 90% 82%

100% 91% 83%

100% 100% 76%

72% 31% 9% 84%

71% 31% 8% 84%
16

100% 53% 12%

100% 98% 78%

32

8

4

1

SVC2

32

68% 32% 9% 82%

69% 32% 9% 85%

72% 31% 9% 85%

16

8

100% 71% 14%

100% 50% 11%

100% 71% 14%

100% 50% 11%

4 1

100% 100% 82%

100% 90% 82%

100% 91% 83%

100% 100% 76%

72% 31% 9% 84%

71% 31% 8% 84%
16

100% 53% 12%

100% 98% 78%

32

8

4

1

SVC3

32

68% 32% 9% 82%

69% 32% 9% 85%

72% 31% 9% 85%

16

8

100% 71% 14%

100% 50% 11%

100% 71% 14%

100% 50% 11%

4 1

100% 100% 82%

100% 90% 82%

100% 91% 83%

100% 100% 76%

72% 31% 9% 84%

71% 31% 8% 84%
16

100% 53% 12%

100% 98% 78%

32

8

4

1

All Traffic

32

68% 32% 9% 82%

69% 32% 9% 85%

72% 31% 9% 85%

16

8

100% 71% 14%

100% 50% 11%

100% 71% 14%

100% 50% 11%

4 1

100% 100% 90%

100% 90% 90%

100% 90% 90%

100% 100% 90%

72% 31% 9% 84%

71% 31% 9% 84%
16

100% 53% 12%

100% 98% 90%

32

8

4

1

Figure 3.12: Network latency, throughput, and percentage of successfully transmitted packets
(per service and total), for the RQNoC and QNoC designs. Each network has 32 permanent fault.

52 CHAPTER 3. RESILIENT SERVICE-ORIENTED NOC

3.4.2 Performance Results

We evaluate the above 4x4 RQNoCs and QNoCs in terms of performance, measuring
latency (in cycles), throughput (flits per cycle), and also the percentage of successfully
received packets. The above indicate the preserved QoS of RQNoC in the presence
of faults compared to the fault-free case. We consider that SVC0 traffic requires to
always have separate router resources in order to avoid protocol-level deadlocks [98]
and therefore apply service renaming to achieve this when SMerge is used. This, as a
consequence, demands that each router has at least two undamaged data-paths before it
fails.

Our experiments were performed simulating the RTL of the network designs for
1.5 million cycles each, having a warmup phase of 20 thousand cycles. Both synthetic
uniform random and hotspot traffic were injected with up to one flit/cycle/node injection
rate following the parameters described in Table 3.1. In the hot spot traffic experiments,
60% of the “real-time data" , i.e. SVC1 packets, have the same destination, while the rest
of the SVC1 traffic as well as the traffic of the other SVCs remain uniform random.

We perform experiments injecting to the network 0, 1, 8 and 32 faults, the location of
which is randomly selected considering the silicon area of each network part. For each
of the above fault densities, multiple runs have been performed5 and the average results
are plotted in Figures 3.10 to 3.12. It is worth noting that, all networks have the same
performance when fault free, which is also depicted in the figures for comparison.

Using uniform random traffic, we first measure the percentage of the packets
successfully delivered to provide a better insight of the actual network load and a first
estimate of fault tolerance6. The RQNoC SMerge+SDetour improves fault tolerance
compared to RQNoC SMerge only in the case of 32 faults and therefore its performance is
depicted only in Figure 3.12. In these experiments, RQNoC SMerge delivers successfully
100% of the injected packets for up to 8 network faults and about 70% for a network with
32 faults as some links or routers are entirely damaged. RQNoC SMerge+SDetour is able
to mitigate some of the above faults increasing the successfully delivered packets to 84%
as shown in in Figure 3.12. RQNoC SDetour follows in fault tolerance delivering 98% to
31% of the injected packets for 1 to 32 faults. Finally, GDetour treats a partially faulty
router as entirely damaged preventing traffic that would otherwise use it from being sent,
even if it belongs to a fault-free SVC. As a consequence, QNoC GDetour accommodates
90% down to only 9% of the packets sent.

The performance of each network is only fair to be measured considering an injection

5We have performed 4 runs for each particular number of faults, injecting faults to different (randomly
selected) network locations and present their average results. We recognize that a particular technique may have
different performance when injecting a specific set of faults, however exhaustive fault injection and network
simulation would be practically impossible. Even so, our experiments show a clear trend in the performance
and fault tolerance of the described techniques, allowing us to derive useful conclusions about their efficiency.

6Fault tolerance is more accurately evaluated in the next Section 3.4.3 where half a million fault injections
have been performed to measure the connectivity of the different networks. Even so, the percentages of
successfully received packets presented in this subsection are quite close to the analysis of Section 3.4.3 and in
most cases within a 10% margin from the estimated mean network connectivity.

3.4. EVALUATION 53

rate after excluding the packets dropped at the network interface7. In so doing, we
consider the actual load of the networks. The injection rate in Figures 3.10 to 3.12 refers
to the total traffic load of a network, a fraction of which belongs to each service as
indicated in Table 3.1.

In general, under uniform random traffic packet latency remains more stable as
the injection rate increases for higher priority services and saturates only for the lowest
priority service (SVC3). A similar observation holds for throughput which scales (almost)
linearly with the injection rate for higher priority services. As expected, with hot spot
traffic, SVC1 saturates in high injection rates and affects the performance of other (mostly
lower priority) services.

RQNoC SDetour incurs low performance overheads in low fault densities and high
priority packets. However, as the number of faults increases and routing paths get longer,
SDetour becomes inefficient and this is mostly evident in low priority services. More
precisely, in networks with 1 fault and in SVC0, SDetour has similar performance to the
fault free case, for SVC1 and SVC2 average packet latency increases 6%-11%, while
SVC3 saturates at the same point as the fault-free network. Throughput is almost similar
to the fault free case with about 6% decrease or even better (in SVC1) than fault free as
shown in Figure 3.11 as detouring packets contributes to load balancing and avoiding
congestion. The same pattern can be seen for the hot spot traffic where SDetour in SVC0
has almost the same latency with the fault free, while SVC1, which is the stressed traffic,
saturates at the same point as the fault free case. The latency for SCV2 increases by up to
5%. At higher number of faults, SDetour starts having a significant performance decrease.
For 8 and 32 faults, SDetour maintains about 50% of the overall fault-free throughput and
saturates at 10-15% injection rate versus 50% of the fault free case. In all fault densities,
SDetour performs well for SVC 0 and 1 showing that longer paths may have a smaller
impact in the performance of high priority services under uniform traffic. However, in
high injection points of hot spot traffic, the two low priority traffic classes are effected
significantly. More precisely, in network with 8 faults, SVC2 and SVC3 saturate at 75%
and 25%, respectively. In the network with 32 faults, due to high number of dropped
packets, the latency slightly decreases.

SMerge incurs a significant latency overhead in most cases. Allowing different traffic
classes to share, besides the network links, the same router data-paths increases the
overall latency, even if priority arbitration is maintained in the output ports. An additional
reason for the lower SMerge performance is that flits of different packets cannot be
interleaved in data-paths shared by multiple services as they would if they had their
own data-path. Packet latency increases more for lower priority traffic and higher fault
densities. In particular, for one network fault latency increases by 1%, 11%, and 30% for
SVC 0, 1 and 2, respectively, while SVC3 saturates at 25% of the injection rate versus
50% in a fault free network. Throughput drops notably only in SVC3 to about 70-80% of
the fault free. Similarly, for the hot spot traffic, latencies of SVC0 and SVC2 increase by
1% and 15%, respectively while SVC1 and SVC3 saturate at 25% injection rate. At 8 and

7These are packets that require to pass through faulty network resources which cannot be repaired or avoided.
As a consequence, these packets are dropped before injected in the network.

54 CHAPTER 3. RESILIENT SERVICE-ORIENTED NOC

32 network faults, latency increases by 1.5-2.3×, 1.3-3.8×, respectively. In these fault
densities, the saturation point is at 20% of the injection rate versus 50% in the fault free
case and throughput is about 50%-70% of a fault-free network. It is worth noting that for
32 faults, SVC2 also saturates due to high number of merging with SVC3. For the hot
spot traffic, and up to 8 network faults, SVC1, 2 and 3 all saturate as a consequence of
merging policies and highly stressed SVC1 traffic. For the network with 32 faults, the
latency of SVC2 improves due to reduced number of packets in the network.

An RQNoC with SMerge and SDetour can improve fault tolerance in networks with
32 faults delivering 84% of the generated packets. The combination of sharing resources
among services (SMerge) and using longer paths (SDetour)increases the packet latency
for high priority SVCs, as shown in Figure 3.12. However, for the larger, low priority
traffic-load, using different paths (SDetour) implicitly avoids congestion points and
reduces latency. On the contrary, throughput is better than SMerge for high priority traffic
and worse for lower priority. This is explained by the fact that sharing NoC resources
favors higher priority packets, which get a larger share of the links and router data-paths.
Overall, latency is 1.5-2× higher than the fault free QNoC (or RQNoC) and throughput
is similar to fault free for SVC0 and drops to about 50% for the other services.

In most cases, GDetour substantially increases packet latency although throughput
is close to the fault-free case. To exemplify, GDetour latency increases by 7%, 15%
and 50% for SVC 0,1,and 2, respective, even with a single network fault and reaches
saturation point at 10% injection rate with 8 faults. In high fault densities we cannot
derive useful conclusions about GDetour as the percentage of successfully transmitted
packets is below 20%.

In summary, there is a clear performance-reliability tradeoff between the two proposed
RQNoC mechanisms. Using alternative resources of the same service (SDetour) to
mitigate faults achieves better performance but lower fault tolerance compared to
using resources of another service (SMerge). In all cases, tolerating permanent faults
using RQNoC incurs (in some cases significant) overheads, but it offers better network
connectivity. Allowing a minimum number of network nodes to remain connected can
be more critical than performance for avoiding system failure. Besides, many systems
are designed to offer graceful degradation of performance and/or functionality in the
presence of permanent faults [99]. Despite the RQNoC performance overheads only the
lowest priority service saturates as it does so in the fault-free case, too. This shows that
traffic classes still enjoy QoS even when parts of the NoC are damaged.

3.4.3 Network Connectivity and Fault Tolerance

We present next a more accurate evaluation of fault tolerance and network connectivity;
which directly relates to NoC and SoC QoS as system failure may depend to a minimum
number of connected nodes, besides minimum performance. This is achieved creating
network models for each RQNoC design and performing multiple fault-injections for
different fault densities. In each case, our models return the network connectivity defined
as the percentage of available paths in the network out of the total number of source

3.4. EVALUATION 55

Figure 3.13: Mean and ±3σ range of connectivity values for the proposed RQNoC designs at
different fault densities.

to destination pairs. In this part the following 4x4 2D mesh network are evaluated:
SMerge+SDetour, SMerge, SDetour, and GDetour. We considered fault densities ranging
from 1 to 200 network faults. For each fault density, half a million different fault injections
have been performed. Faults are injected randomly considering the probability of failure
for different network parts based on their area.

Figure 3.13 depicts, for different fault densities (number of faults), the mean network
connectivity as well as the range of values that are up to 3 standard deviations (±3σ)
away from the mean. SMerge+SDetour provides the highest network connectivity, which
is above 99% for up to 8 network faults, 92% for 32 faults, 80% for 50 faults and 37%
100 faults. SMerge alone can support a similar connectivity preserving 99.3%, 89%,
75% and 30% of the network paths for 8, 32, 50 and 100 faults, respectively. SDetour
follows with 82%, 41%, 20% and 3.6% connectivity for the same fault densities. Finally,
GDetour shows poor fault tolerance maintaining only 44% of the network connectivity at
8 network faults, 3.5% for 32 faults and below 1% for more than 50 faults.

Figure 3.14 illustrates the probability of a network to offer 100%, 75%, 50% and 25%
connectivity at a particular fault density. This is important for networks that are expected
to guarantee a particular quality of service. SMerge and SMerge+SDetour offer similar
fault tolerance having above 80% probability to offer a fully connected network even
with 20 permanent faults. The probability of full connectivity is significantly reduced
for SDetour and GDetour as the turn model used for the routing cannot always connect
all node pairs. However, as the connectivity requirements reduce to 75%, 50% and 25%,
SDetour performs better than GDetour. Even so, SMerge and SMerge+SDetour can
deliver at fault densities 2-3× higher the same probability as SDetour for a particular
network connectivity.

56 CHAPTER 3. RESILIENT SERVICE-ORIENTED NOC

1 2 3 4 8 16 20 32 50 100 150200
0

20

40

60

80

100

Number of Faults

P
ro

b
a
b
ili

ty
 o

f
h
a
v
in

g
 1

0
0
%

 c
o
n
n
e
c
ti
v
it
y

SMerge+SDetour

SDetour

GDetour

SMerge

(a)
Probability of having full network connectivity under

different fault densities.

1 2 3 4 8 16 20 32 50 100 150200
0

20

40

60

80

100

Number of Faults

P
ro

b
a
b
ili

ty
 o

f
h
a
v
in

g
 m

o
re

 t
h
a
n
 7

5
%

 c
o
n
n
e
c
ti
v
it
y

SMerge+SDetour

SDetour

GDetour

SMerge

(b)
Probability of having at least 75% network connectivity

under different fault densities.

1 2 3 4 8 16 20 32 50 100 150200
0

20

40

60

80

100

Number of Faults

P
ro

b
a
b
ili

ty
 o

f
h
a
v
in

g
 m

o
re

 t
h
a
n
 5

0
%

 c
o
n
n
e
c
ti
v
it
y

SMerge+SDetour

SDetour

GDetour

SMerge

(c)
Probability of having at least 50% network connectivity

under different fault densities.

1 2 3 4 8 16 20 32 50 100 150200
0

20

40

60

80

100

Number of Faults

P
ro

b
a
b
ili

ty
 o

f
h
a
v
in

g
 m

o
re

 t
h
a
n
 2

5
%

 c
o
n
n
e
c
ti
v
it
y

SMerge+SDetour

SDetour

GDetour

SMerge

(d)
Probability of having at least 25% network connectivity

under different fault densities.
Figure 3.14: Probability of different RQNoC networks to deliver a particular network connectivity
under different fault densities.

3.4. EVALUATION 57

3.4.4 Comparison

Providing a complete and detailed comparison of RQNoC with related work is extremely
difficult as related techniques are applied to different networks with different network
sizes, baseline router architectures, topologies, or even using different technologies.
In addition, various different metrics are used to evaluate NoC fault tolerance and its
overheads. Even so, we attempt next to compare with related techniques to the degree
that is possible, retrieving RQNoC results that match other networks parameters and
metrics.

Compared to FoN [100], Cost-based [95] and FTDR-H [33], RQNoC has lower
overheads and maintains a larger fraction of its performance in the presence of faults.
In particular, FoN, Cost-based and FTDR-H are bufferless networks, as opposed to
RQNoC that uses 60 bytes of buffering per port, and are all implemented in 65nm like
RQNoC. Compared to its baseline FoN has an area overhead of 1.35× due to a more
complex routing controller. For the Cost-based and FTDR-H the area cost increases by
2.85× and 2.58×, respectively, due to the use of large routing tables.On the other hand,
RQNoC8 requires 1.24× more resources than its baseline. The power overheads of FoN,
Cost-based and FTDR-H, measured in mWatts/MHz, are 4×, 17×, and 9× that of their
baseline, respectively, while RQNoC increases its power consumption by only 1.32×.
Moreover, FoN, Cost-based and FTDR-H maintain 50-25% of their throughput; at the
same fault rates RQNoC maintains 81% to 66% of its throughput. It is worth noting that
performance in FoN, Cost-based and FTDR-H is measured in 8x8 meshes operating at
500MHz.

ReliNoC [47] is implemented also in 65nm and uses similar to iMesh two parallel
channels. ReliNoC increases its area by 15%, when using 4 buffers per port of 4 bytes
each (16 bytes per port), due to changes in the input ports of the routers, versus 24% area
increase in RQNoC. However, the percent of fully connected ReliNoC networks at 20 to
100 faults ranges from 90% to 30%. For the same network size (8x8 2D mesh) RQNoC
is able to deliver 99%-70% at the same number of faults delivering substantially higher
network connectivity and fault tolerance.

Bulletproof [1] is applied to network routers with 8 buffers of 4 bytes per port (32
bytes per port) and targets also 65nm technology. It has high area overhead of 3.42×
compared to its baseline due to additional spare resources, TMR and Error Correcting
Codes (ECC) used; that is 10× higher overhead than the RQNoC. Reliability is measured
in Bulletproof as the mean number of faults that cause a router failure. Bulletproof can
sustain up to 38 faults before a router fails, while an RQNoC router can tolerate about 6.
We can observe a clear trade-off between area and reliability in the two approaches, which
is based on the granularity of the considered fault model. An RQNoC router is divided
in 7 distinct parts, as opposed to over 200 partitions in the Bulletproof router, having
significantly lower area overhead but tolerating fewer faults. Fault densities of tens of
permanent faults in a silicon area that a single NoC router occupies is quite unlikely even
in future emerging technologies and therefore we consider that a coarser fault model

8In all comparisons, we consider the RQNoC with both SMerge and SDetour.

58 CHAPTER 3. RESILIENT SERVICE-ORIENTED NOC

granularity is preferable.
Vicis [44, 101] uses port swapping, ECC and router bypass requiring 51% more area

than its baseline at 42nm technology (versus 58% for RQNoC at 65nm). Vicis is able to
keep about 90% and 80% of its routers connected at fault rates of 2.5 and 5 faults per
router, respectively. At the same fault rates RQNoC keeps 85% and 55% of its routers
connected. Although Vicis appears to be more reliable than RQNoC, it uses a torus
topology which is inherently more fault-tolerant than the RQNoC 2D-mesh topology.

Row-Column decoupled router (RoCo) implemented in a 8×8 2D-mesh network
offers only 85% packet completion when tolerating 4 faults [45]. RQNoC is significantly
more reliable as it achieves above 99% packet completion even with 16 faults in a 4 times
smaller network (4×4 2D-mesh). Area, performance and power overheads are measured
using 90nm technology and are combined into a single metric rather than presented
separately and therefore we cannot compare them. RoCo evaluation results are for 4-port
routers with three virtual channels per port and 5-flit deep buffers per VC (240 bytes per
port).

Finally, Virtual channel renaming uses 4-stage pipelined switches with four, 8-deep
physical virtual channels (128 bytes per port). The design has very low area and power
overheads using 65nm TSMC (5.3% and 3.7%, respectively) and low performance costs
at low fault rates (similar to RQNoC) [46]. However, it requires each physical buffer to
fit two flits per virtual channel; for a router that supports 4 VCs with 4 physical buffers
that means 8 flits per buffer, which is 4× larger than the minimum buffer size of a regular
VC-based network. Such area (and power) costs are possibly not reflected in the above
overheads. Moreover, VC renaming protects only the buffers of a router, while packet
priorities are only fixed to each physical buffer. On the contrary, RQNoC does not have
these limitations.

3.5 Conclusion
This part of the thesis described RQNoC, a solution for tolerating permanent faults on
a Network-on-Chip that supports multiple services. Service Detour and Service Merge
were proposed to redirect traffic and bypass the faulty resources of a particular service.
On the one hand, Service Detour preserves the isolation between service lanes and uses
alternative, longer paths of the same service to work around faulty resources. On the
other hand, Service Merge allows sharing of a router data-path between multiple traffic
classes, trading service-isolation for shorter paths and higher fault tolerance. The two
approaches were evaluated in terms of implementation costs, network performance per
traffic class and fault tolerance. SDetour has lower cycle time, area and power costs
compared to SMerge as it requires fewer hardware modifications. It also has lower
network performance overheads in low fault rates, but becomes inefficient as the number
of faults increases, substantially reducing network reliability. SMerge requires roughly
22% more resources than our baseline QNoC network and has about a quarter of higher
power consumption. SMerge network latency may double and its throughput can be
reduced to 50% compared to a fault-free case, but it is able to tolerate substantially

3.5. CONCLUSION 59

higher number of faults. SMerge preserves 90% of the network connectivity even with
32 network faults, which is more than double compared to SDetour. Combining SMerge
with SDetour further improves fault tolerance increasing connectivity by up to 5%.

4
Adaptive Fault-tolerant Main Memories

Main memory reliability is a major challenge as the exponential growth of the total DRAM
sizes leads to higher failure-rates [102] despite the fact that the per Mbit failure-rate is not
increasing [103, 104]. In current systems more than 40% of the reported hardware faults
are related to main memory and this number is expected to increase rapidly in future
exascale systems with tens of Petabytes of DRAM [102, 105]. Furthermore, more recent
DRAM cell technologies have higher failure-rates compared to previous generations, as
shown by a recent in-field study of Facebook servers [106]. On the other hand, in the
future replacing faulty devices will become more difficult and costly, if not impossible.
For example 3D-stacked memories may be permanently attached to the processor directly
or through a silicon interposer [71].

Error correcting codes (ECCs) are widely used to improve DRAM reliability.
Different Hamming codes (SEC-DED, DEC-TED) or more advanced block codes (Reed-
Solomon, BCH) provide different detection and correction capabilities at different
capacity overheads, energy and performance costs. For instance, the widely used
SEC-DED (Single-Error-Correct-Double-Error-Detect) protects1 each 64-bit data with 8
additional bits of code, often stored in a ninth DRAM device, introducing 12.5% capacity
overhead. Although SEC-DED can cover single-bit memory faults, larger granularity
multi-bit DRAM failures are becoming equally frequent [104, 107]. Multi-bit faults
could be the result of faults in shared internal circuitry of DRAM [103], or disturbance
faults that affect an entire DRAM row, a phenomenon known as row-hammer [108].
More advanced schemes, are employed to provide Chipkill2-level protection and tolerate

1Throughout this section we interchangeably use the terms fault tolerance and protection
2Chipkill is a trademark used by IBM for an ECC scheme that protects up to an entire DRAM chip failure.

61

62 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

multi-bit faults or even entire DRAM chip (device) failures at the cost of wider memory
accesses [65]. Compared to SEC-DED, Chipkill reduces the uncorrected DRAM error
rate 42 times [103], but requires ×4 devices (4-bit wide) to increase the protection level.
That increases energy costs by 30% compared to ×8 devices [109]. Supporting Chipkill
in a single ECC-DIMM with ×8 devices requires 26.5% capacity overhead [66].

Spending up to a fifth of DRAM capacity for ECC is expensive and for many systems
impractical. Total DRAM sizes may continue to increase, but the DRAM size per core
is expected to reduce in future large scale systems [110, 111]. In addition, while it is
relatively easy to add an extra device in a DRAM DIMM, the same approach is not
feasible for 3D-stacked DRAMs. Adding an extra die to handle the protection imposes
increased fabrication cost in addition to exacerbating thermal impacts for the lower
dies [112].

Many industrial and academic approaches reduce the capacity overheads while
maintaining Chipkill-level protection. They require specific memory system configuration
[65], wider memory accesses [61], employ more complex ECCs [64, 67, 113], or
otherwise rely on data compression to save space for the ECCs [69, 70].

Although effective, all these schemes apply the same flat protection level to the entire
DRAM. Nevertheless, recent studies have shown that in many cases, not all data are
equally critical, i.e. an application may have different sensitivity to faults happening in
different parts of its data [49, 50, 59]. Thus, there is an opportunity to exploit memory
protection schemes that allow for variable protection levels depending on the criticality
of the data. So far very little has been done to exploit this observation. Luo et al. [49]
suggested using heterogeneous DRAM DIMMs with different fault tolerance, but this
offers a fixed partitioning of the memory. Ideally, a finer granularity of selecting the
protection level of data stored in DRAM would minimize the storage, performance and
energy costs of ECCs. VECC [60] allows selected data to be coupled with ECCs which
are stored separately and therefore require an additional memory access that penalizes
performance. Finally, Flikker allows lower refresh rates to pages with less critical data
trading fault-rate for refresh energy [59].

In this chapter, we propose Odd-ECC, a new flexible memory mapping scheme that
allows systems to select dynamically on-demand different protection levels (ECC) for
different allocated pages. It requires minimal changes to the memory controller, which
handles the different mappings corresponding to different levels of protection. The ECC
overheads are hidden in pages marked as unavailable to the user by the Operating System
(OS). Physically, however, ECCs are aligned with the data they protect so to reduce
access latency. The OS further manages page allocation maintaining different pools
of pages for different protection levels. Our approach is applied to both traditional 2D
and 3D-stacked DRAMs and offers for each supported protection level the same access
latency as they would have in a flat protection equivalent. Thereby, ECC storage (as well
as performance and energy) costs are proportional to the actual protection level required
for particular data, without compromising the reliability of the application at hand.

In this thesis we use the term chipkill-level protection to refer to any technique that provides such level of
protection.

4.1. APPLICATION RELIABILITY ANALYSIS 63

We analyze various applications measuring their sensitivity (Mean-Time to Failure)
to faults injected in different regions of their data. In doing so we identify data regions
that impact significantly or very little the reliability of an application. The former ones
are then candidates for higher protection and the latter ones for lower protection. The
proposed Odd-ECC is then employed to dynamically provide this mixed memory fault
tolerance on demand.

The main contributions of this work are the following:

• We extensively study a variety of applications analyzing the impact of faults on
their different data regions to their reliability (MTTF).

• We present Odd-ECC, a new memory mapping scheme able to support different
levels of fault tolerance for data stored in memory, decided dynamically on demand
for each allocated physical page.

• We show how Odd-ECC is applied to both conventional 2D DRAM DIMMs as
well as to 3D-stacked DRAMs.

• We evaluate Odd-ECC using the same applications and comparing the achieved
MTTF, the ECC capacity, performance and energy overheads versus flat memory
protection schemes.

– Odd-ECC can be used to reduce capacity overheads (besides slightly reducing
performance and energy costs) maintaining similar reliability to a flat
protection scheme.

– Alternatively, Odd-ECC can significantly improve reliability under the
same capacity constraints as a flat protection scheme at the cost of some
performance and energy overheads.

The remainder of this section is organized as follows. A large variety of applications
are analyzed in Section 4.1 showing that they have different sensitivity to faults injected
in different regions of their data. Section 4.2 describes the proposed Odd-ECC approach
for dynamically selecting the fault tolerance level of data stored in memory. Sections 4.3
and 4.4 explain how Odd-ECC is applied to conventional 2D DRAMs and 3D-stacked
DRAMs, respectively. Section 4.5 presents our experimental results, evaluates the impact
of Odd-ECC in performance and energy, and shows the savings in memory capacity.
Section 4.6 presents related work, and Section 4.7 summarizes our conclusions.

4.1 Application Reliability Analysis
We analyze various applications and confirm the findings reported in literature that
indeed an application may not be equally sensitive to faults in different regions of its
data [49, 50, 59]. Consequently, each data region may require a different level of memory
fault tolerance. This observation can also be extended to systems hosting multiple
applications.

64 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

In this section, we describe the methodology followed to conduct the sensitivity
analysis and mean time to failure (MTTF) study of applications. Subsequently, we define
failure scenarios for various applications at hand and identify separate regions of data
that contribute differently to application failures. These data regions are then candidates
for applying different protection levels in the main memory.

Stack mmap

region

Heap
Uninitialized

data

(bss)

Initialized

Data
Code

(text)

0x7fffffffffff

Sbrk(0)

0x000000000000

High Address Low Address

Esp

(stack pointer) brk

Figure 4.1: Organization of users virtual address space for a typical application in x86_64
architecture.

4.1.1 Application Data Regions

Although the users can select the protection level of data at arbitrary granularities,
previous works most often experiment with standard regions, such as heap, stack, and
global [49, 50, 59]. Such partitioning of application data is shown in Figure 4.1 and used
in the analysis of the applications considered in our evaluation.

In Odd-ECC the protection level of data in memory can be selected at page granularity,
for simplicity we restrict the protection regions to the standard, i.e. stack, heap
and global3. We study the effect of faults on data regions using applications from
NAS Parallel Benchmarks (NPB) 8-threaded Class A [114] and AxBench approximate
benchmarks [115]. In addition to the three main memory regions, a fourth region of
interest in the memory is identified for applications of both benchmarks. NAS parallel
benchmarks are OpenMP multi-threaded applications. In OpenMP the main thread (also
known as the master thread or thread 0), is responsible for allocating a stack for every
newly spawned thread (known as a child thread) on the heap [116]. Although the stack
of each thread is its private memory region [117], all threads may access the stack of
thread 0 [118]. Therefore, for NPB we defined the stack region as the stacks of all child
threads, and consider a fourth region, which is the stack of thread 0. For the AxBench
benchmarks, given their nature of being more tolerant to relaxed accuracy in part of their
operations and data, we define the input data of each application as the separate fourth
region of interest.

3Code region is excluded.

4.1. APPLICATION RELIABILITY ANALYSIS 65

4.1.2 Application Sensitivity Analysis

The sensitivity of an application to faults injected in different data regions is carried as
follows. A Pin [119] based fault injector was developed and used for evaluating the effect
of single-bit and multi-bit faults. Before fault injection, the application is profiled to find
the address boundaries and total number of memory loads to each data region 4. Using
the information collected in the application profiling, separate experiments are carried for
each data region and fault type.

Every experiment requires multiple runs of an application, one for every injected
fault. During a run, memory load requests to the targeted data regions are identified and
one is randomly selected for fault injection. The SafeCopy function of the Pin-tool is
employed to inject the fault5 before the application proceeds further.

After fault injection, the application is resumed until completion and the output is
logged and compared with the expected one. Based on this comparison, the effect of a
single fault injection is classified in the following three categories: (i) Crash when the
injected fault causes the application to stop before completion 6; (ii) Wrong result is
when the logged output is different from the expected output and (iii) Correct result is
when the logged output value is equal to the expected value. For each data region and
fault type 10,000 faults are injected, and their outcome is logged. The distribution of fault
injection outcome gives us an indication of how sensitive each data region is to faults,
without yet considering the probability of encountering such a fault in that region, which
is subject to the fault rates and to the size of the corresponding region.

4.1.3 Application MTTF Study

After the sensitivity analysis that shows the possible impact of a fault in a particular data
region of an application, we proceed with calculating the mean time to failure (MTTF) of
an application due to faults in different regions. This requires the following steps. The
time intervals during which each memory location is vulnerable to faults should be taken
into account as well as the sizes of the data regions, which in turn affect the probability of
a fault. Then, the failure definition needs to be described per application. That is because
for some applications a wrong result may be acceptable if it is within a certain threshold,
or easily detectable at the application level. The different fault rates are then calculated
before the MTTF can be retrieved.

During applications execution, a single memory location can be accessed multiple
times. Depending on the sequence of reads and writes to a memory location, soft faults
can be manifested or masked, i.e. a memory write-back will eliminate any possible
fault that happened after the last read. In effect, during the execution of a program there
are time intervals during which a memory location is vulnerable to faults and others

4Address boundaries of different regions are the same for every execution as long as the address space
layout randomization (ASLR) is disabled.

5Flipping a random bit for modeling single-bit faults and flipping two random bytes for modeling multi-bit
faults.

6Delayed runs with more than 2× execution time are timed-out and classified as crash.

66 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

Table 4.1: Classification of applications’ outcomes in fault injection experiments. In the
table, ε is relative error and RMSE is root-mean-square error.

Possible Outcomes of Fault Injection
Wrong Results Correct

Result Crash
Application SDC Detectable at

Application Level
Acceptable

Results Deviation

Blackscholes ε >10%
Execution timed-out\
Output equal to zero ε <10%

Equal to
the expected

App Crash\
ε >2x

FFT ε >10%
Execution timed-out\
Output equal to zero ε <10%

Output equal to
the expected

App Crash\
ε >2x

Inversek2j ε >20%
Execution timed-out\
Output equal to zero ε <20%

Output equal to
the expected

App Crash\
ε >5x

Jmeint Miss-rate >1% Execution timed-out Miss-rate <1%
Output equal to
the expected App Crash

Jpeg RMSE-diff>20% Execution timed-out RMSE-diff>20%
Output equal to
the expected

App crash\
RMSE-diff>2x

NAS-PB Wrong results Execution timed-out -
Output equal to
the expected App Crash

intervals during which it is not. This phenomenon is taken into account in our experiments
following the methodology used by Luo et al. and Mehrara et al., to find the safe-duration
and vulnerable-duration of data regions and incorporate them with our analysis [49, 50].
In general, a memory location is in the vulnerable-duration between a write and the
following read(s) and is considered to be in safe-duration between reads/writes followed
by a write. Similar to Luo et al., we define the safe-ratio for an address in the memory as
the sum of safe-durations divided by the applications execution time. For this purpose,
we use an in-house system simulator (detailed in Section 4.5) and sample the safe and
vulnerable duration cycles7 for a sample of about 1% to 10% of the memory locations in
each data region. The measured safe-ratio for each application is then considered as a
factor in the MTTF calculation.

The size of the data regions used by an application can be measured using available
Linux tools, such as GDB [120] software debugger and Valgrind massif [121]. In our
experiments, Valgrind massif heap profiler was used to take snapshots of an application
during its run-time and calculate the average heap and stack sizes based on sampling
intervals. The sizes of the data regions were subsequently incorporated in our analysis.

For different applications each of the three possible outcomes of a fault (crash, wrong
result, correct result) may have a different effect. In some cases, a wrong result may be
considered as correct if within some acceptable margins. In other cases, a wrong result
may be easily detectable at the application level because it is not within the expected
value range; then, that it can be considered a crash. All other cases of wrong results are
classified as Silent Data Corruption (SDC). Table 4.1 summarizes for each application
at hand the definition of the above cases. More precisely the (i) SDC, (ii) wrong results
detectable at application level, (iii) wrong results within acceptable error, (iv) correct
results, and (v) crashes are defined. Note that, besides an unexpected termination of a
program, longer than expected execution times (timeout) may also be treated as crashes.

7For a given last level cache size.

4.1. APPLICATION RELIABILITY ANALYSIS 67

Henceforth, cases (iii) and (iv) are merged as correct results, cases (ii) and (v) as crashes,
and case (i) SDC constitutes the failure definition of each application. Similar to previous
works, crashes are not considered as failures as they are detectable [122–124]. Indeed for
some applications crashes can be acceptable if they do not happen too often and they don’t
prevent computations from advancing. As shown in Table 4.1 scientific HPC applications
(NPB) do not tolerate any deviation from the expected program outcome. On the contrary,
AxBench programs allow some relative error ε. For approximate benchmarks, we put
a threshold of a relative error8 between the actual (after fault injection) and the correct
results and consider anything beyond that as SDC. Finally, some programs consider zero
output as invalid and some others have an expected execution time beyond which they
timeout.

The probability of single-bit and multi-bit faults on each data region is calculated
based on the fault rates and measured data region sizes. We use the fault rates9, i.e. λ,
reported in [73, 104] and the first-order-probability analysis explained in [125], to find
the probability of faults, i.e. the probability of having a single-bit fault or a multi-bit fault
in a data region. Subsequently, for each fault type x and data region i, we calculate the
probabilities of having a crash (Px,i,Crash) or SDC (Px,i,SDC). The results of sensitivity
analysis are used in this calculation as the percentages of crash (Peri,crash) or SDC
(Peri,SDC) for each region i. This is performed by using:

Px,i,Crash = Px,i × Peri,crash × (1− Safe_Ratioi) (4.1)

Px,i,SDC = Px,i × Peri,SDC × (1− Safe_Ratioi) (4.2)

where Px,i,Crash and Px,i,SDC are the probabilities of crash and SDC events when in
region i a fault of type x happens, Px,i is the probability of fault type x in region i and
Safe_Ratioi is the safe-ratio of region i. Finally, from the calculated probabilities, we
find the region crash/SDC rates using:

λx,i,crash = − ln(1− Px,i,crash) (4.3)

λx,i,SDC = − ln(1− Px,i,SDC). (4.4)

where λx,i,crash and λx,i,SDC are the rate of crash and SDC events, respectively, in
region i, with fault type x, in one billion hours.

Using the above methodology and fault rates of 2D- and 3D-DRAMs shown in
Tables 4.2 and 4.3, we can calculate the rates of observed SDC or crash in each region of
the applications at hand. Note, that besides the raw fault rates, these Tables further report
the effective fault rates after applying fault toleance schemes that (i) detect multibit errors
and correct single bit errors (Tier-1 /T1), and (ii) in addition correct multibit errors (Tier

8For jpeg application root-mean-square error (RMSE) and for Jmeint miss-rate is used.
9Fault rate is typically reported in FIT where one FIT is equal to having one fault in 109 device hours.

68 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

1
e

-0
6

1
e

-0
5

1
e

-0
4

1
e

-0
3

1
e

-0
2

0
.1 1

1
0

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

b
t.A

s
p

.A
ft.A

m
g

.A
c
g

.A
lu

.A
is

.A
u

a
.A

B
la

c
k
s
c
h

o
le

s
J
m

e
in

t
J
p

e
g

F
F

T
In

v
e

rs
e

k
2

j

Rate of Occurrence in 10
9
 hours

(a
) S

in
g
le

-b
it F

a
u
lt-In

je
c
tio

n
 A

n
a
ly

s
is

S
D

C
C

ra
s
h

1
e

-0
6

1
e

-0
5

1
e

-0
4

1
e

-0
3

1
e

-0
2

0
.1 1

1
0

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

b
t.A

s
p

.A
ft.A

m
g

.A
c
g

.A
lu

.A
is

.A
u

a
.A

B
la

c
k
s
c
h

o
le

s
J
m

e
in

t
J
p

e
g

F
F

T
In

v
e

rs
e

k
2

j

Rate of Occurrence in 10
9
 hours

(b
) M

u
lti-b

it F
a
u
lt-In

je
c
tio

n
 A

n
a
ly

s
is

S
D

C
C

ra
s
h

Figure
4.2:R

ate
ofobserving

silentdata
corruption

(SD
C

)orcrash
under:(a)single-bitand

,(b)M
ulti-bitfaults

in
each

m
em

ory
region

considering
2D

-D
R

A
M

faultrates.

4.1. APPLICATION RELIABILITY ANALYSIS 69

2 / T2). Both these fault tolerance schemes are used in the following sections.
Figures 4.2 and 4.3 show the rates of observed SDC and crashes in each region of the

applications at hand, using the fault modes of 2D-DRAM and 3D-DRAM, respectively.
The results confirm the error resilience diversity among different regions of application
data and, in addition, highlight the most vulnerable ones. This analysis is used in
the evaluation of the proposed Odd-ECC as it guides us to select the appropriate
protection level for each data region of an application, reducing the ECC overhead
without significantly affecting MTTF.

So far, we have shown how to calculate the failure (SDC) rate for a single data region
based on the sensitivity analysis results. Failure rates of independent entities can be added
with each other. In doing so, we can calculate the failure rate of the entire application by
summing up the failure rates of all its data regions. That is: λapplication=

∑
λi ; where λi

is the failure rate of memory region i. Assuming constant fault rate 10, the MTTF of an
application is equal to 1

λapplication
. This way of calculating the MTTF of an application

makes it possible to explore the impact of different protection levels per data region, on
the application reliability. Concisely, when a data region is protected with a particular
fault tolerance mechanism, based on the fault modes and protection coverage, a new
effective fault rate (i.e. in FIT) can be calculated. In Table 4.2 and Table 4.3 the two
columns under effective FIT rate are examples of changes when different protection
schemes are used. Then, the new effective fault rates are used to find the new region’s
failure rate, i.e. λnewi . Finally, new application MTTF can be calculated using failure
rates of all regions as follows: MTTFnew = 1∑

λnew
i

, where each i corresponds to a
different memory region.

Table 4.2: Failure rates for 2D DRAM. Effective FIT rates are calculated according to
correction/detection capabilities of two protection schemes, i.e. T1 and T2, based on
estimated coverage reported in [74, 126].

Fault Mode Fault rate (FIT/Mbit) Effective FIT rate(FIT/Mbit)
With T1-ECC With T2-ECC

Single-Bit 0.03 0 0
Single-Column 3.8E-03 5.7E-04 0
Single-Row 5.2E-03 5.2E-03 0
Single-Bank 4.2E-03 4.2E-03 0
Multiple-Bank 4.4E-04 4.4E-04 0
Multiple-Rank 4.8E-04 4.8E-04 4.8E-04

4.1.4 Application Analysis Results
Figures 4.2 and 4.3 show how the resiliency of an application varies with faults in different
data regions. The results for 2D- and 3D-DRAM are very similar considering the small
differences in fault rates (summarized in Table 4.2 and Table 4.3 respectively). Each pair

10Sridharan et al. [104] have shown that DRAMs have approximately constant transient fault rate.

70 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

1
e

-0
6

1
e

-0
5

1
e

-0
4

1
e

-0
3

1
e

-0
2

0
.1 1

1
0

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

b
t.A

s
p

.A
ft.A

m
g

.A
c
g

.A
lu

.A
is

.A
u

a
.A

B
la

c
k
s
c
h

o
le

s
J
m

e
in

t
J
p

e
g

F
F

T
In

v
e

rs
e

k
2

j

Rate of Occurrence in 10
9
 hours

(a
) S

in
g
le

-b
it F

a
u
lt-In

je
c
tio

n
 A

n
a
ly

s
is

S
D

C
C

ra
s
h

1
e

-0
6

1
e

-0
5

1
e

-0
4

1
e

-0
3

1
e

-0
2

0
.1 1

1
0

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Th0-Stack

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

Stack
Heap

Global
Input-Data

b
t.A

s
p

.A
ft.A

m
g

.A
c
g

.A
lu

.A
is

.A
u

a
.A

B
la

c
k
s
c
h

o
le

s
J
m

e
in

t
J
p

e
g

F
F

T
In

v
e

rs
e

k
2

j

Rate of Occurrence in 10
9
 hours

(b
) M

u
lti-b

it F
a
u
lt-In

je
c
tio

n
 A

n
a
ly

s
is

S
D

C
C

ra
s
h

Figure
4.3:R

ate
ofobserving

silentdata
corruption

(SD
C

)orcrash
under:(a)single-bitand

,(b)M
ulti-bitfaults

in
each

m
em

ory
region

considering
3D

-stacked
D

R
A

M
faultrates.

4.2. ODD-ECC MEMORY RELIABILITY 71

of bars in the figures corresponds to the crash rate and SDC rate of a data region. Next,
we highlight some of the findings of this analysis which motivate Odd-ECC and guide
our choices of fault tolerance levels selected per data region in our evaluation in Section
4.5.

For some NPB applications, i.e. mg and lu, single-bit faults in the heap have a SDC
rate close to zero, while the crash rate is high. Such low SDC rates can be possible in
some application when the algorithm inherently tolerates wrong values, for instance in
iterative algorithms that converge to a solution as explained in [127]. A similar trend
is observed for some AxBench applications, i.e. Blackscholes, Jmeint and FFT, where
single-bit fault on the global region will cause a crash in most cases. In these cases, the
heap can have a reduced level of fault tolerance, if the goal is to avoid SDC. For multi-bit
faults, the same trend is observed for even more applications, e.g. ua, leading to the
same conclusion. Considering the fault modes in Tables 4.2 and 4.3, the probability of a

Table 4.3: Failure rates for 3D-Stacked DRAM [73], scaled based on our example 3D-
stacked configuration. Effective FIT rates are calculated according to correction/detection
capabilities of two protection schemes, i.e. T1 and T2, based on estimated coverage
reported in [74, 126].

Fault Mode Fault rate (FIT/Mbit) Effective FIT rate(FIT/Mbit)
With T1-ECC With T2-ECC

Single-Bit 0.03 0 0
Single-Column 7.60E-03 1.14E-03 0
Single-Bank 2.35E-03 2.35E-03 0
Single-Die 4.40E-04 4.40E-04 0
Single-Vault 1.20E-04 1.20E-04 1.20E-04

multi-bit fault in DRAM is more than 2× lower than the probability of a single-bit fault.
However, due to the greater impact of multi-bit faults on the applications’ behavior, the
rate of crash and SDC are comparable with those observed in single-bit faults.

A careful analysis of the AxBench applications reveals that, almost in all cases,
the input-data region has the highest SDC rate under both single and multi-bit faults.
Consequently, a proper protection scheme for this region should be able to tolerate both
single-bit and multi-bit faults. Moreover, the stack region of AxBench applications has
higher SDC rate when single-bit faults are injected compared to multi-bit faults. This can
be explained by the lower probability of multi-bit faults to happen. Therefore, for this
region a simpler protection scheme tailored for single-bit correction would be sufficient
rather than stronger protection schemes.

Finally, almost in all cases, the stack region has the lowest SDC and crash rate among
regions. However, given the fact that stack sizes are typically very small, strong protection
against faults can improve the system reliability with relatively low storage cost.

72 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

63:2 63:3 63:5 63:6 63:7

63:31

63:47

63:55

63:163:0 63:4

63:15

63:23

63:39

63:63

1:0 1:1 1:2 1:3 1:4 1:5 1:6 1:7

1:15

1:23

1:31

1:39

1:47

1:55

1:63

0:0 0:1 0:2 0:3 0:4 0:5 0:6 0:7

0:8

0:16

0:24

0:32

0:40

0:48

0:56

0:9 0:10 0:11 0:12 0:13 0:14 0:15

0:17 0:18 0:19 0:20 0:21 0:22 0:23

0:25 0:26 0:27 0:28 0:29 0:30 0:31

0:33 0:34 0:35 0:36 0:37 0:38 0:39

0:41 0:42 0:43 0:44 0:45 0:46 0:47

0:49 0:50 0:51 0:52 0:53 0:54 0:55

0:57 0:58 0:59 0:60 0:61 0:62 0:63

64 Blocks

Page Reserved For T1

(b) T1 Pool

63:2 63:3 63:5 63:6 63:7

63:31

63:47

63:55

63:163:0 63:4

63:15

63:23

63:39

63:63

1:0 1:1 1:2 1:3 1:4 1:5 1:6 1:7

1:15

1:23

1:31

1:39

1:47

1:55

1:63

Block 0

0:0 0:1 0:2 0:3 0:4 0:5 0:6 0:7

0:8

0:16

0:24

0:32

0:40

0:48

0:56

0:9 0:10 0:11 0:12 0:13 0:14 0:15

0:17 0:18 0:19 0:20 0:21 0:22 0:23

0:25 0:26 0:27 0:28 0:29 0:30 0:31

0:33 0:34 0:35 0:36 0:37 0:38 0:39

0:41 0:42 0:43 0:44 0:45 0:46 0:47

0:49 0:50 0:51 0:52 0:53 0:54 0:55

0:57 0:58 0:59 0:60 0:61 0:62 0:63

Block 1

Block 63

X:Y 8x8 BlockCache line X, page Y

One Pool

(a) T0 Pool

One Page

63:2 63:3 63:5 63:6 63:7

63:31

63:47

63:55

63:163:0 63:4

63:15

63:23

63:39

63:63

1:0 1:1 1:2 1:3 1:4 1:5 1:6 1:7

1:15

1:23

1:31

1:39

1:47

1:55

1:63

0:0 0:1 0:2 0:3 0:4 0:5 0:6 0:7

0:8

0:16

0:24

0:32

0:40

0:48

0:56

0:9 0:10 0:11 0:12 0:13 0:14 0:15

0:17 0:18 0:19 0:20 0:21 0:22 0:23

0:25 0:26 0:27 0:28 0:29 0:30 0:31

0:33 0:34 0:35 0:36 0:37 0:38 0:39

0:41 0:42 0:43 0:44 0:45 0:46 0:47

0:49 0:50 0:51 0:52 0:53 0:54 0:55

0:57 0:58 0:59 0:60 0:61 0:62 0:63

Page Reserved For T2

64 Blocks

(c) T2 Pool
Figure 4.4: Placement of pages and cachelines in one pool composed of 64, 8× 8 blocks.

4.2 Odd-ECC Memory Reliability

Odd-ECC introduces a new DRAM data placement that offers different protection levels
to be chosen on demand for each physical page. Odd-ECC reserves the space required for
storing the ECC bits of a particular protection scheme in a dynamic manner based on the
user/program choice. Reserving space for the ECC is handled by the OS. ECCs are stored

4.2. ODD-ECC MEMORY RELIABILITY 73

in separate pages that are marked unavailable for the user as described in Section 4.2.4.3.
In order to reduce the storage and access latency overheads, 4KB pages are grouped
in pools of 64 pages (256KB in total), each pool having a particular protection level.
Then depending on the protection offered, a number of pages in a pool is reserved to
store the ECCs. Thereby, ECC storage overhead is economized by being proportional
to the protection level required by the particular data. Although, ECCs are hidden in
separate physical pages, Odd-ECC placement allows them to be aligned with the data
they protect, making it simple for the memory controller to retrieve them with the same
access latency as in an equivalent flat protection scheme. In other words, on the one
hand, for the memory controller knowing the protection-level of an accessed cacheline is
sufficient for finding its corresponding ECCs, on the other hand, for the OS all ECCs in a
pool are stored in separate pages unavailable to the user.

Odd-ECC makes use of three different protection schemes, namely Tier Zero (T0),
Tier One (T1), and Tier Two (T2), where T0 provides no protection, T1 provides lower
level protection (single-bit correction, multi-bit detection, and T2 provides higher level
protection (adding multi-bit correction to T1). Odd-ECC can be used in various memory
architectures. For simplicity, we first provide a generic view of the scheme using an
abstract view of a DRAM block and then explain how this is used in 2D and 3D-stacked
DRAMs.

4.2.1 Odd-ECC Data Layout

Let us consider a generic abstract view of a DRAM block composed of rows and columns.
As illustrated in Figure 4.4, Odd-ECC is applied in two-dimensional 8×8 blocks of
8 rows, each row storing 8 cachelines (512B). Each cacheline in a block belongs to
a different page. A page has 64 cachelines found in 64 different blocks at the same
block-position. A pool of pages is composed of 64 blocks, each containing a different
cacheline from 64 different pages. This generic view of a pool, is also the view of an
unprotected pool, called Tier Zero (T0) pool, shown in Figure 4.4a. So, a T0 pool offers
all 64 pages to the user without any reliability provisions.

4.2.2 Odd-ECC Tier One (T1)

Tier One (T1) offers detection and correction of single-bit faults, and in addition detection
of larger granularity (multi-bit) faults. As illustrated in Figure 4.4b, a block with data
protected in T1 dedicates one cacheline per row to store ECCs, which protect the
remaining 7 cachelines on the same row. From the OS view this means that a pool
with T1 dedicates pages 7, 15, 23, 31, 39, 47, 55, and 63 for ECC storage. Concisely,
the available capacity in T1 pool is reduced to 56 pages, having a data-to-ECC ratio of
14.28%.

In practice, a fraction (8B) of that ECC cacheline stores code that protects one of
the other seven cachelines in the same row. That leaves 8 out of the 64B in the eighth
cacheline unused. In order to simplify and make more efficient the task of the memory

74 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

Table 4.4: Starting column address for unprotected (T0) and T1 protected cachelines.

Starting Address for
Unprotected (T0) Cachelines

Starting Address for
T1 Protected Cachelines

CL#
Address
(Byte)

Address [8:0]
(Binary) CL#

Address
(Byte)

Address [8:0]
(Binary)

0 0 000 000 000 0 0 000 000 000
1 64 001 000 000 1 72 001 001 000
2 128 010 000 000 2 144 010 010 000
3 192 011 000 000 3 216 011 011 000
4 256 100 000 000 4 288 100 100 000
5 320 101 000 000 5 360 101 101 000
6 384 110 000 000 6 432 110 110 000
7 448 111 000 000 - 504 111 111 000
A A× 64 b8b7b6 000 000 A A× 72 b8b7b6 b8b7b6 000

controller, these 8B of T1 should be placed next to the cacheline they protect, rather than
at the end of the block-row. In effect, the starting column of each cacheline needs to be
a modulo of 9 (9×8 Bytes), instead of a modulo of 8, used in T0. It is preferable that
this is abstracted from the OS, in order to be able to pack the T1 ECCs in separate pages,
and be handled by the memory controller. On the one hand, the OS uses addresses that
assume T1 ECCs are placed at the space of the eighth page of the block row. On the other
hand, the memory controller should find the T1 ECCs next to the cacheline they protect
by re-coding the address provided by the OS.

Re-coding the physical (column) address bits, sent by a memory request and received
by the memory controller, which point to the starting byte of a cacheline in a row,
introduces some complexity as it is not a power-of-two computation anymore [74].
More precisely, finding the starting address of each cacheline in a row will require
either division or modulo operation [68, 128]. In Odd-ECC, we found a way around
this restriction, which fits well with our 8 cachelines (512B) length of the block-row.
Essentially, the 512B require 9 column bits to be addressed. As shown in Table 4.4, a
starting address in T0, which is a multiple of 64, has bits 5:0 zero, and bits 8:6 indicate
one of the 8 stored cachelines. By repeating column address bits 8:6 in bits 5:3 the new 9
column address bits point to a 72B (cacheline including its ECC) stride, as illustrated in
Table 4.4. This reduces the memory controller complexity of re-coding to a single 2-to-1
multiplexer which selects the correct address bits based on the protection level (T0, T1)
of the accessed data.

Without loss of generality, in our T1 implementation we select an ECC coding scheme
from prior work that fits our single-bit correction and multi-bit detection requirements.
As mentioned before, in T1 each 64B cacheline is protected separately. Therefore, we
can use the ECC of [73] where a 64B cacheline is protected by 8B of mixed-ECC. For T1
we propose using low overhead 16bit SSC-DSD (Single Symbol Correct, Double Symbol
Detect) [74], with strong 32bit CRC (Cyclic Redundancy Check) detection code. Overall,
the T1 ECC for a 64B cacheline forms up to be 48 bits (6B), leaving 16 bits (2B) unused.

4.2. ODD-ECC MEMORY RELIABILITY 75

4.2.3 Odd-ECC Tier Two (T2)
Odd-ECC Tier Two (T2) is meant for correcting larger granularity, multi-bit faults11. T2
builds on top of T1 correcting large granularity failures detected by the T1 codes. It
uses one additional cacheline (in the last block-row) to protect the above seven vertically
neighboring cachelines as depicted in Figure 4.4c. T2 codes are constructed by computing
the bit-wise parity of the above 7 cachelines allowing to reconstruct entirely one of them
in case of a large granularity failure. In addition to the pages reserved for T1, a pool with
T2 protection reserves the eighth row of each block for the parities, which corresponds to
pages number 56-63 in a pool. Consequently, the available capacity in a T2 pool becomes
49 pages having a data-to-ECC ratio of 30.6%. A memory controller can access the T2
code that protects the above 7 cachelines by using the same column address bits and by
finding the eighth block-row, the calculation of which depends on the considered memory
architecture as explained next. The re-coding needed for finding the T2 codes address is
as simple as replacing the 3 LSBs of the row address bits with “111".

4.2.4 Hardware/Software Modifications
In order to support different fault tolerance levels, Odd-ECC requires some modifications
in the memory hardware and the OS. For each memory request, the memory system needs
to identify the fault tolerance level for the corresponding memory content, and trigger
the corresponding required action for error detection and/or correction. In addition, the
OS is responsible for creating and managing pools of 64 pages and reserving space for
ECC-bits depending on the ECC level, which is not visible to the user.

4.2.4.1 Memory Controller Modifications

Odd-ECC requires from the memory controller to (i) re-code the physical addresses for
T1 and T2 accesses in order to find the realigned cachelines with their T1 codes, (ii) to
perform for every T2 write access an extra read modify and write of the respective parity,
and (iii) to support the detection and correction computations needed for the T1 and T2
memory accesses.

Memory accesses on T1 or T2 protected cachelines are placed every 72 consecutive
bytes to include their respective T1 code. The memory controller should modify the
address provided by the processor to find the correct beginning of the cacheline accessed.
As described earlier re-coding requires copying 3 bits of the address adding a complexity
of a 2-to-1 multiplexer. In addition, a T0 access requires burst of eight to read only
the cacheline data, while accessing protected data requires longer burst to include the
T1 codes. Similar to prior work [129, 130], Odd-ECC memory controller supports
dynamic burst lengths of eight and ten12, needed for accessing T0 and T1/T2 cachelines,
respectively.

11Up to complete failure of a single DRAM chip when employed on 2D-DRAMs
12Reading 8B T1 ECC requires one additional half-cycle. Inevitably, during the other half-cycle the channel

is not used.

76 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

In Odd-ECC, the T2 code for a group of seven cachelines is placed in a fixed position,
i.e. on the eighth row of an 8×8 block. T2 code needs to be accessed either when
T1 code detected a fault or in write accesses of T2 protected data. When writing a
T2-protected cacheline, its respective parity (as well as the old cacheline value) need
to be read, updated based on the new value of the cacheline and written back. These
extra accesses are supported by the Odd-ECC memory controller. The memory controller
can find the address of the T2 code by masking specific bits of the respective cacheline
address (the 3 least significant bits of the row address part) to “111”. In practice, this
is implemented with a bitwise OR operation of the cacheline address bits and a fixed
T2-MASK vector13.

Finally, the Odd-ECC memory controller is modified to support T1 and T2 ECC logic,
i.e. generator, checker, and corrector 14. The complexity of these computations is well
studied and implemented in existing solutions.

4.2.4.2 Page Tables Modification

The memory controller needs to know the protection level of each requested cacheline,
which depends on the page it belongs to. To this end, two extra bits containing
fault tolerance level information are added to each Page Table Entry (PTE) and they
become available to the processor Translation Lookaside Buffer (TLB) entries in every
memory access. These two extra bits can be easily supported since most of the modern
architectures have already some spare/user bits (14 spare bits in x86-64 architecture) in
their PTE [132]. These two bits are carried along in the memory hierarchy, including
the cache levels, until they are used by the memory controller. Memory accesses from
external devices such as GPUs, network cards, and DMA engines are supported via the
IOMMU page tables, the same way they are supported for processors. Based on the fault
tolerance level of a cacheline, the memory controller can find: (i) the starting column
address, and (ii) the T1 and T2 (if applicable) codes for each cacheline.

4.2.4.3 OS Support

The changes in the OS to support the different memory fault tolerance levels are minor. As
described before, the granularity of the physical memory is increased to blocks of 256KB,
which corresponds to 64 × 4KB frames (pages). Out of these 64 frames, some may not
be available to the users, since they may be reserved for fault tolerance T1 or T2 codes.
While the OS still returns memory to the application at page granularity, the physical
space is managed at the 256KB block granularity. In this work we consider three degrees
of protection thus, the OS handles three different types of blocks: (i) T0 or non-protected
memory blocks; (ii) T1 memory blocks; and (iii) T2 memory blocks. Consequently, the
OS keeps three empty frame lists, one per type of block, in addition to a free empty
block list. When a memory request reaches the OS, it includes not only the memory size

13T2-MASK depends on the memory system configuration.
14In 3D-stacked DRAMs the ECC logic is implemented on the logic die at the bottom of the stack. [131].

4.3. ODD-ECC IN 2D DRAMS 77

requested but also the protection level. Therefore, the space requested will be allocated
from the corresponding pool. If no frame is available in the corresponding pool, then a
new 256KB block is allocated from the empty block list and its frames (excluding the
ones reserved for fault tolerance) are added to the corresponding frame type list. The
fault tolerance level of the memory requests is provided by the OS memory request API,
which is a simple extension of the traditional API. Dynamic memory allocation can be
performed using a p-malloc function call that adds an extra parameter indicating the
protection level for the memory requested. For static memory allocation (e.g. global or
stack) an extra option describing the protection level of the different static memory spaces
is passed to the compiler so that it augments the executable with the extra information to
be used by the loader when requesting memory.

Table 4.5: Example 2D-DRAM memory system configuration

Example configuration with DDR3-1600 (x8)
Rows 16K Ranks 2 per DIMM
Columns 1K DIMMs 2
Banks 8 Channel 1
Device Size 128MB Cacheline(CL) 64B
Channel width 64-bit Total Capacity 4GB

4.3 Odd-ECC in 2D DRAMs
Considering the generic 8×8 DRAM block used in the previous section for explaining
our approach, we describe next how Odd-ECC is applied in conventional 2D DRAM
DIMMs. Figure 4.5 illustrates an example 4GB memory system of two DRAM DIMMs
with two ranks per DIMM. A typical 64B (Byte) cacheline is spread in 8B segments over
eight chips in one rank. Spreading a cacheline in this manner, makes it possible to read
the whole 64B in four DRAM cycles (i.e. eight half-cycles) where in each half-cycle, 8b
(bits) are read from each of the chips simultaneously and sent to the memory controller
using a 64b channel. Considering this arrangement, a row of 1KB in one DRAM chip
can accommodate 8B segments of 128 64B cachelines. Without loss of generality, Table
4.5 provides the 2D DRAM configuration used to exemplify our approach.

As the cachelines are spread across all 8 chips in a Rank (and bank), the 8×8
block is also spread across the 8 chips containing 8 cachelines in a row and spanning
8 consecutive rows (row i to row i+7) in the same Bank. This is illustrated in Figure
4.6. We conceptually split the rows of each DRAM chip into 64B boundaries. Each 64B
boundary can store eight 8B segments of eight cachelines. A 64B boundary over eight
neighboring rows and across the 8 chips forms a block of 8×8 cachelines. In our 2D
DRAM example, cachelines of a page are spread across 2 DIMMs, 2 Ranks, and 8 Banks.
Since this parallelism (of 32) is not enough, two cachelines of the same page are stored
in different consecutive blocks in the same row, as shown in Figure 4.6. Then, a pool of
64 pages is formed by 64 blocks stored in pairs across 2 DIMMs, 2 Ranks, and 8 Banks.

78 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

1024KB

8 bits

64-bit channel

1024

1024

1024

64 128 192

80 6416

8

0 9 64

17

18

63

1014

256 896 960

CL 0 CL 1 CL 127

CL 0 CL 1 CL 111CL 6

CL 7

16 x 64 Bytes

Row i

Not used (16 Bytes per 1024 Row)Cacheline Bytes T1-ECC (112 Bytes per 1024 Row)

Not Protected
Row

BYTE 0

ECC Protected
Row

8 Banks

64-Byte Cacheline-> 8-Byte per chip

Chip
 0

Chip
 1

Chip
 2

Chip
 3

Chip
 4

Chip
 5

Chip
 6

Chip
 7

Row i

Chip
 0

Chip
 3

Chip
 1

Chip
 2

Chip
 4

Chip
 5

Chip
 6

Chip
 7

Chip
 0

Chip
 3

Chip
 1

Chip
 2

Chip
 4

Chip
 5

Chip
 6

Chip
 7

Chip
 0

Chip
 3

Chip
 1

Chip
 2

Chip
 4

Chip
 5

Chip
 6

Chip
 7

Chip
 0

Chip
 3

Chip
 1

Chip
 2

Chip
 4

Chip
 5

Chip
 6

Chip
 7

0 8 64

R
an

k0
R

an
k1

D
IM

M
0

D
IM

M
1

R
an

k0
R

an
k1

Figure 4.5: Overview of 2D-DRAM memory system.

The above defines T0 of Odd-ECC in 2D DRAMs. T0 offers all 64 pages in a pool to
the user without any protection.

4.3.1 T1 ECC

For T1 the last (eighth) cachelines in each row of a block stores the ECCs of the other 7
cachelines. We dedicate 8B of T1 to each of the seven 64B cachelines which leaves 1B
left unused. Similar to the data, the 8B T1 ECC is divided into 8 segments, spread across
8 chips, and stored alongside the data, occupying one additional column in the row on
each chip. As described in the previous section, the column address in every chip needs to
be re-coded for T1. In T0 the column address points in the beginning of an 8B cacheline
segment, but for T1 it should have a stride of 9B. Applying the method explained in the
general Odd-ECC description, the stride of 9 is calculated by copying column address
bits 5:3 to bits 2:0 as shown in Table 4.6. As described in previous section, the T1 ECC
for a 64B cacheline forms up to be 48b (6B), leaving 16b (2B) unused. Effectively this
means every 8B data segment on each chip has 6b of T1 with 2 spare bits. In 2D-DRAMs
Odd-ECC, these 2 spare bits are used to store the parity of each 8B segments, one per
32b.

4.3. ODD-ECC IN 2D DRAMS 79

Row i

Row i

Row i

Row i+1

Row i+7

0:0 0:1 0:6 -:7 32:0 32:1 32:6 -:7

1:0 1:1 1:6 -:7 33:0 33:1 33:6 -:7

7:0 7:1 7:6 -:7 39:0 39:1 39:6 -:7

7:8 7:9 7:14 -:15 39:8 39:9 39:14 -:15

7:56 7:57 7:62 -:63 39:5639:57 39:62 -:63

Bank 0

Bank 1

Bank 7

64-Byte Boundary

128-Byte- Pool Boundary

8 Banks

0 0
2

1
3

4
5

6
7

2
1

3
4

5
6

Row i

Row i

Row i

Row i+1

Row i+7

24:0 24:1 24:6 -:7 56:0 56:1 56:6 -:7

25:0 25:1 25:6 -:7 57:0 57:1 57:6 -:7

31:0 31:1 31:6 -:7 63:0 63:1 63:6 -:7

31:8 31:9 31:14 -:15 63:8 63:9 63:14 -:15

31:5631:57 31:62 -:63 63:5663:57 63:62 -:63

Bank 0

Bank 1

Bank 7

8 Banks

0
2

1
3

4
5

6

0
2

1
3

4
6

8-Byte

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

i
th
segment of an 8x8 block;

i = chip Number

0 0
2

1
3

4
5

6
7

2
1

3
4

5
6

0
2

1
3

4
5

6

0
2

1
3

4
6

Rank1Rank0

7

D
IM
M
 0

Rank0 Rank1

7 7

D
IM
M
 1

5

X:Y
Page Reserved For T1-ECC

Page Reserved For T2-ECC

i
th
Segment of CachelineX of PageY ; i = chip Number

7

D
IM
M
 0

Rank0 Rank1

7 7

D
IM
M
 1

5

Figure 4.6: The physical layout of pages and cachelines for the 2D-DRAM
memory system configuration described in Table 4.5. The placement starts from
DIMM0/Rank0/Bank0 and ends at DIMM1/Rank1/Bank7.

4.3.2 T2 ECC

T2 codes, responsible for correcting multi-bit faults, are placed in the eighth row of
every block as shown in Figure 4.6. Similar to LOT-ECC [66], in 2D DRAMs Odd-
ECC T2 code is the bit-wise parity of the 8B segments of seven vertically neighboring
cachelines. In particular, a single parity Pi, where i is the chip number, is stored in row 8
of the block and protects cacheline segments Xy stored in rows X = 1, 2, ..., 7 in chips
y = (i+X)mod 8, resembling RAID 5 [133]. Simply stated, a single parity protects a
single cacheline segment in each chip, as shown in Figure 4.7. This way, T2 codes can
be used to reconstruct the contents of a block in case of a single chip failure.

In Odd-ECC, T2 parity covers only the data of the 7 protected cacheline 8B segments
and not their additional 1B T1 ECC. Consequently, for each T2 parity stored in the last
row of a block there is a leftover ninth byte. In order to provide chipkill-level protection,

80 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

Table 4.6: Starting column address for 2D-DRAM memories in case of unprotected (T0)
and T1 protected cachelines with 1-KB row size.

Starting Column Address for
Unprotected Cachelines

Starting Column Address for
T1 Protected Cachelines

CL#
Column
(Byte)

Column [9:0]
(Binary) CL#

Column
(Byte)

Column [9:0]
(Binary)

0 0 0000 000 000 0 0 0000 000 000
1 8 0000 001 000 1 9 0000 001 001
2 16 0000 010 000 2 18 0000 010 010
3 24 0000 011 000 3 27 0000 011 011
4 32 0000 100 000 4 36 0000 100 100
5 40 0000 101 000 5 45 0000 101 101
6 48 0000 110 000 6 54 0000 110 110
7 56 0000 111 000 - 63 0000 111 111
8 64 0001 000 000 7 64 0001 000 000
9 72 0001 001 000 8 73 0001 001 001
...

...
...

...
...

...
...

...
...

...
i B b9b8b7b6 b5b4b3 b2b1b0 j = di− (i/8)e j ∗ 9 + bi/8c b9b8b7b6 b5b4b3 b2b1b0

each 8B T2 parity should be followed by 1B interleaved parity of its own bytes, similar
to the detection code used in [74]. We use the above ninth leftover byte to store such 1B
parity and detect faults in each 8B T2 code.

In 2D DRAMs, Odd-ECC T2 is placed on the eighth row of an 8×8 block, protecting
the seven cachelines above that row. Thus, the corresponding T2 of each cacheline will be
on the same bank and same column, but on a different row. The address of T2 for every
cacheline can be directly found by using a fixed T2-MASK vector15 on the cacheline
address, changing the three LSBs (least significant bits) of the row address to “111”.

T2 is added on top of T1. Hence, large granularities of faults over the whole cacheline
can be detected using the strong T1 CRC code. But, in order to use T2 to correct multiple-
bit (i.e. burst) faults up to a complete chip failure, we need a mechanism to locate the
particular faulty cacheline segment, located in a single chip. Considering independent
faults constrained within chip boundaries and the fault modes listed Table 4.2, we describe
next the fault locating mechanism with an example using Figure 4.7. Let us assume that
CRC has detected a burst fault in cacheline A, which is uncorrectable by T1. As a first
step for locating the fault, the 2-bit parity of 8B segments are used, which are stored in
T1. However, due to their low detection capability, T1 parity bits might not reveal which
segment of cacheline A is faulty. As a second resort, the T2 codes are checked. Each 8B
T2 segment is augmented with an additional 1B interleaved parity to check its correctness.
In case of a fault in a T2 parity, e.g., in P4, it shows that chip 4 is encountering a burst
fault 16. Consequently, the correction mechanism starts regenerating the A4 segment.
Otherwise, if all T2 parity codes are fault-free, the fault locating mechanism proceeds
with regenerating all segments of the T2 parity by reading the cachelines in the other 6
rows B, C, D, E, F , and G. Comparing the new T2 segments with the previously ones

15In our example 2D-DRAM memory system the T2-MASK vector is 0x1C0000
16This event can be associated with multiple row, column, bank or complete chip failure.

4.3. ODD-ECC IN 2D DRAMS 81

P0 P1 P2 P3 P4 P5 P6

B0

C0

D0

E0

F0

G0

A1

C1

D1

E1

F1

G1

A2

B2

D2

E2

F2

G2

A3

B3

C3

E3

F3

G3

A4

B4

C4

D4

F4

G4

A5

B5

C5

D5

G5

A6

B6

C6

D6

E6

F6

A7

B7

C7

D7

E7

F7

G7

P0= A1 B2 C3 D4 E5 F6 G7 .
..

P7= A0 B1 C2 D3 E4 F5 G6

E5

64-Byte Boundary

A0

B1

C2

D3

E4

F5

G6

P7

8
-r
o
w
s
in
 o
n
e
 b
a
n
k

XY

8-Byte

Chip 0 Chip 1 Chip 7Chip 2 Chip 3 Chip 4 Chip 5 Chip 6

Cacheline X, segment y

Figure 4.7: The structure of T2 ECC in 2D-DRAM.

results in at least one mismatch, since a segment of cacheline A is faulty. In case there
is a single parity mismatch, the fault is located in the specific segment of cacheline A
that is used for computing that particular T2 parity 17. Otherwise, if multiple parities
mismatch with the newly calculated ones, a simple analysis leads to the detection of
the faulty cacheline segment. For instance, if both P0 and P1 do not match their old
values, segments A1 and A2 are the two candidates to be faulty. However, considering
our assumptions for independent fault modes, the only way that both P0 and P1 can
give a mismatch is that A2 and B2 on chip 2 are encountering burst faults 18. In such
case, the A2 segment is the faulty one and the correction mechanism will regenerate it.
Regenerating a faulty segment is done using the respective T2 parity and the six other
cacheline segments similar to LOT-ECC [66].

4.3.3 Address Mapping

We explained how Odd-ECC can be employed on 2D-DRAMs by spreading 64 pages
of each pool and 64 cachelines of each page in 8×8 blocks. Clearly, this arrangement
requires modifications in the way a physical memory address is mapped to DRAM.
Considering the generic 8×8 block in Section 4.2, we describe the address mapping of
our example 2D-DRAM configuration below. As shown in Figure 4.8(a), 18 bits are
needed to address any byte within a 256KB pool. Out of these 18 bits, the LSBs 5:0 are
the byte offset, bits 11:6 indicate the cacheline in a page and MSBs 17:12 indicate the
page in the pool.

17This event can be associated with single row failure.
18This event can be associated with multiple row or column failure.

82 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

- - -- - -- -- - -- - -- - - -- - -

(b) Physical address mapping for 2D-DRAM (32bits)

02356781011131416171831 20 149121519

- - - - - -- - - - - -- - - - - -

(a) Physical address of a 256KB-Pool (18 Bits)

Offset

(64-Byte)

Cacheline in a Page

(64 CLs in a Page)

Page in a Pool

(64 Pages in a Pool)

1 02345678910121314151617 11

BlockOffSetBankRankColumn Row

Figure 4.8: 2D-DRAM address mapping based on the memory system configuration of
Table 4.5.

This means, bits number 17:12 address all cachelines within one 8×8 block, and bits
number 11:6 address each of the 64, 8×8 blocks. In essence, Odd-ECC only requires
changes in the way these 12 bits of a pool address (i.e 17:12 and 11:6) are mapped to
the memory, because all requests to the memory are cacheline aligned. Figure 4.8(b)
illustrates how each bit of a pool’s physical address is mapped to the rows, columns,
ranks, and banks of our example 2D-DRAM configuration. Since all eight chips in a
rank use the same address, for simplicity we describe the mapping for one chip, which
stores one 8B segment of each cacheline. Each pool spans 128 bytes of 8 rows across
all banks, ranks and devices. The first 32 cachelines of a page are spread over one
row and column of all banks and ranks (i.e bits 7:3). The remaining 32 cachelines of a
page are placed in the next neighbouring 8×8 block defined by bit 14. This mapping is
repeated for every group of 8 pages until all 8 DRAM rows of a pool are mapped. In
essence, this mapping is a special case of cache-line-interleaving address mapping, i.e.
Row::Column::Rank::Bank::BlockOffSet, which is a typical mapping for closed-page
policy in 2D-DRAMs [134]. Odd-EEC 2D-DRAM mapping is not expected to cause
performance issues as it offers maximum bank and rank parallelism.

4.3.4 Extensions to Other 2D-DRAM Memory System Configura-
tions

We used an example memory configuration for describing how Odd-ECC can be
employed on conventional 2D-DRAM. However, Odd-ECC can be employed on different
2D-DRAM configurations using ×8 non-ECC devices. Depending on the available bank
parallelism in the system, the only thing that changes is the pool boundary, i.e. the number
of consecutive 8×8 blocks used for each pool. This means Odd-ECC can be employed
even on a single non-ECC DIMM memory system, proving chipkill-level protection.
Moreover, the reserved pages in Odd-ECC can be used with other error correcting codes,
with different detection or correction capabilities, as long as the storage requirements do
not exceed the available space. Finally, other common memory reliability techniques

4.4. ODD-ECC IN 3D-STACKED DRAMS 83

Bank 2 Bank 3

Bank 4 Bank 5

Bank 6 Bank 7

Bank 8 Bank 9

Bank 10 Bank 11

Bank 12 Bank 13

Bank 14 Bank 15

Vault 0

Not Protected
Row

64-Byte Chachline-> Placed on consecutive columns on one row

Vault Controller

BYTE
0 64 128 512448

CL 1CL 0 CL 7

72 144 512

504CL 1CL 0
64

CL 6
136

432

Cacheline Bytes T1-ECC (56 Bytes per 512B Row)

ECC Protected
Row

Bank 0 Bank 1

Die 0
Die 1
Die 2
Die 3
Die 4
Die 5
Die 6
Die 7
Logic Die

BYTE 0 64

Figure 4.9: Overview of 3D-stacked memory system.

such as memory scrubbing [135], i.e. periodical read-rewriting of every memory location
to avoid accumulation of memory faults, or page retirement policies [136], i.e. disabling
faulty memory regions at the software level, can be applied in conjunction with Odd-ECC.

4.4 Odd-ECC in 3D-stacked DRAMs

Odd-ECC can be applied to 3D-stacked DRAMs, using the same generic 8×8 DRAM
block of Section 4.2. In 3D-Stacked memories multiple DRAM dies are stacked on top
of each other using Through Silicon Vias (TSVs). In current 3D-stacked standards like
HMC [137] and HBM [138], the stack is divided into several vertical vaults. Each vault
is a single memory channel with its own memory controller, placed on a logic die at
the bottom of the stack. Each vault has multiple banks and on each bank DRAM cells
are organized in rows and column similar to traditional DRAMs. However, the row
sizes in 3D-stacked DRAMs are made shorter to save power [139]. Figure 4.9 illustrates
an example 3D-stacked memory with eight dies and eight vaults. Each vault consists
of 16 banks, two per die, with row size of 512B (Bytes). Contrary to 2D-DRAMs,

84 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

in 3D-stacked DRAMs the whole cacheline is placed in consecutive columns in one
DRAM chip. This way, considering a typical 64B cacheline and 64b (bit) data-TSV
channel, a cacheline can be accessed in four DRAM cycles, (i.e. eight half-cycles) where
in each half-cycle, 64b are read from a same row in a bank and sent to the memory
controller at the logic layer. With this arrangement, a row of 512B in one DRAM chip
can accommodate eight 64B cachelines. Without loss of generality, Table 4.7 provides
the 3D-stacked DRAM configuration used to exemplify our approach.

Table 4.7: Example 3D-stacked memory system configuration

Example 3D stacked DRAM configuration
Capacity 8GB # of Banks 16 per Vault
of Dies 8 Row Size 512 Bytes
of Vaults 8 Channel width 64 TSVs

Placing a cacheline in one row of one bank makes the mapping of the generic 8×8
block simpler. As illustrated in Figure 4.10, a block is placed in one vault, spread across
one row in eight banks (either the odd or the even in our example), each bank on a
different die. Since the row size is 512B, one entire row in a bank is effectively a row in
the 8×8 block, which stores eight 64B cachelines. In our 3D-Stacked DRAM example, a
pool is composed of 64 blocks spread across both the odd and even banks of 8 vaults (i.e.
parallelism of 16). Since this parallelism (16) is not enough to form a pool, blocks of
4 consecutive rows in a bank belong to the same pool of 64 blocks, as shown in Figure
4.10. Then, a page has a cacheline in every bank of every vault, in 4 consecutive rows
(same column).

The above organization defines how T0 of Odd-ECC is mapped to 3D-stacked DRAM.
T0 offers all 64 pages in a pool to the user without any protection.

4.4.1 T1 ECC
Similar to 2D-DRAM, we dedicate 8B of T1 to each 64B cacheline out of which seven
bytes are used to store the T1 ECC described in the previous section and one byte is left
unused. The 8B T1 ECC is stored alongside the data, occupying one additional column19

in a row on one bank. As described in the previous sections, the column address for
accessing T1 protected cacheline needs to be re-coded to find the starting column address,
which is now a multiple of 72B rather than a multiple of 64B in T0. Applying the method
explained in the general Odd-ECC description, the stride of 72 is calculated by copying
column address bits 8:6 to bits 5:3, as shown in Table 4.4.

4.4.2 T2 ECC
As shown in Figure 4.10, T2 codes are placed in the eighth row of every block. For
3D-stacked DRAM this means that T2 codes are always placed on the eighth die. Similar

19Column size is 8B.

4.4. ODD-ECC IN 3D-STACKED DRAMS 85

Vault 0

Bank 0, Row i 0:0 0:1 0:6 -:7
Bank 0 Bank 1

Bank 2 Bank 3

Bank 14 Bank 15

D
ie
 0

D
ie
 1

D
ie
 2

D
ie
 3

D
ie
 4

D
ie
 5

D
ie
 6

D
ie
 7

0:8 0:9 0:14 -:15

0:56 0:57 0:62 -:63

Bank 2, Row i

Bank 14, Row i

V7

V6

V5

V4

V3

V2

V1

V0

One 8x8 block, spread over eight

dies, one row per die.

64-Byte Cacheline

Vault 7

Bank 1, Row i+3 63:0 63:1 63:6 -:7
Bank 0 Bank 1

Bank 2 Bank 3

Bank 14 Bank 15

D
ie
 0

D
ie
 1

D
ie
 2

D
ie
 3

D
ie
 4

D
ie
 5

D
ie
 6

D
ie
 7

63:8 63:9 63:14 -:15

63:56 63:57 63:62 -:63

Bank 3, Row i+3

Bank 15, Row i+3

0

0

16

1 0 1 0 1

1 9 2 10

17 25 18 26

v0 v1 v2

0 1 0 1

6 14 7 15

22 30 23 31

v6 v7

Bank

CLs on Row i

CLs on Row

i+1

Vault

64 cachelines of Page 0

32

48

33 41 34 42

49 57 50 58

38 46 39 47

54 62 55 63

CLs on Row

i+2
CLs on Row

i+3

8

24

40

56

Page Reserved For T2-ECC

X:Y
Page Reserved For T1-ECC

CachelineX of PageY

Figure 4.10: Page and cachelines mapping for 3D-stacked memory. With 8 dies, 8 vaults
and 2 banks per vault, cachelines of one page occupy 4 rows on each bank (i.e. A pool
boundary is 4 rows over all banks)

to Parity Helix [73], in 3D-stacked Odd-ECC, T2 code is the bit-wise parity of the seven,
64B cachelines, stored on a same row and column of seven banks in one vault, one bank
on every die. Simply stated, a 64B parity stored on the eighth die, protects seven 64B
cacheline stored on the same row and column of the other seven dies above. This way,
T2 codes can be used to reconstruct the entire cacheline, even in case of a single die
failure 20.

In Odd-ECC, T2 parity is covering only the data of the 7 protected cachelines and not
their additional 8B T1 ECC. Consequently, for each T2 parity stored in the last row of a
block, there are eight leftover bytes. The leftover bytes can be used to provide additional
protection for the T2 code.

The corresponding T2 code for a T2 protected cacheline is on the same bank position

20In the current design, T2 does not protect against vault faults.

86 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

, same column, same row but on the eighth die. Thus, address of T2 code can be found
directly by using a fixed T2-MASK. vector, changing the three die bits of the cacheline
address to “111”. In our example 3D-stacked memory system the T2-MASK vector is
0x1C00.

T2 is added on top of T1. Hence, large granularities multi-bit faults over the whole
cacheline can be detected using the strong T1 CRC code. Contrary to 2D-DRAM where
T2 was protecting 8B segments of cachelines, in 3D-stacked DRAM T2 is constructed
over the whole cacheline. Therefore, there is no need for locating the place of the fault in
the cacheline. For a given cacheline, when CRC code detects a fault, uncorrectable by T1,
the memory controller will read the T2 code and all other six cachelines, contributed in
computing the T2. This is done by simply changing the die bits in the cacheline address.
Regenerating a faulty cacheline is done by computing the bit-wise parity of respective T2
and the six other cachelines similar to Parity Helix [73].

4.4.3 Address Mapping
Similar to 2D-DRAM, employing Odd-ECC on 3D-stacked DRAM only requires changes
in the way 12 bits of a pool address are mapped to the memory, i.e six bits page address
(17:12) and six bits of cacheline address (11:6).

10

(b) Physical address mapping for 3D-stacked DRAM (34bits)

BlockOffSet

- - - - - -- - -- - -

Row

0235131416171833 1415

- - - - - -- - - - - -- - - - - -
Offset

(64-Byte)

Cacheline in a Page

(64 CLs in a Page)

Page in a Pool

(64 Pages in a Pool)

1 02345678910121314151617 11

(a) Physical address of a 256KB-Pool (18 Bits)

Column

- - -

Die

1112

- - -
78 6

VaultBank

-
9

Figure 4.11: 3D-stacked address mapping based on the memory system configuration of
Table 4.7.

Figure 4.11(b) depicts how each bit of a pool’s physical address is mapped to our
example 3D-stacked DRAM configuration. Each pool occupies 4 consecutive rows on
every bank and vault. The cachelines of each page are interleaved across all vaults and
banks (bits 9:6) on one die on the same column spanning over 4 rows (bits 17:16). The
pages of a pool are spread across all vaults, dies (bits 12:10), and columns (bits 15:13)
occupying 4 complete rows. This mapping, is a special case of default address mapping
of HMC,i.e. Row::Column::Die::Bank::vault::BlockOffSet, which exploits the available
bank parallelism inside the cube to avoiding bank conflicts [131]. Odd-ECC 3D-stacked

4.5. EVALUATION 87

address mapping exploits maximum channel and bank parallelism and therefore should
not affect the performance.

4.5 Evaluation

Using the same applications studied in Section 4.1 and guided by their MTTF analysis,
we select combinations of fault tolerance levels (i.e. T0, T1, T2) for each data region
to be supported by the proposed Odd-ECC scheme. These Odd-ECC setups are then
compared with flat fixed memory fault tolerance levels in terms of the overall MTTF of
the application at hand, as well as in terms of overheads in memory capacity, application
performance and energy costs.

4.5.1 Experimental Setup

Performance and energy consumption of different memory protection options are
evaluated using an in-house cycle accurate, execution driven multi-core simulation
platform based on Pin [119] coupled with DRAMSim-2 [140], which is modified to
implement Odd-ECC address mapping. DRAMSim-2 was also modified to support
memory bursts of eight and ten. OS virtual to physical address translation is emulated
in our simulator by keeping track of the virtual addresses and protection levels for each
address.

For the common case reads and writes of a T1 protected cacheline, we consider an
extra burst. The 8 Bytes of T1 can be accessed in half a cycle, while the other half cycle
is enough for the detection mechanism based on [126]. For the common case writes, each
T2 protected cacheline requires two reads and two write operations for updating the parity.
Nevertheless, since writes are not on the critical path, T2 writes have limited performance
impact. Prior works have proposed using a parity cache to reduce the performance impact
of updating ECC codes [71, 72, 74]. However, since our goal is to compare between
different protection setups, our evaluation does not consider this optimization.

Table 4.8 summarizes different system parameters used in our evaluation. For 2D
and 3D-stacked DRAM memory systems, we used the same memory configurations as
given in Table 4.5 and Table 4.7, respectively. 2D-DRAM timing and current parameters
were obtained from DDR3-1600 data-sheet. For 3D-stacked DRAM we considered the
timing parameters used in [139] and for energy measurement we used current value from
DDR4-2400. CACTI 6.5 [141] is used for obtaining the cache latency.

In the evaluation we used the same sets of applications as in our sensitivity analysis.
A brief description of these applications is shown in Table 4.9. The results presented are
obtained from the simulation of one billion instructions after a warm-up of one hundred
million instructions.

88 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

1
0
%

1
0
0
%

1
0
0
0
%

1
0
0
0
0
%

1
0
0
0
0
0
%

-/-/T1/-
Flat-T1

T2/-/T2/T1
T1/T1/T2/T1
T1/T2/T2/T1

Flat-T2

-/-/T1/-
Flat-T1

T2/-/T2/T1
T1/T2/T2/T1

Flat-T2

-/-/T1/-
Flat-T1

-/T2/T1/-
T1/T1/T2/T1

Flat-T2

-/-/T1/-
Flat-T1

T1/T1/T2/T1
Flat-T2

-/-/T1/-
Flat-T1

T2/-/T2/T1
T1/T1/T2/T1
T1/T2/T2/T1

Flat-T2

-/-/T1/-
T1/-/T1/T1

Flat-T1
T2/-/T1/T2
T2/-/T2/T1

T1/T1/T2/T2
Flat-T2

-/T1/-/-
-/T1/T1/-

Flat-T1
T2/T2/T1/T2

-/T2/T2/-
Flat-T2

-/-/T1/-
Flat-T1

-/-/T2/T1
T2/-/T2/T1

T2/T1/T2/T1
Flat-T2

-/-/-/T1
-/T1/-/T1

Flat-T1
T2/T1/-/T2
T1/T2/-/T2

Flat-T2

-/T1/-/T1
Flat-T1

-/T1/-/T2
-/T2/-/T2

Flat-T2

-/-/T1/T1
Flat-T1

T2/T1/-/T2
-/-/T1/T2

T1/T1/T2/T2
Flat-T2

-/-/-/T1
Flat-T1
-/-/-/T2

T1/T2/T1/T2
Flat-T2

-/T1/T1/T1
Flat-T1

-/T1/T2/T2
T1/T2/T2/T2

Flat-T2 0
%

1
0
%

2
0
%

3
0
%

b
t.A

s
p
.A

ft.A
m

g
.A

c
g
.A

lu
.A

is
.A

u
a
.A

B
la

c
k
s
c
h
o
le

s
J
m

e
in

t
J
p
e
g

F
F

T
In

v
e
rs

e
k
2
j

MTTF Improvement (%)
 Normalized to Baseline with no Protection

Capacity overhead(%)

	
R

e
g

io
n

s
 o

f P
ro

te
c
tio

n
: S

ta
c
k
/ H

e
a

p
 / G

lo
b

a
l /(T

h
0

-S
ta

c
k
 o

r In
p

u
t-D

a
ta

)
F

la
t T

2
F

la
t T

1
C

a
p

a
c
ity

(%
)

Figure
4.13:M

T
T

F
and

C
apacity

ofO
dd-E

C
C

vs
flatprotection

in
2D

-D
R

A
M

.

1
0
%

1
0
0
%

1
0
0
0
%

1
0
0
0
0
%

1
0
0
0
0
0
%

1
0
0
0
0
0
0
%

-/-/T1/-
Flat-T1

T2/-/T2/T1
T1/T1/T2/T1
T1/T2/T2/T1

Flat-T2

-/-/T1/-
Flat-T1

T2/-/T2/T1
T1/T2/T2/T1

Flat-T2

-/-/T1/-
Flat-T1

-/T2/T1/-
T1/T1/T2/T1

Flat-T2

-/-/T1/-
Flat-T1

T1/T1/T2/T1
Flat-T2

-/-/T1/-
Flat-T1

T2/-/T2/T1
T1/T1/T2/T1
T1/T2/T2/T1

Flat-T2

-/-/T1/-
T1/-/T1/T1

Flat-T1
T2/-/T1/T2
T2/-/T2/T1

T1/T1/T2/T2
Flat-T2

-/T1/-/-
-/T1/T1/-

Flat-T1
T2/T2/T1/T2

-/T2/T2/-
Flat-T2

-/-/T1/-
Flat-T1

-/-/T2/T1
T2/-/T2/T1

T2/T1/T2/T1
Flat-T2

-/-/-/T1
-/T1/-/T1

Flat-T1
T2/T1/-/T2
T1/T2/-/T2

Flat-T2

-/T1/-/T1
Flat-T1

-/T1/-/T2
-/T2/-/T2

Flat-T2

-/-/T1/T1
Flat-T1

T2/T1/-/T2
-/-/T1/T2

T1/T1/T2/T2
Flat-T2

-/-/-/T1
Flat-T1
-/-/-/T2

T1/T2/T1/T2
Flat-T2

-/T1/T1/T1
Flat-T1

-/T1/T2/T2
T1/T2/T2/T2

Flat-T2 0
%

1
0
%

2
0
%

3
0
%

b
t.A

s
p
.A

ft.A
m

g
.A

c
g
.A

lu
.A

is
.A

u
a
.A

B
la

c
k
s
c
h
o
le

s
J
m

e
in

t
J
p
e
g

F
F

T
In

v
e
rs

e
k
2
j

MTTF Improvement (%)
 Normalized to Baseline with no Protection

Capacity overhead(%)

	
R

e
g

io
n

s
 o

f P
ro

te
c
tio

n
: S

ta
c
k
/ H

e
a

p
 / G

lo
b

a
l /(T

h
0

-S
ta

c
k
 o

r In
p

u
t-D

a
ta

)
F

la
t T

2
F

la
t T

1
C

a
p

a
c
ity

(%
)

Figure
4.14:M

T
T

F
and

C
apacity

ofO
dd-E

C
C

vs
flatprotection

in
3D

-stacked
D

R
A

M
.

4.5. EVALUATION 89

Table 4.8: System parameters for our evaluation.

Processors

Core 8 cores, 3.2Ghz , OoO 4-way superscalar

LLC
8MB, 16-way
Lookup latency 6, Read latency 10

Memory Systems
2D-DRAM 3D-Stacked DRAM

Frequency/channel 800 Mhz 1.2 GHz
tRCD/ tRP/ tCL/ tRAS 11/11/11/28 17/17/17/34
Row Buffer Policy Closed-page Close-paged

Table 4.9: Applications used for Odd-ECC evaluation and their data regions sizes.

Application Description Workload Region Size(MB)

Stack Heap Global
Th0-Stack/

InputData

bt Block tri-diagonal solver Class A- 8Th 0.008 60.3 44.4 0.003
sp Scalar penta-diagonal solver Class A- 8Th 0.005 60.8 46.5 0.003
ft Discrete 3D Fast Fourier Transform Class A- 8Th 0.007 68.0 322.9 0.004
mg Multi-grid on a sequence of meshe Class A- 8Th 0.044 67.4 453.0 0.008
cg Conjugate gradient Class A- 8Th 0.006 63.1 47.0 0.003
lu Lower-Upper Gauss-Seidel solver Class A- 8Th 0.062 67.6 43.0 0.16
is Integer Sort Class A- 8Th 0.006 56.3 68.0 0.003
ua Unstructured adaptive mesh Class A- 8Th 0.127 54.8 37.1 0.008
Blackscholes Financial market model 100K points 0.003 8.5 2.0 3.4
Jmeint Triangle intersection detection 100K pairs 0.002 19.1 2.0 6.8
JPEG JPEG encoding 512x512 pixels 0.003 11.9 2.0 2.9
FFT Radix-2 Colley-Tykey Fast Fourier 524,288 F.P 0.004 19.3 2.0 4.0
Inversek2j Inverse kinematics for 2-joint arm 100k coordinates 0.004 13.7 2.0 1.5

4.5.2 Experimental Results

We first present the MTTF and capacity overhead for the different protection schemes of
each application. The baseline considered is the non-protection setup (T0). In addition,
we consider two reference cases: flat-T1 (i.e. all memory regions are protected by T1)
and flat-T2 (i.e. all memory regions are protected by T2).

The results are depicted in Figures 4.13 and 4.14 for the 2D and 3D setups,
respectively. For each application the results of different fault tolerance setups are
shown. The setups are represented in terms of the fault tolerance level provided to the
different regions. For example T2/-/T2/T1 represents the setup for T2 protection of
the Stack, non-protected (T0 denoted as “-”) for Heap, T2 for Global, and T1 for the
Stack of Thread 0. For each setup we show a bar representing the MTTF improvement
compared to the baseline. The values for the bars are presented in a logarithmic scale

90 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

on the y-axis on the left. In addition, for each setup we show a point representing the
capacity overhead, which values are presented in the linear scale on the y-axis on the
right. For each application, the results presented are ordered by increasing MTTF. Note
that although more experiments where performed, only the most promising Odd-ECC
setups are presented.

The first observation is that although the MTTF values of 2D-DRAM and 3D-stacked
DRAM are different, their trend is similar. The difference in absolute MTTF values is
due to the different fault rates and fault models listed in Tables 4.2 and 4.3. Thus our
comments focus on the 2D results but apply to the 3D-stacked results as well.

Odd-ECC can be used to achieve, compared to a flat memory fault tolerance scheme,
either of the following two objectives: (1) similar MTTF with a reduced memory capacity
overhead, or (2) higher MTTF for similar memory capacity constraint.

Considering the above, we can observe that for 4 out of the 13 applications Odd-ECC
does not yield significant gain. For these applications (ft, mg, is and Inversek2j) there is
no Odd-ECC setup that has substantially better MTTF-capacity tradeoff compared to a
flat scheme.

For Blackscholes and Jmeint we can observe that there is an Odd-ECC setup with
better MTTF than the flat-T1 and even less memory capacity overhead. For example,
in Blackscholes we achieve a 1.5×MTTF improvement and 10.8% memory overhead
reduction for the T2/T1/-/T2 setup, which can be explained by the very low SDC rate of
the global region, as shown in Figure 4.2.

For 5 of the 13 applications (bt, sp, cg, lu and FFT) we observe that both goals are
achieved for some Odd-ECC setup when compared to the flat-T1. For example, in FFT
on the one hand, the -/-/-/T1 achieves similar MTTF (-0.6%) with the flat-T1 with a
reduction of 84.2% in the memory capacity overhead. On the other hand, the -/-/-/T2
setup increases MTTF by a factor of 8.7× compared to flat-T1, with a 66.1% lower
memory capacity overhead. High SDC rate of Input-data region explains this outcome.

Finally, for ua, and Jpeg we can observe not only both goals are achieved when
compared to flat-T1, but also there is a reduction of the memory capacity overhead
for similar MTTF when comparing with flat-T2. For example, for ua, when compared
to flat-T2, T2/-/T2/T1 achieves a similar MTTF (-1.8%) with 59.6% reduced memory
capacity overhead. For the same application ua, when compared to flat-T1, on the one
hand -/-/T1/- achieves similar MTTF (-0.5%) with a 59.6% reduction in the memory
capacity overhead. On the other hand, -/-/T2/T1 achieves an increase in the MTTF of
7.0× and a reduction of 13.5% in capacity overhead, which again shows the impact of
high SDC rate in the global region, under both single and multi-bit faults.

Our goal in this work is to reduce the storage costs of ECCs in memory while
still offering similar MTTF. When achieving this goal, Odd-ECC setups have lower
performance and energy overheads than the flat protection schemes with equivalent
MTTF. In general, performance and energy overheads of a protection scheme depend
significantly on the memory architecture. In 3D stacked memories the overhead in IPC
and energy is on average 1.2% and 2.2%, respectively, for flat-T1, and 6.4% and 14.9%
for T2. Flat-T2 has higher overheads because every write access requires an extra read

4.5. EVALUATION 91

-3.8% -2.9%

-39.1%

-11.7%-14.8%
-5.7%

-16.2%
-7.8%

-120%

-100%

-80%

-60%

-40%

-20%

0%

20%
Odd-ECC vs. flat-T1 Odd-ECC vs. flat-T2

MTTF Capacity Overhead IPC Overhead Energy Overhead

Figure 4.14: Improving capacity when using Odd-ECC in 2D DRAM DIMMs. Odd-ECC
setups versus flat-T1 and flat-T2 with the same MTTF constraints. Average, minimum,
and maximum increase in MTTF, and in capacity, IPC, and energy overheads (negative
numbers indicate reduction).

modify and write of the respective parity. For 2D DRAMs, the performance and energy
overheads are higher due to use of single channel. In 2D-DRAMs, flat-T1 introduces on
average a performance and energy overhead of 7.7% and 6.7%, respectively, while flat T2
has a 23.6% overhead in performance and 47.% in energy. As shown, Odd-ECC setups
with the same MTTF as a flat protection scheme are faster and more energy efficient.
4.5.3 Summary
In order to summarize the benefits of Odd-ECC we present two charts, one for each goal
that can be achieved by Odd-ECC: improving the memory capacity with similar MTTF
(Figures 4.14 and 4.15) and improving the MTTF with similar memory capacity overhead
(Figure 4.16 and 4.17). Notice that the former can be done as compared to both flat-T1
and flat-T2 while the latter only when compared to flat-T1 since we cannot improve the
MTTF over flat-T2.

In each chart we show the average results over all applications for the Odd-ECC
protection setups against the corresponding flat protections. We breakdown the results
into change in MTTF, capacity overhead, IPC overhead, and energy overhead. The error
bars represent the extreme maximum and minimum results for particular applications.

In terms of the capacity goal, we can observe that the Odd-ECC protection setups
in both 2D and 3D-stacked DRAMs are able to keep a similar MTTF (reduction by
3.8-11.1% and 2.9-7.4% as compared to flat-T1 and flat-T2, respectively) and achieve
a reduction in the memory capacity overhead of 39.1% and 11.7% on average when
compared to flat-T1 and flat-T2, respectively. It is important to notice that the MTTF is
not significantly affected as we gain capacity and at the same time we observe a reduction
in both the IPC and energy overheads.

When attempting to improve flat-T1 MTTF within the same ECC storage constraints,
we can observe that Odd-ECC protection setups are able to improve considerably the

92 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

-11.1% -6.4%

-39.1%

-11.7%
-5.7% -6.8%-10.5% -7.7%

-100%

-80%

-60%

-40%

-20%

0%

20%
Odd-ECC vs. flat-T1 Odd-ECC vs. flat-T2

MTTF Capacity Overhead IPC Overhead Energy Overhead

Figure 4.15: Improving capacity when using Odd-ECC in 3D-stacked DRAM. Odd-ECC
setups versus flat-T1 and flat-T2 with the same MTTF constraints. Average, minimum,
and maximum increase in MTTF, and in capacity, IPC, and energy overheads (negative
numbers indicate reduction).

MTTF. In 2D DRAMs that is 266% on average and up to 900%, and in 3D-stacked
DRAMs 770% on average and up to 1400%. Nevertheless, this MTTF improvement
comes with a performance and energy cost (195% and 344%-429% higher than the flat-T1
overheads, respectively). It is relevant to notice that this cost is always lower than a
flat-T2 memory protection approach and is due to the fact that for improving MTTF over
flat-T1, only a subset of the data regions require T2 protection.

4.6 Related Work

In Odd-ECC we use application sensitivity analysis to gain insight about error resiliency
of different data regions. In the past, several approaches have been taken based on the
same observation. Mehrara and Austin [50] explored the possible benefits of providing
different level of protections for different application memory regions. However, they did
not propose a mechanism to support different memory protection schemes. In Flikker [59]
application’s data are divided into critical and non-critical regions and the authors propose
a technique to trade DRAM refresh rate with reliability in order to reduce refresh energy
consumption for mobile devices. Luo et al. [49] use application’s sensitivity analysis as a
motivation for heterogeneous-reliability memory systems, where DIMMs with different
protection levels are connected to different memory channels.

Several works on fault tolerance for both 2D- and 3D-DRAMs have been presented
in the past. We discuss the most relevant and recent ones below.

In the 2D-DRAM domain, typical chipkill-level schemes use 4-symbol SSC-DSD
codes and require activation of 36×4 DRAM chips. In order to improve the energy cost,
many alternative schemes have been proposed. Among them, some offer the flexibility

4.6. RELATED WORK 93

266.0%

-0.9%

195.3%

429.2%

-200%

0%

200%

400%

600%

800%

1000%

1200%

1400%

1600%

1800%

MTTF Capacity Overhead IPC Overhead Energy Overhead

Figure 4.16: Improving MTTF when using Odd-ECC in 2D DRAM DIMMs. Odd-ECC
setups versus flat-T1 and flat-T2 with the same capacity constraints. Average, minimum,
and maximum increase in MTTF, and in capacity, IPC, and energy overheads (negative
numbers indicate reduction).

to use different levels of protection. VECC [60] dynamically maps data and ECC
information in separate locations inside the same memory. VECC can be applied to non-
ECC ×8 DIMMs with 18.75% overhead. However, VECC requires major modifications
in the memory system, operating system and last level cache. Another restriction of
VECC is that for ×8 chips it requires the activation of 16 chips. Clean-ECC [61] offers
fault protection flexibility by exploiting different granularity memory accesses in special
sub-ranked ×4 ECC-DIMMs and has a fixed capacity overhead of 12.5%. In addition
to the access granularity prediction mechanism, Clean-ECC requires modification of
the memory interface and cache management to handle mixed granularity accesses.
MAGE [62] uses a combination of SSC-DSD and erasure codes to adaptively change
the protection level based on applications access granularity. MAGE can be employed
on different memory system configurations, requiring at least two 128-bit channels
for ×8 chips with ECC-DIMMs. ARCC [63] describes a mechanism to adaptively
increase the protection strength by combining cachelines at page granularity. Bamboo
ECC [64] proposes a single-tier, strong error correction code that can gracefully degrade
the protection level through redundant bit steering on ×4 DRAMs with ECC-DIMMs.
RAIM-5 [75] is new design that allows selective protection of subset of the memory,
allowing the user to pay storage cast only when needed, in multi-channel memory systems.
Compared to these techniques, to the best of our knowledge, Odd-ECC is the only scheme
that offers three different protection levels applied on non-ECC ×8 DIMMs, requiring
access to only 8 chips in a rank on a 64-bit channel.

Although the above techniques provide flexible reliability, they impose fixed capacity
overhead on the system. On the contrary, in Odd-ECC capacity overheads are proportional
to the protection level offered at page granularity. Another technique that aims at capacity
efficiency is ECC-Parity [65], which is an optimization of chipkill-level protection

94 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

770.6%

-0.9%
189.9%

344.3%

-400%
-200%

0%
200%
400%
600%
800%

1000%
1200%
1400%
1600%

 MTTF Capacity Overhead IPC Overhead Energy Overhead

Figure 4.17: Improving MTTF when using Odd-ECC in 3D-stacked DRAMS. Odd-ECC
setups versus flat-T1 and flat-T2 with the same capacity constraints. Average, minimum,
and maximum increase in MTTF, and in capacity, IPC, and energy overheads (negative
numbers indicate reduction).

schemes, assuming multi-channel memory systems. ECC-Parity decouples error detection
and correction bits and instead of saving the actual ECC bits on each channel, the bit-wise
parity of ECC is stored in a different channel to save capacity and energy. Capacity and
reliability trade-off for DRAM memories has also been addressed in CREAM (Capacity-
and Reliability-Adaptive Memory) [76], in which a hardware mechanism is employed to
offer multiple data protection levels. CREAM enables the use the extra storage of ECC-
DIMMs when no protection is required, while allowing the required address transition to
be transparent to the OS by using a DRAM module bridge chip. By modeling page faults,
CREAM shows significant performance improvement when extra capacity is provided
for running applications.

The T1 and T2 protection levels used in Odd-ECC are related to prior-art. In particular,
LOT-ECC [66] uses a two tier protection scheme where the first tier is responsible for
local error detection and second tier is used for error correction. Tier one is a 7bit
checksum of 57bit segments of one cacheline and tier two is the bit-wise parity of
different 57bit segments of the same cacheline. In comparison, Odd-ECC T1 protects
the entire 64B cacheline with single-bit fault correction and strong CRC-16 detection,
and T2 is the bit-wise parity of 8B segments of seven different cachelines. Moreover, flat
T2 protection in Odd-ECC has capacity overhead of 30.6% using 8 chips on a non-ECC
DIMM, which is comparable to LOT-ECC 26.5% capacity overhead using 9 chips in an
ECC-DIMM.

Another technique is Multi-ECC [67], which uses a first tier Reed-Solomon code with
erasure correction capability and checksum error localization codes over 256 adjacent
cachelines on the same column. Multi-ECC uses ECC-DIMMs and requires 256 cacheline
reads for correcting multiple-bit faults.

E3CC [68] stores the ECC-bits on the columns next to the data, and proposes a new

4.7. CONCLUSION 95

Biased Chinese Remainder Mapping (BCRM) to resolve the non-power-of-two address
mapping required for this placement. In Odd-ECC, we use the same placement for T1,
however, by splitting the row into 64B boundaries, we eliminate the need for complicated
address mapping.

In addition to VECC, COP [69] and Frugal-ECC [70] are two other techniques that
combine data compression with protection to provide chipkill-level protection using
non-ECC DIMMs.

The reliability of 3D-stacked DRAMs has been the topic of some recent works.
Citadel [71] uses a combination of techniques to improve the reliability of a 3D-stacked
DRAM where each die is connected to one channel21. A two tier ECC-scheme is
used where T1 is a strong CRC-32 error detection and T2 is a three dimensional parity
correction code, stored in an additional ECC-die. The error correction process in Citadel
takes a long time and is not efficient for correcting transient faults. Citadel can tolerate up
to complete bank faults. Another technique which is proposed for the same 3D-stacked
structure, i.e. one channel per die, is RATT-ECC [72] which uses a strong Reed-Solomon
codes as tier one, and a RAID5 like parity correction code, across channels and banks
as tier 2. Another work that uses bit-wise parity for correcting large granularity faults
is Parity-Helix [73], where a parity line is constructed using one cacheline from each
channel, each die, similar to a spiral. Parity-Helix can protect against complete bank,
channel and die faults. E-RAS [74] decouples error detecting and parity-based correcting
codes, storing them is separate regions. Parities are constructed using cachelines from all
channels similar to RAID5, providing protection against complete bank and channel faults.
While Odd-ECC is similar to some of these technique in the way that it uses parity based
correction codes, none of these techniques support different levels of DRAM protection.
To the best of our knowledge, Odd-ECC is the first scheme that can provide different
protection levels on 3D-stacked DRAMs, using eight dies. Except for Parity-Helix, other
proposals require additional ECC-die, effectively requiring special stack fabrication.
Moreover, in all described techniques reading and updating error correcting codes require
accesses to multiple channels, which implies a centralized memory controller for the
stack. In particular, the channel and die protection coverage of Parity-Helix depends on
accessing the parity line, constructed over cachelines in different channels. However,
Odd-ECC complies with current specification of HMC and HBM in the way it considers
that each vault (channel) has a separate memory controller.

4.7 Conclusion
Odd-ECC offers a flexible memory protection scheme, which enables a system to
dynamically select the level of fault tolerance for different application data. The Odd-
ECC address mapping allows the OS to store ECC bits in separate physical pages made
unavailable to the user. The same mapping guarantees that the ECC bits are physically
aligned with the data they protect, so as to ensure efficient memory accesses on both

21This structure is supported by HBM [138].

96 CHAPTER 4. ADAPTIVE FAULT-TOLERANT MAIN MEMORIES

conventional 2D DRAMs and 3D-stacked DRAMs. We analyzed the reliability of various
applications and observed that faults in different data regions may have different impact
on application’s reliability. Odd-ECC allows such regions to be protected differently
thus, offering the fault tolerance level required for the expected MTTF goal and paying
a proportional cost in capacity, performance, and energy. Compared to a flat Tier-
1 (T1) memory fault tolerance scheme that provides multi-bit detection and single-bit
correction, Odd-ECC reduces the capacity overheads by 39% and performance and energy
overheads by 6-15% to 10-16%, respectively, without compromising reliability (MTTF).
Compared to a flat Tier 2 (T2) memory protection scheme that supports additional
multi-bit correction, Odd-ECC reduces capacity overheads by 12% and performance and
energy overheads by 6-8%. Finally, within the particular capacity constraints of a flat T1
scheme, Odd-ECC improves MTTF by 260% to 770% increasing T1 performance and
energy overheads by 195% and 430%-340%, respectively, which are still lower than the
overheads of a flat T2 scheme.

5
Conclusion

The design of adaptive fault-tolerant system components have been addressed in this
thesis. It has been observed that previous adaptive fault tolerance techniques are mainly
employed to sustain a fixed level of reliability, by properly reacting to changes in systems
conditions. Besides this primary usage, in this thesis we suggested that the flexibility
of adaptive fault-tolerant components can be exploited to offer better trade-off between
reliability and its overheads. The effectiveness of this approach was then demonstrated
by setting and pursuing different objectives for three main components of a multi-core
system, i.e. micro-processors, a Network-on-Chip (NoC), and DRAM main memories.
In the following sections, we briefly summarize the content of this thesis, present our
main findings and contributions in each part and, finally, provide a guideline for possible
future related research topics.

5.1 Summary
In the first part of this thesis, covered in Chapter 2, we studied the design of a reliable
micro-processors architecture that can adapt to permanent faults through coarse and/or
fine grain reconfigurations. Our main objective was to find the most efficient granularity
of substitutable units (SUs) so that, for a given fault-rate, we have the best trade-off
between the achieved reliability and incurred overheads, i.e. in terms of area, performance
and power. To this end, first a probabilistic reliability analysis of a generic reconfigurable
design was presented and different SU granularities were evaluated in terms of reliability
and their overheads. Subsequently, we used a CMP with multiple identical processors
as our use-case, and explored the reliability and overheads of our proposed adaptive

97

98 CHAPTER 5. CONCLUSION

fault-tolerant architecture considering different reconfiguration options. Furthermore,
we explored the advantages of pipelining reconfigurable interconnects by measuring
the execution time and energy consumption and comparing it to the design with non-
pipelined wires. Finally, in order to find the most efficient granularity mix, a design space
exploration was performed.

In the second part of this thesis, covered in Chapter 3, the main objective was to
design and evaluate a service-oriented NoC that enables us to trade service-isolation
for reliability. To this end, we described RQNoC, a service-oriented Network-on-Chip
(NoC) that can adapt to permanent faults. We characterized the network resources based
on the particular service they support and designed a mechanism to bypass them in
presence of permanent faults, allowing the respective traffic class to be redirected. We
proposed two alternatives for service redirection, each having different advantages and
disadvantages. The first one, Service Detour, used longer alternative paths through
resources of the same service to bypass faulty network parts, keeping traffic classes
isolated. The second approach, Service Merge, used resources of other services providing
shorter paths but allowing traffic classes to interfere with each other. The remaining
network resources that are common for all services employed additional mechanisms
for tolerating faults. Links tolerated faults using additional spare wires combined with
a flit-shifting mechanism and the router control was protected with Triple-Modular-
Redundancy (TMR). We evaluated these two alternative techniques in terms of reliability
as well as hardware and performance overheads.

In the third and final part of this thesis, covered in Chapter 4, we focused of main
memory DRAMs and the objective was to have a fault tolerance mechanism that allows us
to trade capacity for reliability. To this end, we introduced Odd-ECC: a new DRAM data
mapping scheme that offers adaptive ECC for each physical page of an application’s data
inside DRAM memories. The main motivation was the observation that an application
may have different sensitivity to faults that appear in different parts of its data. This
observation suggests that using a fixed protection scheme for all data regions could
potentially be a case of reliability over-provisioning. In Odd-ECC, we capitalized on
this observation and provided a mechanism to dynamically select the memory protection
level of each allocated page of a program on demand depending on the criticality of the
respective data. Briefly, in Odd-ECC 4KB pages of physical memory are grouped in pools
of 64 pages, where each pool can have a particular protection level. Then, depending on
the protection offered, a number of pages in a pool is reserved, i.e. marked unavailable for
the user by the OS, to store the ECCs. In our study we selected an Odd-ECC configuration
with three different protection levels, namely Tier Zero (T0), Tier One (T1), and Tier Two
(T2), where T0 provides no protection, T1 provides lower level protection (single-bit
correction, multi-bit detection), and T2 provides higher level protection (adding multi-bit
correction to T1). We showed how Odd-ECC can be applied to conventional 2D as well
as to 3D-stacked DRAMs and evaluated the reliability, capacity, performance and energy
consumption of several Odd-ECC setups, comparing them with flat protection cases.

The following section summarizes the contributions of this thesis for the three
aforementioned parts.

5.2. CONTRIBUTIONS 99

5.2 Contributions
This thesis addressed several issues regarding the design of adaptive fault-tolerant system
components and made the following contributions and findings.

5.2.1 Adaptive Fault-Tolerant Micro-Processors
The first part of the thesis dealt with design of a reliable micro-processors architecture
that can adapt to permanent faults. The main contributions of this part of the thesis were
the following:

• Analytically calculating the fault tolerance for a generic array of reconfig-
urable components with substitutable units.
We presented an analytical method for calculating the probability of constructing a
certain number of fault-free components via different reconfiguration options, i.e.
CG and CG+FG, given the fault density.

• Evaluating the area overheads of different reconfiguration options.
We measured the area overheads of reconfigurability using reconfigurable micro-
processors with substitutable parts as a use-case component.

• Evaluating the performance impact of pipelining reconfigurable intercon-
nects in an adaptive fault-tolerant micro-processors array at different fault
densities.
As a part of our work, we investigated possible performance benefits of pipelining
reconfigurable interconnects which connect stages of adaptive micro-processors.
We retrieved post place and route results in order to consider the actual delay of
the reconfigurable interconnects.

• Performing a Design Space exploration for finding the most efficient
reconfiguration mix of an adaptive micro-processors array.
Finally, using the obtained analytical calculations and overhead values from our
use-case, we evaluated various reconfiguration scenarios, measuring the average
number of fault-free components as well as the probability of delivering a minimum
number of fault-free components in a given silicon area. In so doing, we identified
the most fault-tolerant designs for a particular fault density.

Our results showed that employing fine-grain logic in addition to the coarse-grain
reconfiguration, i.e., mixed-grain, can increase availability, tolerating 3×more faults than
mere component redundancy. Furthermore, the design-space exploration revealed that
different fault densities require different granularities of substitutable units to maximize
fault tolerance. With growing number of permanent faults1, coarse-grain with granularity
of 1

8 and mixed-grain with granularity of 1
16 offered the best availability figures. Finally,

1In a fixed silicon area with known number of transistors.

100 CHAPTER 5. CONCLUSION

we observed that in adaptive processors with no pipelined interconnects the frequency
and execution time both increased by almost 3.5×, compared to the baseline. Adding
pipeline registers showed significantly better performance, where for the fault-free case
the overhead of operating frequency and execution time were 1.41× and 1.7× compared
to the baseline.

5.2.2 Adaptive Fault-Tolerant NoC
In the second part of the thesis, our focus was the design of a reliable service-oriented
NoC architecture. The main contributions of this part were as follows.

• Modifying the architecture of a service-oriented NoC to provide service level
reconfiguration for tolerating permanent faults.

The architecture of the baseline service-oriented NoC is modified to support
different service redirection alternatives, i.e. Service Detour and Service Merge.

– Service Detour: We extended previous detour techniques, allowing the
network to selectively detour traffic per service rather than detouring all
packets to avoid faulty network parts, substantially improving NoC reliability
as well as significantly increasing performance.

– Service Merge: Within a router, multiple services are merged, still preserving
their priorities, in order to bypass the damaged data-path of one or multiple
services.

• Evaluating the proposed fault tolerance techniques in terms of performance,
power and area.

The above fault tolerance techniques are evaluated in terms of network performance,
i.e. latency (in cycles), throughput (flits/cycle/node) and also the percentage of
successful packet transmission. Moreover, area, power and frequency overheads
are reported after implementing the proposed techniques.

• Evaluating reliability improvements.

Analytical models of our techniques are created and network connectivity is
measured under different fault densities.

The proposed RQNoC network designs were implemented in 65nm technology and
evaluated in terms of performance, area, power consumption and fault tolerance. Service
Detour required 25% more area and consumed 7% more power compared to a baseline
network, not tolerant to faults; its packet latency and throughput were close to the fault
free performance at low fault densities, but fault tolerance and performance dropped
substantially above 4 network faults. Service Merge required 51% more area and 27%
more power than the baseline and had a 9% slower clock. Compared to a fault free
network, a Service Merge RQNoC with up to 32 faults had increased packet latency up

5.2. CONTRIBUTIONS 101

to 1.5-2.4× and reduced throughput to 70% or 50%. However, it delivered substantially
better fault tolerance having a mean network connectivity of above 90% even with 32
network faults versus 41% of a Service Detour network. Combining Service Merge and
Service Detour improved fault tolerance further sustaining a higher number of network
faults and reduced packet latency.

5.2.3 Adaptive Fault-tolerant Main Memories
The third part of the thesis was dedicated to design of a mechanism that supports adaptive
ECCs within DRAM main memories. Concisely, the main contributions were as follows.

• Analyzing applications sensitivity to faults.
We extensively studied a variety of applications, analyzing the impact of faults
on their different data regions to their reliability (MTTF). Moreover, we defined
a methodology to explore the impact of protecting data regions with ECCs of
different strength, on the applications reliability.

• Proposing a new scheme for adaptive ECCs in DRAM modules.
We presented Odd-ECC, a new memory mapping scheme able to support different
levels of fault tolerance for data stored in memory, decided dynamically on demand
for each allocated physical page.

• Applying Odd-ECC to 2D, as well as 3D-stacked DRAM modules. We showed
how Odd-ECC is applied to both conventional 2D DRAM DIMMs as well as to
3D-stacked DRAMs.

• Evaluating the reliability and performance impact of different Odd-ECC
setups.
We evaluated Odd-ECC using the analyzed applications and compare the achieved
MTTF, the ECC capacity, performance and energy overheads versus flat memory
protection schemes.

– Odd-ECC can be used to reduce capacity overheads (besides slightly reducing
performance and energy costs) maintaining similar reliability to a flat
protection scheme.

– Alternatively, Odd-ECC can significantly improve reliability under the
same capacity constraints as a flat protection scheme at the cost of some
performance and energy overheads.

We showed that compared to a flat T1 memory protection scheme Odd-ECC reduces
the capacity overheads by 39% and performance and energy overheads by 6-15% to 10-
16%, respectively, without compromising reliability of the application(MTTF). Compared
to a flat T2 memory protection Odd-ECC reduces capacity overheads by 12% and
performance and energy overheads by 6-8%. Finally, within the particular capacity

102 CHAPTER 5. CONCLUSION

constraints of a flat T1 scheme, Odd-ECC improves MTTF by 260% to 770% increasing
T1 performance and energy overheads by 195% and 430%-340%, respectively, which are
still lower than the overheads of a flat T2 scheme.

5.3 Proposed Research directions
In this thesis we showed how adaptive fault tolerance techniques can be exploited to
have better trade-off between reliability and its overheads. There are several directions
for future research that can improve and complement the work presented here. In the
following, we identify and list some of them:

Adaptive Fault-Tolerant Micro-Processors: It would be interesting to explore
extending the proposed techniques for more complex (for example, out-of-order)
microarchitectures. Moreover, run-time management of mixed-grain reconfigurable
designs that can react based on detected faults and the acceptable performance degradation
is another interesting topic. Analyzing the timing dependability, i.e. the response time of
the system from the fault detection point until system restoration, remains an open issue
which requires design of low-overhead online-testing mechanisms to accurately detect,
locate and isolate permanent faults. Finally, the probabilistic analysis can be further
extended to consider different distributions of faults other than uniform, e.g. cluster
faults.

Adaptive Fault-Tolerant NoC: Exploring different policies for merging/detouring
services based on performance requirements would be an interesting topic. The techniques
to improve the reliability inside the service-oriented NoC can also be exploited for energy
efficiency purposes. For example, in the fault free mode, RQNoC can be configured to
disable some service lanes and use the service merge feature to work in a degraded mode,
in a manner similar to adaptive bandwidth networks [142], offering significant reduction
in power consumption. Moreover, adaptive routing algorithms can be used to increase
the packet delivery in networks with irregular topologies, where some nodes are disabled.

Adaptive Fault-tolerant Main Memories: The proposed Odd-ECC schemes can be
extended to support additional protection levels. In the current form, Odd-ECC is
applicable to non-ECC ×8 DRAM DIMMs. However, with some modifications it should
be possible to extend its usage to other modules such as DIMMs with ×4 devices or
ECC-DIMMs with 9 chips and 72B channel. Another interesting topic could be to explore
the possibility of having multiple protection levels inside the same pool of pages, thus,
avoiding the need to have separate pools per protection level. In the context of 3D-stacked
memories, one interesting research direction could be exploring fault tolerance techniques
for the interconnects and the memory combined.

These research directions are just a few of many possible ways. Of course, each of
these tracks requires more inspection and deeper investigation.

Bibliography

[1] Kypros Constantinides, Stephen Plaza, Jason Blome, Bin Zhang, Valeria Bertacco, Scott
Mahlke, Todd Austin, and Michael Orshansky. Bulletproof: A defect-tolerant cmp switch
architecture. In In Proceedings of the 12th International Symposium on High Performance
Computer Architecture, pages 3–14, 2006.

[2] S. Borkar. Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation. Micro, IEEE, 25(6):10 – 16, 2005.

[3] Peter A Lee and Thomas Anderson. Fault tolerance: principles and practice, volume 3.
Springer Science & Business Media, 2012.

[4] Matti A Hiltunen and Richard D Schlichting. A model for adaptive fault-tolerant systems.
In European Dependable Computing Conference, pages 1–20. Springer, 1994.

[5] Eltefaat Shokri, Herbert Hecht, Patrick Crane, Jerry Dussault, and KH Kim. An approach for
adaptive fault tolerance in object-oriented open distributed systems. International Journal
of Software Engineering and Knowledge Engineering, 8(03):333–346, 1998.

[6] Myron Hecht, Herbert Hecht, and Eltefaat Shokri. Adaptive fault tolerance for spacecraft.
In Aerospace Conference Proceedings, 2000 IEEE, volume 5, pages 521–533. IEEE, 2000.

[7] KH Kane Kim and Thomas F Lawrence. Adaptive fault-tolerance in complex real-time
distributed computer system applications. Computer Communications, 15(4):243–251,
1992.

[8] Jack Goldberg, Ira Greenberg, Raymond Clark, ED Jensen, and Kane Kim. Adaptive
fault-resistant systems. Technical report, SRI INTERNATIONAL MENLO PARK CA,
1994.

[9] Kypros Constantinides, Onur Mutlu, and Todd Austin. Online design bug detection: Rtl
analysis, flexible mechanisms, and evaluation. In Microarchitecture, 2008. MICRO-41. 2008
41st IEEE/ACM International Symposium on, pages 282–293. IEEE, 2008.

[10] Kypros Constantinides, Onur Mutlu, Todd Austin, and Valeria Bertacco. Software-based
online detection of hardware defects mechanisms, architectural support, and evaluation. In
Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 97–108. IEEE Computer Society, 2007.

[11] Kypros Constantinides, Onur Mutlu, Todd Austin, and Valeria Bertacco. A flexible software-
based framework for online detection of hardware defects. IEEE Transactions on Computers,
58(8):1063–1079, 2009.

[12] Yanjing Li, Samy Makar, and Subhasish Mitra. Casp: Concurrent autonomous chip self-test
using stored test patterns. In Design, Automation and Test in Europe, 2008. DATE’08, pages
885–890. IEEE, 2008.

103

104 BIBLIOGRAPHY

[13] Yanjing Li, Onur Mutlu, Donald S Gardner, and Subhasish Mitra. Concurrent autonomous
self-test for uncore components in system-on-chips. In VLSI Test Symposium (VTS), 2010
28th, pages 232–237. IEEE, 2010.

[14] Y Li, E Cheng, S Makar, and S Mita. Self-repair of uncore components in robust systems-
on-chips. SELSE, 2013.

[15] M.L. Fair et al. Reliability, availability, and serviceability (ras) of the ibm eserver z990.
IBM Jour. of Research & Development, 48(3-4):519–534, 2004.

[16] David Bernick, Bill Bruckert, Paul Del Vigna, David Garcia, Robert Jardine, Jim Klecka,
and Jim Smullen. Nonstop advanced architecture. In DSN, 2005.

[17] C. LaFrieda et al. Utilizing dynamically coupled cores to form a resilient chip multiprocessor.
In DSN, pages 317–326, 2007.

[18] David J. Palframan, Nam Sung Kim, and Mikko H. Lipasti. Resilient high-performance
processors with spare ribs. IEEE Micro, 33(4):26–34, 2013.

[19] Smitha Shyam, Kypros Constantinides, Sujay Phadke, Valeria Bertacco, and Todd Austin.
Ultra low-cost defect protection for microprocessor pipelines. In ASPLOS XII, pages 73–82,
2006.

[20] Bogdan F. Romanescu and Daniel J. Sorin. Core cannibalization architecture: improving
lifetime chip performance for multicore processors in the presence of hard faults. In PACT,
pages 43–51, 2008.

[21] S. Gupta, Shuguang Feng, A. Ansari, and S. Mahlke. Stagenet: A reconfigurable fabric for
constructing dependable cmps. IEEE Trans. on Computers, 60(1):5–19, 2011.

[22] Andrea Pellegrini, Joseph L. Greathouse, and Valeria Bertacco. Viper: virtual pipelines for
enhanced reliability. In ISCA ’12, pages 344–355, 2012.

[23] I. Wagner, V. Bertacco, and T. Austin. Shielding against design flaws with field repairable
control logic. In Design Automation Conference, 2006 43rd ACM/IEEE, pages 344–347,
2006.

[24] A. DeHon and H. Naeimi. Seven strategies for tolerating highly defective fabrication. Design
Test of Computers, IEEE, 22(4):306–315, 2005.

[25] Wei-Je Huang and E.J. McCluskey. Column-based precompiled configuration techniques
for fpga. In FCCM, pages 137–146, 2001.

[26] A. P. Shanthi and R. Parthasarathi. Exploring fpga structures for evolving fault tolerant
hardware. In NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings., pages
174–181, July 2003.

[27] Mingjie Lin, S. Ferguson, Yaling Ma, and T. Greene. Haft: A hybrid fpga with amorphous
and fault-tolerant architecture. In 2008 IEEE International Symposium on Circuits and
Systems, pages 1348–1351, May 2008.

[28] AJ Yu and Guy G Lemieux. Fpga defect tolerance: Impact of granularity. In Field-
Programmable Technology, 2005. Proceedings. 2005 IEEE International Conference on,
pages 189–196. IEEE, 2005.

[29] Atin Mukherjee and Anindya Sundar Dhar. Choice of granularity for reliable circuit design
using dynamic reconfiguration. Microelectronics Reliability, 63(Complete):291–303, 2016.

BIBLIOGRAPHY 105

[30] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards, Carl
Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and Anant Agarwal. On-
chip interconnection architecture of the tile processor. IEEE Micro, 27(5):15–31, 2007.

[31] Evgeny Bolotin, Israel Cidon, Ran Ginosar, and Avinoam Kolodny. Qnoc: Qos architecture
and design process for network on chip. Journal of Systems Architecture, 50(2):105–128,
2004.

[32] Srinivasan Murali, David Atienza, Luca Benini, and Giovanni De Michel. A multi-path
routing strategy with guaranteed in-order packet delivery and fault-tolerance for networks
on chip. In Proceedings of the 43rd annual Design Automation Conference, pages 845–848.
ACM, 2006.

[33] Chaochao Feng, Zhonghai Lu, Axel Jantsch, Minxuan Zhang, and Zuocheng Xing.
Addressing transient and permanent faults in noc with efficient fault-tolerant deflection router.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 21(6):1053–1066, 2013.

[34] Muhammad Ali, Michael Welzl, and Sven Hessler. A fault tolerant mechanism for handling
permanent and transient failures in a network on chip. In Information Technology, 2007.
ITNG’07. Fourth International Conference on, pages 1027–1032. IEEE, 2007.

[35] Ritesh Parikh and Valeria Bertacco. udirec: unified diagnosis and reconfiguration for frugal
bypass of noc faults. In Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 148–159. ACM, 2013.

[36] Mohammad Fattah, Antti Airola, Rachata Ausavarungnirun, Nima Mirzaei, Pasi Liljeberg,
Juha Plosila, Siamak Mohammadi, Tapio Pahikkala, Onur Mutlu, and Hannu Tenhunen. A
low-overhead, fully-distributed, guaranteed-delivery routing algorithm for faulty network-
on-chips. In Proceedings of the 9th International Symposium on Networks-on-Chip, page 18.
ACM, 2015.

[37] Alessandro Strano, Davide Bertozzi, Francisco Trivino, José L Sánchez, Francisco J Alfaro,
and José Flich. Osr-lite: Fast and deadlock-free noc reconfiguration framework. In
Embedded Computer Systems (SAMOS), 2012 International Conference on, pages 86–95.
IEEE, 2012.

[38] Konstantinos Aisopos, Andrew DeOrio, Li-Shiuan Peh, and Valeria Bertacco. Ariadne:
Agnostic reconfiguration in a disconnected network environment. In Parallel Architectures
and Compilation Techniques (PACT), 2011 International Conference on, pages 298–309.
IEEE, 2011.

[39] Samuel Rodrigo, Jose Flich, Antoni Roca, Simone Medardoni, Davide Bertozzi, J Camacho,
Federico Silla, and Jose Duato. Addressing manufacturing challenges with cost-efficient
fault tolerant routing. In Networks-on-Chip (NOCS), 2010 Fourth ACM/IEEE International
Symposium on, pages 25–32. IEEE, 2010.

[40] David Fick, Andrew DeOrio, Gregory Chen, Valeria Bertacco, Dennis Sylvester, and David
Blaauw. A highly resilient routing algorithm for fault-tolerant nocs. In Proceedings of the
Conference on Design, Automation and Test in Europe, pages 21–26. European Design and
Automation Association, 2009.

[41] Yinhe Han and Binzhang Fu. A new fault-tolerant routing based on turn model. In
Proceedings of the 3rd Workshop on Diagnosttic Services in Network-on-Chips, DSNOC’09,
pages 102–103. IEEE Computer Society, 2009.

106 BIBLIOGRAPHY

[42] Arseniy Vitkovskiy, Vassos Soteriou, and Chrysostomos Nicopoulos. Dynamic fault-tolerant
routing algorithm for networks-on-chip based on localised detouring paths. Computers &
Digital Techniques, IET, 7(2), 2013.

[43] Michihiro Koibuchi, Hiroki Matsutani, Hideharu Amano, and Timothy Mark Pinkston. A
lightweight fault-tolerant mechanism for network-on-chip. In Proceedings of the second
ACM/IEEE international symposium on networks-on-chip, pages 13–22. IEEE Computer
Society, 2008.

[44] David Fick, Andrew DeOrio, Jin Hu, Valeria Bertacco, David Blaauw, and Dennis Sylvester.
Vicis: a reliable network for unreliable silicon. In Proceedings of the 46th Annual Design
Automation Conference, pages 812–817. ACM, 2009.

[45] Jongman Kim, Chrysostomos Nicopoulos, Dongkook Park, Vijaykrishnan Narayanan,
Mazin S Yousif, and Chita R Das. A gracefully degrading and energy-efficient modular
router architecture for on-chip networks. In ACM SIGARCH Computer Architecture News,
volume 34, pages 4–15. IEEE Computer Society, 2006.

[46] Marios Evripidou, Chrysostomos Nicopoulos, Vassos Soteriou, and Jongman Kim.
Virtualizing virtual channels for increased network-on-chip robustness and upgradeability.
In VLSI (ISVLSI), 2012 IEEE Computer Society Annual Symposium on, pages 21–26. IEEE,
2012.

[47] Mohammad Reza Kakoee, Valeria Bertacco, and Luca Benini. Relinoc: A reliable network
for priority-based on-chip communication. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2011, pages 1–6. IEEE, 2011.

[48] Cheng Liu, Lei Zhang, Yinhe Han, and Xiaowei Li. A resilient on-chip router design through
data path salvaging. In Proceedings of the 16th Asia and South Pacific Design Automation
Conference, pages 437–442. IEEE Press, 2011.

[49] Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman Kansal,
Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu. Characterizing application
memory error vulnerability to optimize datacenter cost via heterogeneous-reliability memory.
In Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP International
Conference on, pages 467–478. IEEE, 2014.

[50] Mojtaba Mehrara and Todd Austin. Exploiting selective placement for low-cost memory
protection. ACM Transactions on Architecture and Code Optimization (TACO), 5(3):14,
2008.

[51] Vilas Sridharan and David R Kaeli. Using pvf traces to accelerate avf modeling. In
Proceedings of the IEEE workshop on silicon errors in logic-system effects, pages 23–24,
2010.

[52] Vilas Sridharan and David R Kaeli. Eliminating microarchitectural dependency from
architectural vulnerability. In High Performance Computer Architecture, 2009. HPCA 2009.
IEEE 15th International Symposium on, pages 117–128. IEEE, 2009.

[53] Siva Kumar Sastry Hari, Sarita V Adve, Helia Naeimi, and Pradeep Ramachandran. Relyzer:
Exploiting application-level fault equivalence to analyze application resiliency to transient
faults. In ACM SIGPLAN Notices, volume 47, pages 123–134. ACM, 2012.

[54] Shubhendu S Mukherjee, Christopher Weaver, Joel Emer, Steven K Reinhardt, and Todd
Austin. A systematic methodology to compute the architectural vulnerability factors for a
high-performance microprocessor. In Microarchitecture, 2003. MICRO-36. Proceedings.
36th Annual IEEE/ACM International Symposium on, pages 29–40. IEEE, 2003.

BIBLIOGRAPHY 107

[55] Dong Li, Jeffrey S Vetter, and Weikuan Yu. Classifying soft error vulnerabilities in extreme-
scale scientific applications using a binary instrumentation tool. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage and
Analysis, page 57. IEEE Computer Society Press, 2012.

[56] Li Yu, Dong Li, Sparsh Mittal, and Jeffrey S Vetter. Quantitatively modeling application
resilience with the data vulnerability factor. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 695–706. IEEE
Press, 2014.

[57] Xuanhua Li and Donald Yeung. Application-level correctness and its impact on fault
tolerance. In High Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th
International Symposium on, pages 181–192. IEEE, 2007.

[58] Dong Li, Zizhong Chen, Panruo Wu, and Jeffrey S Vetter. Rethinking algorithm-based
fault tolerance with a cooperative software-hardware approach. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage and
Analysis, page 44. ACM, 2013.

[59] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G Zorn. Flikker:
saving dram refresh-power through critical data partitioning. ACM SIGPLAN Notices,
47(4):213–224, 2012.

[60] Doe Hyun Yoon and Mattan Erez. Virtualized and flexible ecc for main memory. In ACM
SIGARCH Computer Architecture News, volume 38, pages 397–408. ACM, 2010.

[61] Seong-Lyong Gong, Minsoo Rhu, Jungrae Kim, Jinsuk Chung, and Mattan Erez. Clean-ecc:
High reliability ecc for adaptive granularity memory system. In Proceedings of the 48th
International Symposium on Microarchitecture, pages 611–622. ACM, 2015.

[62] Sheng Li, Doe Hyun Yoon, Ke Chen, Jishen Zhao, Jung Ho Ahn, Jay B Brockman, Yuan Xie,
and Norman P Jouppi. Mage: adaptive granularity and ecc for resilient and power efficient
memory systems. In High Performance Computing, Networking, Storage and Analysis (SC),
2012 International Conference for, pages 1–11. IEEE, 2012.

[63] Xun Jian and Rakesh Kumar. Adaptive reliability chipkill correct (arcc). In
High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th International
Symposium on, pages 270–281. IEEE, 2013.

[64] Jungrae Kim, Michael Sullivan, and Mattan Erez. Bamboo ecc: Strong, safe, and flexible
codes for reliable computer memory. In High Performance Computer Architecture (HPCA),
2015 IEEE 21st International Symposium on, pages 101–112. IEEE, 2015.

[65] Xun Jian and Rakesh Kumar. Ecc parity: A technique for efficient memory error resilience
for multi-channel memory systems. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1035–1046. IEEE
Press, 2014.

[66] Aniruddha N Udipi, Naveen Muralimanohar, Rajeev Balsubramonian, Al Davis, and
Norman P Jouppi. Lot-ecc: localized and tiered reliability mechanisms for commodity
memory systems. In ACM SIGARCH Computer Architecture News, volume 40, pages
285–296. IEEE Computer Society, 2012.

[67] Xun Jian, Henry Duwe, John Sartori, Vilas Sridharan, and Rakesh Kumar. Low-power,
low-storage-overhead chipkill correct via multi-line error correction. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage and
Analysis, page 24. ACM, 2013.

108 BIBLIOGRAPHY

[68] Long Chen, Yanan Cao, and Zhao Zhang. E3cc: A memory error protection scheme with
novel address mapping for subranked and low-power memories. ACM Transactions on
Architecture and Code Optimization (TACO), 10(4):32, 2013.

[69] David J Palframan, Nam Sung Kim, and Mikko H Lipasti. Cop: To compress and protect
main memory. In ACM SIGARCH Computer Architecture News, volume 43, pages 682–693.
ACM, 2015.

[70] Jungrae Kim, Michael Sullivan, Seong-Lyong Gong, and Mattan Erez. Frugal ecc: Efficient
and versatile memory error protection through fine-grained compression. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage and
Analysis, page 12. ACM, 2015.

[71] Prashant J Nair, David A Roberts, and Moinuddin K Qureshi. Citadel: Efficiently protecting
stacked memory from tsv and large granularity failures. ACM Transactions on Architecture
and Code Optimization (TACO), 12(4):49, 2016.

[72] Hsing-Min Chen, Carole-Jean Wu, Trevor Mudge, and Chaitali Chakrabarti. Ratt-ecc:
Rate adaptive two-tiered error correction codes for reliable 3d die-stacked memory. ACM
Transactions on Architecture and Code Optimization (TACO), 13(3):24, 2016.

[73] Xun Jian, Vilas Sridharan, and Rakesh Kumar. Parity helix: Efficient protection for single-
dimensional faults in multi-dimensional memory systems. In High Performance Computer
Architecture (HPCA), 2016 IEEE International Symposium on, pages 555–567. IEEE, 2016.

[74] Hyeran Jeon, Gabriel H Loh, and Murali Annavaram. Efficient ras support for die-stacked
dram. In Test Conference (ITC), 2014 IEEE International, pages 1–10. IEEE, 2014.

[75] Ruohuang Zheng and Michael C Huang. Redundant memory array architecture for efficient
selective protection. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, pages 214–227. ACM, 2017.

[76] Yixin Luo, Saugata Ghose, Tianshi Li, Sriram Govindan, Bikash Sharma, Bryan Kelly,
Amirali Boroumand, and Onur Mutlu. Using ecc dram to adaptively increase memory
capacity. arXiv preprint arXiv:1706.08870, 2017.

[77] Nidhi Aggarwal et al. Configurable isolation: building high availability systems with
commodity multi-core processors. In ISCA, 2007.

[78] S. Shamshiri and Kwang-Ting Cheng. Modeling yield, cost, and quality of a spare-enhanced
multicore chip. IEEE Trans. on Computers, 60(9):1246–1259, 2011.

[79] Nikos Hardavellas et al. Toward dark silicon in servers. IEEE Micro, 31(4):6–15, 2011.

[80] Michael D. Powell, Arijit Biswas, Shantanu Gupta, and Shubhendu S. Mukherjee.
Architectural core salvaging in a multi-core processor for hard-error tolerance. In ISCA,
pages 93–104, 2009.

[81] D. Sylvester, D. Blaauw, and E. Karl. Elastic: An adaptive self-healing architecture for
unpredictable silicon. Design Test of Computers, IEEE, 23(6):484–490, 2006.

[82] Georgios Smaragdos, Danish Anis Khan, Ioannis Sourdis, Christos Strydis, Alirad Malek,
and Stavros Tzilis. A dependable coarse-grain reconfigurable multicore array. In 21st
Reconfigurable Architectures Workshop (RAW’14), 2014.

[83] Ioannis Sourdis, Danish Anis Khan, Alirad Malek, Stavros Tzilis, Georgios Smaragdos, and
Christos Strydis. Resilient chip multiprocessors with mixed-grained reconfigurability. IEEE
Micro, 36(1):35–45, 2016.

BIBLIOGRAPHY 109

[84] Scott Hauck and Andre DeHon. Reconfigurable computing: the theory and practice of
FPGA-based computation. Morgan Kaufmann, 2010.

[85] B.S. Landman and R.L. Russo. On a pin versus block relationship for partitions of logic
graphs. IEEE Trans. on Computers, 20(12):1469–1479, 1971.

[86] EEMBC. http://www.eembc.org, 2009.

[87] Neil HE Weste and Kamran Eshraghian. Principles of cmos vlsi design: a systems
perspective. NASA STI/Recon Technical Report A, 85:47028, 1985.

[88] Cristian Grecu, Andre Ivanov, Res Saleh, Egor S Sogomonyan, and Partha Pratim Pande.
On-line fault detection and location for noc interconnects. In On-Line Testing Symposium,
2006. IOLTS 2006. 12th IEEE International, pages 6–pp. IEEE, 2006.

[89] Martin Radetzki, Chaochao Feng, Xueqian Zhao, and Axel Jantsch. Methods for fault
tolerance in networks-on-chip. ACM Computing Surveys (CSUR), 46(1):8, 2013.

[90] Teijo Lehtonen, Pasi Liljeberg, and Juha Plosila. Online reconfigurable self-timed links for
fault tolerant noc. VLSI design, 2007, 2007.

[91] Antonis Psathakis, Vassilis Papaefstathiou, Nikolaos Chrysos, Fabien Chaix, Evangelos
Vasilakis, Dionisios Pnevmatikatos, and Manolis Katevenis. A systematic evaluation of
emerging mesh-like cmp nocs. In Architectures for Networking and Communications
Systems (ANCS), 2015 ACM/IEEE Symposium on, pages 159–170. IEEE, 2015.

[92] John D. Owens, William J. Dally, Ron Ho, D. N. (Jay) Jayasimha, Stephen W. Keckler, and
Li-Shiuan Peh. Research challenges for on-chip interconnection networks. IEEE Micro,
27(5):96–108, September 2007.

[93] F Gilabert, María Engracia Gómez, Simone Medardoni, and Davide Bertozzi. Improved
utilization of noc channel bandwidth by switch replication for cost-effective multi-processor
systems-on-chip. In Proceedings of the 2010 Fourth ACM/IEEE International Symposium
on Networks-on-Chip, pages 165–172. IEEE Computer Society, 2010.

[94] DeSyRe Project official website : http://www.desyre.eu/.

[95] Adán Kohler, Gert Schley, and Martin Radetzki. Fault tolerant network on chip switching
with graceful performance degradation. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 29(6):883–896, 2010.

[96] Ronald L Rivest and Charles E Leiserson. Introduction to algorithms. McGraw-Hill, Inc.,
1990.

[97] Andrew B Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. Orion 2.0: a fast and
accurate noc power and area model for early-stage design space exploration. In Proceedings
of the conference on Design, Automation and Test in Europe, pages 423–428. European
Design and Automation Association, 2009.

[98] Li-Shiuan Peh and Natalie Enright Jerger. On-Chip Networks. Morgan and Claypool
Publishers, 1st edition, 2009.

[99] Stavros Tzilis and Ioannis Sourdis. A runtime manager for gracefully degrading socs. In
in Int’l Symp. on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
2014.

[100] Chaochao Feng, Zhonghai Lu, Axel Jantsch, Jinwen Li, and Minxuan Zhang. Fon: Fault-on-
neighbor aware routing algorithm for networks-on-chip. In SOC Conference (SOCC), 2010
IEEE International, pages 441–446. IEEE, 2010.

110 BIBLIOGRAPHY

[101] Andrew DeOrio, David Fick, Valeria Bertacco, Dennis Sylvester, David Blaauw, Jin Hu,
and Gregory Chen. A reliable routing architecture and algorithm for nocs. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 31(5):726–739, 2012.

[102] Sheng Li, Ke Chen, Ming-Yu Hsieh, Naveen Muralimanohar, Chad D Kersey, Jay B
Brockman, Arun F Rodrigues, and Norman P Jouppi. System implications of memory
reliability in exascale computing. In Int. Conf. for HPC, Netw., Stor. & Analysis, page 46,
2011.

[103] Vilas Sridharan and Dean Liberty. A study of dram failures in the field. In High Performance
Computing, Networking, Storage and Analysis (SC), 2012 International Conference for,
pages 1–11. IEEE, 2012.

[104] Vilas Sridharan, Jon Stearley, Nathan DeBardeleben, Sean Blanchard, and Sudhanva
Gurumurthi. Feng shui of supercomputer memory positional effects in dram and sram
faults. In High Performance Computing, Networking, Storage and Analysis (SC), 2013
International Conference for, pages 1–11. IEEE, 2013.

[105] Bharan Giridhar, Michael Cieslak, Deepankar Duggal, Ronald Dreslinski, Hsing Min Chen,
Robert Patti, Betina Hold, Chaitali Chakrabarti, Trevor Mudge, and David Blaauw. Exploring
dram organizations for energy-efficient and resilient exascale memories. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage and
Analysis, page 23. ACM, 2013.

[106] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu. Revisiting memory errors in
large-scale production data centers: Analysis and modeling of new trends from the field.
In Dependable Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP International
Conference on, pages 415–426. IEEE, 2015.

[107] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B Ferreira, Jon Stearley, John
Shalf, and Sudhanva Gurumurthi. Memory errors in modern systems: The good, the bad,
and the ugly. In ACM SIGPLAN Notices, volume 50, pages 297–310. ACM, 2015.

[108] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors. In ACM SIGARCH Computer
Architecture News, volume 42, pages 361–372. IEEE Press, 2014.

[109] Sai Ankireddi and Tony Chen. Challenges in thermal management of memory modules.
Electronics Cooling, 14(1):24, 2008.

[110] Daniel A. Reed and Jack Dongarra. Exascale computing and big data. Commun. ACM,
58(7):56–68, June 2015.

[111] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K Reinhardt,
and Thomas F Wenisch. Disaggregated memory for expansion and sharing in blade servers.
In ACM SIGARCH Computer Architecture News, volume 37, pages 267–278. ACM, 2009.

[112] Dingyou Zhang and James J.-Q. Lu. 3D Integration Technologies: An Overview, pages
1–26. Springer International Publishing, Cham, 2017.

[113] Hsing-Min Chen, Akhil Arunkumar, Carole-Jean Wu, Trevor Mudge, and Chaitali
Chakrabarti. E-ecc: Low power erasure and error correction schemes for increasing
reliability of commodity dram systems. In Proceedings of the 2015 International Symposium
on Memory Systems, pages 60–70. ACM, 2015.

BIBLIOGRAPHY 111

[114] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L Carter, Leonardo
Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S Schreiber, et al.
The nas parallel benchmarks. The International Journal of Supercomputing Applications,
5(3):63–73, 1991.

[115] Amir Yazdanbakhsh, Divya Mahajan, Hadi Esmaeilzadeh, and Pejman Lotfi-Kamran.
Axbench: A multiplatform benchmark suite for approximate computing. IEEE Design
and Test, 34(2):60–68, 2017.

[116] IBM Support. Linux Native Memory issues for WebSphere Application Server. http://
www-01.ibm.com/support/docview.wss?uid=swg27039764&aid=1, 2013.
Online; Accessed: 2017-05-06.

[117] The OpenMP Organization. OpenMP Application Programming Interface Version 4.5.
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf, 2015.
Online; Accessed: 2017-05-05.

[118] Linux Foundation Events. Virtual Memory and Linux. http://events.
linuxfoundation.org/sites/events/files/slides/elc_2016_mem_
0.pdf, 2016. Online; Accessed: 2017-05-07.

[119] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In Acm sigplan notices, volume 40,
pages 190–200. ACM, 2005.

[120] The GNU Project Debugger. GDB 7.12. https://www.gnu.org/s/gdb/, 2016.
Online; Accessed: 2017-05-07.

[121] Julian Seward, Nicholas Nethercote, and Josef Weidendorfer. Valgrind 3.3-advanced
debugging and profiling for gnu/linux applications. Network Theory Ltd., 2008.

[122] Shubhendu S Mukherjee, Joel Emer, and Steven K Reinhardt. The soft error problem: An
architectural perspective. In High-Performance Computer Architecture, 2005. HPCA-11.
11th International Symposium on, pages 243–247. IEEE, 2005.

[123] Swarup Kumar Sahoo, Man-Lap Li, Pradeep Ramachandran, Sarita V Adve, Vikram S
Adve, and Yuanyuan Zhou. Using likely program invariants to detect hardware errors.
In Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE
International Conference on, pages 70–79. IEEE, 2008.

[124] Georgios Stefanakis. Characterizing and exploiting application behavior under data
corruption. 2015.

[125] Altera Corporation. Error Correction Code in SoC FPGA-Based Memory
Systems. https://www.altera.com/en_US/pdfs/literature/wp/
wp-01179-ecc-embedded.pdf, 2012. Online; Accessed: 2017-04-28.

[126] Jaewoong Sim, Gabriel H Loh, Vilas Sridharan, and Mike O’Connor. Resilient die-stacked
dram caches. In ACM SIGARCH Computer Architecture News, volume 41, pages 416–427.
ACM, 2013.

[127] Marc Casas et al. Fault resilience of the algebraic multi-grid solver. In ACM Int. Conf. on
Supercomputing, pages 91–100, 2012.

[128] Hongzhong Zheng, Jiang Lin, Zhao Zhang, Eugene Gorbatov, Howard David, and Zhichun
Zhu. Mini-rank: Adaptive dram architecture for improving memory power efficiency. In

http://www-01.ibm.com/support/docview.wss?uid=swg27039764&aid=1
http://www-01.ibm.com/support/docview.wss?uid=swg27039764&aid=1
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://events.linuxfoundation.org/sites/events/files/slides/elc_2016_mem_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/elc_2016_mem_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/elc_2016_mem_0.pdf
https://www.gnu.org/s/gdb/
https://www.altera.com/en_US/pdfs/literature/wp/wp-01179-ecc-embedded.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01179-ecc-embedded.pdf

112 BIBLIOGRAPHY

Proceedings of the 41st annual IEEE/ACM International Symposium on Microarchitecture,
pages 210–221. IEEE Computer Society, 2008.

[129] Moinuddin K Qureshi and Gabe H Loh. Fundamental latency trade-off in architecting
dram caches: Outperforming impractical sram-tags with a simple and practical design.
In Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 235–246. IEEE Computer Society, 2012.

[130] Mark W Kellogg, Timothy J Dell, Erik L Hedberg, and Claude L Bertin. Programmable
burst length dram, April 20 1999. US Patent 5,896,404.

[131] Hybrid Memory Cube Consortium. HMC Specification 2.1. http://www.
hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_
Specification_Rev2.1_20151105.pdf, 2015. Online; Accessed: 2017-05-08.

[132] Yongjun Lee, Jongwon Kim, Hakbeom Jang, Hyunggyun Yang, Jangwoo Kim, Jinkyu Jeong,
and Jae W Lee. A fully associative, tagless dram cache. In ACM SIGARCH Computer
Architecture News, volume 43, pages 211–222. ACM, 2015.

[133] David A Patterson, Garth Gibson, and Randy H Katz. A case for redundant arrays of
inexpensive disks (RAID), volume 17. ACM, 1988.

[134] Bruce Jacob, Spencer Ng, and David Wang. Memory systems: cache, DRAM, disk. Morgan
Kaufmann, 2010.

[135] Abdallah M Saleh, Juan J Serrano, and Janak H Patel. Reliability of scrubbing recovery-
techniques for memory systems. IEEE transactions on reliability, 39(1):114–122, 1990.

[136] Andy A Hwang, Ioan A Stefanovici, and Bianca Schroeder. Cosmic rays don’t strike twice:
understanding the nature of dram errors and the implications for system design. In ACM
SIGPLAN Notices, volume 47, pages 111–122. ACM, 2012.

[137] J Thomas Pawlowski. Hybrid memory cube (hmc). In Hot Chips 23 Symposium (HCS),
2011 IEEE, pages 1–24. IEEE, 2011.

[138] JEDEC Standard. High bandwidth memory (hbm) dram. JESD235, 2013.

[139] Paul Rosenfeld. Performance exploration of the hybrid memory cube. PhD thesis, 2014.

[140] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. Dramsim2: A cycle accurate memory
system simulator. IEEE Computer Architecture Letters, 10(1):16–19, 2011.

[141] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. Optimizing nuca
organizations and wiring alternatives for large caches with cacti 6.0. In Proceedings of the
40th Annual IEEE/ACM International Symposium on Microarchitecture, pages 3–14. IEEE
Computer Society, 2007.

[142] George Michelogiannakis and John Shalf. Variable-width datapath for on-chip network
static power reduction. In Networks-on-Chip (NoCS), 2014 Eighth IEEE/ACM International
Symposium on, pages 96–103. IEEE, 2014.

http://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.1_20151105.pdf
http://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.1_20151105.pdf
http://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.1_20151105.pdf

	Abstract
	List of Publications
	Acknowledgments
	Introduction
	The Problem: Overheads of Fault Tolerance
	Thesis Statement: HW Adaptivity for Better Reliability-Overheads Trade-Off
	Thesis Objectives
	Adaptive Fault-tolerant Micro-processors
	Adaptive Fault-tolerant Network-on-Chip (NoC)
	Adaptive Error-Correcting-Codes (ECCs) for Main Memories

	Contributions
	Adaptive Fault-tolerant Micro-processors
	Adaptive Fault-tolerant NoC
	Adaptive Error-Correcting-Codes (ECCs) for Main Memories

	Thesis Outline

	Analysis of Repairable Adaptive Micro-processors
	Related Work
	Reconfigurable Designs for Tolerating Permanent Faults
	A Reconfigurable Adaptive RISC Processor
	Probabilistic Analysis of Reconfigurability
	Evaluation
	Reconfigurability Overheads
	Evaluating Pipelined Reconfigurable Interconnects
	Fault tolerance of Reconfigurable Designs

	Conclusions

	Resilient service-oriented NoC
	Related Work
	The QNoC Architecture
	RQNoC: a Resilient QoS NoC
	SDetour: Service Detour
	SMerge: Service Merge
	Combining SDetour and SMerge
	Resilient Links
	Fault Model, Diagnosis and Reconfiguration

	Evaluation
	Implementation Results
	Performance Results
	Network Connectivity and Fault Tolerance
	Comparison

	Conclusion

	Adaptive Fault-tolerant Main Memories
	Application Reliability Analysis
	Application Data Regions
	Application Sensitivity Analysis
	Application MTTF Study
	Application Analysis Results

	Odd-ECC Memory Reliability
	Odd-ECC Data Layout
	Odd-ECC Tier One (T1)
	Odd-ECC Tier Two (T2)
	Hardware/Software Modifications

	Odd-ECC in 2D DRAMs
	T1 ECC
	T2 ECC
	Address Mapping
	Extensions to Other 2D-DRAM Memory System Configurations

	Odd-ECC in 3D-stacked DRAMs
	T1 ECC
	T2 ECC
	Address Mapping

	Evaluation
	Experimental Setup
	Experimental Results
	Summary

	Related Work
	Conclusion

	Conclusion
	Summary
	Contributions
	Adaptive Fault-Tolerant Micro-Processors
	Adaptive Fault-Tolerant NoC
	Adaptive Fault-tolerant Main Memories

	Proposed Research directions

