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Abstract: Working within the post-Newtonian (PN) approximation to General Relativity,
we use the effective field theory (EFT) framework to study the conservative dynamics of
the two-body motion at fourth PN order, at fifth order in the Newton constant. This is one
of the missing pieces preventing the computation of the full Lagrangian at fourth PN order
using EFT methods. We exploit the analogy between diagrams in the EFT gravitational
theory and 2-point functions in massless gauge theory, to address the calculation of 4-
loop amplitudes by means of standard multi-loop diagrammatic techniques. For those
terms which can be directly compared, our result confirms the findings of previous studies,
performed using different methods.ar
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1 Introduction

The post-Newtonian (PN) approximation to the 2-body problem in General Relativity has
been subject of intense investigation in the last decades as it describes the dynamics of
gravitationally bound binary systems in the weak curvature, slow velocity regime, reviewed
in [1, 2] and [3].

From the phenomenological point of view its results have been of paramount importance
in constructing the waveforms which have been eventually used as templates [4, 5] for
the LIGO/Virgo data analysis pipeline leading to the detection [6], along with numerical
simulation allowing to solve for the space time in the strong curvature regime [7] and earlier
in the analysis of the Hulse-Taylor pulsar arrival times [8, 9].

Interferometric detectors of gravitational waves are particularly sensitive to the time
varying phase of the signal of coalescing binaries, which thus must be computed with
better than O(1) precision [10]. Such a phase can be determined from short-circuiting the
information of the energy and luminosity function of binary inspirals with at least 3PN
order accuracy.

Focusing on the conservative sector of the two body problem without spins (see [3]
for results involving spins), we recall that within the EFT formalism, initially proposed
in [11] and reviewed in [3, 12–14], the 1PN, 2PN [15] and 3PN [16] dynamics have been
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computed, reproducing results obtained with more traditional methods; moreover the 4PN
Lagrangian, quadratic in the Newton constant GN , was first derived in the EFT framework
[17].

The complete 4PN dynamics has been obtained recently by two groups within the
Arnowitt-Deser-Misner Hamiltonian formalism [18, 19] and by iterating the PN equation
in the harmonic gauge in [20, 21]; in both approaches an arbitrary coefficient has been
fixed by using results for the gravitational wave tail effect from self-force computations
[22–24]. It is worth mentioning that the two results did not initially agree at orders G4

N

and G5
N and, as it is argued in [25], the discrepancy has been overcome by a suitable

regularization of the infrared and ultraviolet divergencies in the approach based on the
equations of motion, although the new regularization could not fix yet the value of the
second ambiguity parameter in [21].

This work goes in the direction of providing a third-party computation with an in-
dependent methodology by filling one of the missing pieces to obtain the full 4PN result
within EFT methods. Using the virial relation v2 ∼ GNM/r, being r and v respectively the
relative distance and velocity of the binary constituents with M the total mass, the terms
contributing to the 4PN order dynamics can be parametrized as G5−n

N v2n with 0 ≤ n ≤ 5,
the leading term being the Newtonian potential, scaling simply as GN . By following on the
way paved by [17], we present in this work some results concerning the G5

N order.
The Lagrangian contains in general terms with high derivative of the dynamical vari-

ables: it is however possible to keep the equations of motion of second order without al-
tering the dynamics by adding to the Lagrangian terms quadratic at least in the equations
of motions tuned to cancel the high derivative terms at the price of introducing additional
terms with higher GN powers, according to the standard procedure first proposed in [26]
and dubbed double zero technique. The G5

N sector of the Lagrangian receives contributions
from GN , G2

N and G3
N Lagrangian terms which are at least quadratic in accelerations (com-

puted in [17] up to G2
N ) via the double zero trick, as well as from genuine G5

N terms: in the
present article, we focus on the genuine G5

N contribution, that is terms that do not contain
ab initio any power of velocity v or acceleration v̇, and leave the very last contribution,
coming from O(G3

N v̇
2) terms, to a forthcoming paper dedicated to the whole G3

N sector.
In this work, we evaluate the 50 diagrams contributing to the classical effective La-

grangian in the gravitational theory at order G5
N . They are non-trivial integrals over 3-

momenta which can be computed by means of multi-loop diagrammatic techniques. We
exploit the analogy between diagrams in the EFT gravitational theory and diagrams cor-
responding to 2-point functions in massless gauge theory, to address the calculation of the
O(G5

N) diagrams as 2-point 4-loop dimensionally regulated integrals in d dimensions. In
particular, we use integration-by-parts identities (IBPs) [27–29] in two ways: according to
the topology of the graph, IBPs allow to carry out the multiloop integration recursively
loop-by-loop; alternatively, they can be used to express the result of the amplitudes as
linear combination of irreducible integrals, known as master integrals (MIs). The latter are
evaluated independently. The contribution to the three-dimensional Lagrangian coming
from each graph is then determined by taking the d → 3 limit of the Fourier transform to
position-space.
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The paper is organized as follows. In sec. 2 we review the EFT formalism applied to
the two-body dynamics in the PN approximation to General Relativity and in sec. 3 we
present the details of the 4PN computation at G5

N order. We summarize in sec. 4 and
conclude in sec. 5. Appendix A contains the expressions of the master integrals needed
for the computation, in Appendix B we give the contribution to the Lagrangian coming
from the individual diagrams and in Appendix C details of the computation of selected
amplitudes are reported.

2 The method

The application of the EFT framework to post-Newtonian calculations in binary dynamics
has now been extensively investigated. It was first formulated in this context in [11] and
subsequently applied to various aspects of the binary problem (see reviews [3, 13] and
references therein).

We summarize here the basic features of this approach, along the lines and notations
of [16, 17], while referring the reader to the literature for a more complete account. The
starting point is the action

S = Sbulk + Spp , (2.1)

with the world-line point particle action representing the binary components (we only con-
sider here spinless point masses and neglect tidal effects)

Spp = − ∑
i=1,2

mi∫ dτi = − ∑
i=1,2

mi∫
√
−gµν(xi)dxµi dxνi , (2.2)

as well as the usual Einstein-Hilbert action1 plus a gauge fixing term

Sbulk = 2Λ2∫ dd+1x
√−g [R(g) − 1

2
ΓµΓµ] , (2.3)

which corresponds to the same harmonic gauge condition adopted in refs. [1, 20], where
Γµ ≡ gρσΓµρσ. Here Λ−2 ≡ 32πGNL

d−3, withGN the 3-dimensional Newton constant and L an
arbitrary length scale which keeps the correct dimensions of Λ in dimensional regularization,
and always cancels out in the expression of physical observables.
In this framework, a Kaluza-Klein (KK) parametrization of the metric [30, 31] is usually
adopted (a somehow similar parametrization was first applied within the framework of a
PN calculation in [32]):

gµν = e2φ/Λ ( −1 Aj/Λ
Ai/Λ e−cdφ/Λγij −AiAj/Λ2 ) , (2.4)

with, γij ≡ δij + σij/Λ, cd ≡ 2
(d−1)
(d−2) and i, j running over the d spatial dimensions. The field

Ai is not actually needed in the present computation, so it will henceforth be set to zero;
we refer to [16] for the general treatment and formulae including Ai.

1 We adopt the “mostly plus” convention ηµν ≡ diag(−,+,+,+), and the Riemann and Ricci tensors are
defined as Rµνρσ = ∂ρΓµνσ + ΓµαρΓ

α
νσ − ρ↔ σ, Rµν ≡ Rαµαν .
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In terms of the metric parametrization (2.4), with Ai = 0, each world-line coupling to
the gravitational degrees of freedom φ, σij reads

Spp = −m∫ dτ = −m∫ dt eφ/Λ
√

1 − e−cdφ/Λ (v2 + σij
Λ
vivj) , (2.5)

and its Taylor expansion provides the various particle-gravity vertices of the EFT.
Also the pure gravity sector Sbulk = SEH + SGF can be explicitly written in terms

of the KK variables; we report here only those terms which are needed for the present
calculation2:

Sbulk ⊃ ∫ dd+1x
√
γ {1

4
[(∇⃗σ)2 − 2(∇⃗σij)2] − cd(∇⃗φ)2

− 1

Λ
(σ

2
δij − σij)(σik,lσjl,k − σik,kσjl,l + σ,iσjk,k − σik,jσ,k)} . (2.6)

47 48 49
50
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44 45 46

35 36 37 38 39

40

29 30 31 32

2221

1 2 43 5 6 7 8 9 10

1211 15 16 17 18 19 20
13 14

2423 25 26

33
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34

28

Figure 1. The diagrams contributing at order G5
N . As in the EFT approach the massive objects

are non-dynamical, the horizontal black lines have to be seen as classical sources, and not as
propagators. Green solid lines stand for σ field propagators, blue dashed lines for φ fields.

2It is understood that spatial indices in this expression, including those implicit in terms carrying a
(∇⃗)2, are contracted by means of the spatial metric γij , which implies the appearance of extra σ fields, e.g.
(∇⃗σ)2 ≡ γabγcdγijσab,iσcd,j and γij = (γ−1)ij (and on the second line σij = σij , σ = δijσij).
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The 2-body effective action can be found by integrating out the gravity fields from the
above-derived actions

exp[iSeff ] = ∫ DφDσij exp[i(Sbulk + Spp)] . (2.7)

As usual in field theory, the functional integration can be perturbatively expanded in terms
of Feynman diagrams involving the gravitational degrees of freedom as internal lines only 3,
regarded as dynamical fields emitted and absorbed by the point particles which are taken
as non-dynamical sources.

In order to make manifest the v scaling necessary to classify the results according to
the PN hierarchy, it is convenient to work with the space-Fourier transformed fields

W a
p (t) ≡ ∫ ddxW a(t, x)e−ip⋅x with W a = {φ,σij} . (2.8)

The fields defined above are the fundamental variables in terms of which we are going
to construct the Feynman graphs; the action governing their dynamics can be found from
eqs. (2.5,2.6).

The next step is to lay down all the diagrams which contribute at this O(G5
N) in the

static limit, following the rule that each vertex involving n gravitational fields carries a
factor Gn/2−1

N if it is a bulk one, and a factor Gn/2N if it is attached to an external particle.
The diagrams in fig. 1 schematically represent the exchange of gravitational potential

modes through the field φ (blue dotted lines) and σij (green solid line) which mediate
the gravitational interaction. Massive objects represented by the thick horizontal black
solid line are non-dynamical sources or sinks of gravitational modes. Their dynamics is
described by the world line Spp hence no massive particle propagator is present in between
two different insertions of gravitational modes on the same particle.

The amplitudes corresponding to each diagram can be built from the Feynman rules in
momentum-space derived from Spp, Sbulk. By looking in particular at the quadratic parts,
one can explicitly write the propagators:

P [W a
p (ta)W b

p′(tb)] =
1

2
P aaδab(2π)dδd(p + p′)P(p2, ta, tb)δ(ta − tb) , (2.9)

where P φφ = − 1
cd
, P σijσkl = − (δikδjl + δilδjk + (2 − cd)δijδkl) and

P(p2, ta, tb) =
i

p2 − ∂ta∂tb
≃ i
p2

(2.10)

has been truncated to its instantaneous non-relativistic part. The terms involving time
derivatives (which acting on the eip⋅x, generate extra factors of v) can be indeed neglected.
In fact, in the present work, we are interested in the pure 4PN G5

N contribution, which, by
power counting, can be accessed in the limit of zero velocity and instantaneous interactions.
In other words, gravitational mode momenta have scaling of the types (v/r,1/r), therefore

3As we focus on the conservative part of the dynamics, we are not interested in diagrams where gravita-
tional radiation is released to infinity, even though tail effects [33] involving emitted and absorbed radiation
are relevant at G2

N order also in the conservative sector.
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the temporal component of their momenta can be neglected, since we are computing the
G5
Nv

0 sector.
From the previous discussion, one can derive the following Feynman rules, respectively

for the φ-propagator,

p → − i
2cdp2

(2.11)

and for the σ-propagator,

rj kl
p → iP σrjσkl

2p2
. (2.12)

The Feynman rules for the interaction vertices can be derived in a similar fashion and are
reported below:

p,rj

p-k

k

→ i
2cd
Λ

[1

2
(p − k) ⋅ kδrj − kr(p − k)j + (r↔ j)] ,

p

k
p-q,rj

k+q,lm

→ i
4cd
Λ2

[krplδjm − 1

2
klpmδrj − 1

8
p ⋅ kQrjlm + (r↔ j , l↔m)] ,

p-k,qr

p,tj

k,lm

→ i
1

8Λ

⎧⎪⎪⎨⎪⎪⎩
(p − k) ⋅ k (1

2
δtrI lmjq − 1

4
δqrItjlm − 1

8
δtjQqrlm) + (2.13)

+ 1

4
(p − k)tkjQqrlm + [(1

2
δtjδmr − δtrδjm) (p − k)qkl − (l↔ q)] +

+ δlmδtr(p − k)qkj − δtmδqr(p − k)lkj + (t↔ j , l↔m,q↔ r)
⎫⎪⎪⎬⎪⎪⎭
,

. . . . 
n

→ − i
n!Λn

with Iijlm ≡ δilδjm + δimδjl and Qijlm ≡ Iijlm − δijδlm.
Finally, the contribution of each amplitude to the two body Lagrangian L can be

derived from its Fourier transform,

La = −i lim
d→3
∫

ddp

(2π)d e
ip⋅r

a

(2.14)

where the box diagram stands for the generic diagram a = 1, . . . ,50 of fig. 1, and p is the
momentum transfer of the source.
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Figure 2. Four-loop 2-point topologies corresponding to the diagrams in fig.1.

3 Amplitudes and Feynman Integrals

In general, within the EFT approach, since the sources (black lines) are static and do not
propagate, any gravity-amplitude of order G`N can be mapped into an (` − 1)-loop 2-point
function with massless internal lines and external momentum p, where p2 ≡ s ≠ 0,

= . (3.1)

Accordingly, the 50 diagrams in fig.1 can be mapped onto the 29 topologies of fig.2, where
the sets T1 = {1,2,3,4,5,6}, T2 = {7,8,10,11,14,16,17,20,21,25}, T3 = {9,12,13,22},
T4 = {15,18,19,23,24}, collect the diagrams that share the same topology. For instance,
the diagrams 1 to 6 of fig.1 correspond to integrals which have the same five denominators
of the graph indicated by T1 in fig.2, but different numerators, due to the different terms
associated to 1,2,3 or 4 φ emission or absorption from the massive particle.

The representation of the gravity-amplitudes as 4-loop 2-point integrals yields the pos-
sibility of evaluating the latter by means of by-now standard multi-loop techniques based
on integration-by-parts identities (IBPs) [27, 28].

Accordingly, we collect the 50 amplitudes of fig.1 in two sets, AI = {1 ∶ 28,31,32,35 ∶
37,39,41,45 ∶ 47} and AII = {29,30,33,34,38,40,42,43,44,48,49,50}, and address their
computation separately.
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M0,1

M1,1 M1,2

M1,3 M1,4 M2,2 M3,6

Figure 3. The master integrals which appear in the calculation of the amplitudes in the set AII .
The names of the diagrams follow refs. [36–38].

The set AI contains diagrams with a simpler internal structure, and they have been
computed by using the kite rule [27, 28]

(4 − d)
2

= − , (3.2)

where the dots stand for squared denominators, and by using the standard identity holding
for 2-point 1-loop graphs,

∫
ddk

(2π)d
1

k2a(p − k)2b
=

a

b

=
(p2)d/2−a−b

(4π)d/2
Γ(d/2 − a)Γ(d/2 − b)Γ(a + b − d/2)

Γ(a)Γ(b)Γ(d − a − b) ,(3.3)

where a and b are generic denominators’ powers. Alternatively we also performed an IBP-
reduction using the program Reduze [34, 35], identifying 5 master integrals (MIs), namely
M0,1,M1,1,M1,2,M1,3,M1,4 of fig. 3. Both strategies gave the same results.

The amplitudes AII , instead, have a less trivial internal structure. By means of IBPs,
they have been systematically reduced to linear combinations of 7 MIs, all shown in fig. 3.
In this case, the reduction to MIs has been performed in two ways, by an in-house imple-
mentation of Laporta’s algorithm which is based on Form [39–41], as well as by means of
Reduze.

The 4-loop MIs in fig. 3 can be considered as a complete set of independent integrals,
such that any amplitude of the sets AI and AII can be written as a linear combination of
them. The results of the 4-loop MIs are well-known in d = 4+ε euclidean space-time dimen-
sions since long [36, 37], while the values around d = 3 + ε ofM2,2,M3,6 became available
more recently [38]. In particular, M0,1, M1,1, M1,2, M1,3, M1,4 can be computed in a
straightforward way by means of eq. (3.3), and admit closed analytic expressions, exact in
d, which can be expanded in Laurent series in ε around d = 3. The series expansions of
M2,2 andM3,6 were first obtained numerically in ref. [38] by using the difference equations
method, exploiting the fact that dimensionally regulated Feynman integrals obey dimen-
sional recurrence relations [29, 42–45]. For instance, owing to IBPs,M3,6 is solution of the
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following recursive formula,

1

(4π)4
⋅

RRRRRRRRRRRd−2

= a1 + a2 + a3 +

+a4 + a5 . (3.4)

with

a1 = 5(d − 3)(d − 4)2(5 − d)(5d − 26)(5d − 24)(5d − 22)(5d − 18)
3(d − 6)2(3d − 16)(3d − 14)s4

, (3.5)

a2 = 80(d − 3)3(2d − 7)(5d − 26)(5d − 24)(5d − 22)(5d − 18)(5d − 16) ×
(14 − 5d)(63872 − 40162d + 8403d2 − 585d3)

9(d − 6)2(d − 4)2(3d − 16)2(3d − 14)2(3d − 10)s6
, (3.6)

a3 = 40(d − 3)2(8 − 3d)(5d − 26)(5d − 24)(5d − 22)(5d − 18) ×
(5d − 16)(5d − 14)(7d − 32)

3(d − 6)2(d − 4)2(3d − 16)(3d − 14)s6
, (3.7)

a4 = (d − 3)2(3d − 10)2(3d − 8)2 ×
2897664 − 2445164d + 772948d2 − 108475d3 + 5702d4

3(d − 6)2(d − 4)2(3d − 16)(3d − 14)s6
, (3.8)

a5 = 20(d − 3)(2d − 7)(2d − 5)(5d − 26)(5d − 24) ×
(5d − 22)(5d − 18)(5d − 16)(5d − 14)(5d − 12) ×
(1972736 − 1666418d + 527297d2 − 74070d3 + 3897d4)

9(d − 6)2(d − 5)(d − 4)3(3d − 16)2(3d − 14)2s7
, (3.9)

which links M3,6 in d − 2 dimensions (on the l.h.s.) to M3,6 in d dimension, and to other
MIs belonging to subtopologies, also defined in d dimensions (on the r.h.s). The MIs
belonging to subtopologies have to be considered as the non-homogeneous term of the
dimensional recurrence relation: they are known terms in a bottom-up approach (where
simpler integrals, with less denominators, are computed first) 4.

The solving strategy of dimensional recurrence equations for Feynman integrals has
been discussed in [45] and implemented in the code SummerTime [38], which provides numer-
ical values for the coefficients of the Laurent series in the ε→ 0 limit, at very high-accuracy
(hundreds of digits).

Let us observe that M2,2 is finite in three dimensions, and, within the amplitudes’
evaluation, it always appears multiplied by positive powers of ε, therefore it drops out of
the final result.

4 The dimensional recurrence (3.4) implies that M3,6(d = 3 + ε) ≡ ∑∞

k=−2M3,6(3, k)εk can be obtained
from the knowledge of the MIs on the r.h.s.,Mi,j(d = 5+ ε) ≡ ∑∞

k=−2Mi,j(5, k)εk. It is interesting to notice
that in eq. (3.4) the coefficient a1 is proportional to (d − 5). Therefore, by expanding both sides of the
equation in a Laurent series, the Laurent coefficientM3,6(3, k) gets a contribution fromM3,6(5, k−1) and
from the Laurent coefficients of the other MIs at d = 5. In particular, the coefficient of the double pole
M3,6(3,−2) is completely determined by the series expansions of the MIs of the subtopologies only, because
when k = −2,M3,6(d = 5 + ε) does not give any contribution.
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In Appendix A, we provide the list of the results for the MIs of fig.3.

Example. As an illustrative example, we apply our algorithm to diagram 49 of fig. 1. The
corresponding amplitude reads

A49 = = −2 i (8πGN)5 ((d − 2)
(d − 1) m1m2)

3

[N49] , (3.10)

with

k
1

k
3

p
4

p

p
2

[N49] ≡ ∫
k1,k2,k3,k4

N49

k2
1 p

2
2 k

2
3 p

2
4 k

2
12 k

2
13 k

2
23 k

2
24 k

2
34

, (3.11)

and

N49 ≡ (k1 ⋅ k3 k12 ⋅ k23 − k1 ⋅ k12 k3 ⋅ k23 − k1 ⋅ k23 k3 ⋅ k12) ×
(p2 ⋅ k23 p4 ⋅ k34 + p4 ⋅ k23 p2 ⋅ k34 − p2 ⋅ p4 k23 ⋅ k34) , (3.12)

where we define ∫k ≡ ∫ ddk
(2π)d

and pa ≡ p − ka, kab ≡ ka − kb. By means of IBPs, we express
the 2-point amplitude in terms of MIs,

[N49] = c1 + c2 + c3 +

+ c4 + c5 , (3.13)

with

c1 = (d − 3)2(d − 2)2s2

(d − 4)2(5d − 14)(12 − 5d) , c2 =
(d − 2)2(432 − 512d + 203d2 − 27d3)s

8(d − 4)3(5 − 2d)(5d − 12) , (3.14)

c3 = (d − 2)2(76 − 58d + 11d2)s
4(d − 4)2(14 − 5d)(5d − 12) , c4 =

(d − 2)2s

2(d − 4)2
, (3.15)

c5 = (d − 2)2(1096 − 1598d + 870d2 − 210d3 + 19d4)
(d − 4)4(3 − d)(3d − 8) . (3.16)

This result can be expanded around d = 3 + ε, using the expressions of the MIs given in
Appendix A,

A49 = −i(8πGN)5(m1m2)32−4(4π)−(4+2ε)e2εγEs(1+2ε) ×

[1

ε
(π

2

16
− 2

3
) + 29

18
− 13

144
π2 − π

2

8
log 2 +O(ε)] , (3.17)
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where γE = 0.57721... is the Euler-Mascheroni constant. Finally, by means of the Fourier
transform formula

∫
p

eip⋅rp−2a = Γ(d/2 − a)
(4π)d/2Γ(a)

(r
2
)
(2a−d)

, (3.18)

one obtains the following Lagrangian term,

L49 = −i lim
d→3
∫
p

eip⋅rA49 = (32 − 3π2)G
5
Nm

3
1m

3
2

r5
. (3.19)

4 Results and discussion

The complete 4PN, O(G5
N) Lagrangian was already presented in [20],

LG
5
N

4PN = 3

8

G5
Nm

5
1m2

r5
+ G

5
Nm

4
1m

2
2

r5
[1690841

25200
+ 105

32
π2 − 242

3
log

r

r′1
− 16 log

r

r′2
]

+ G5
Nm

3
1m

3
2

r5
[587963

5600
− 71

32
π2 − 110

3
log

r

r′1
] + (m1 ↔m2) , (4.1)

where r′1, r
′
2 are two UV scales which do not contribute to physical observables. Such a

Lagrangian gets contributions from the 50 genuine O(G5
N) diagrams depicted in fig.1, and

from diagrams at lower orders in GN which are at least quadratic in the accelerations:

LG
5
N

4PN =
50

∑
a=1

La +
3

∑
j=1

LG
j
N→G

5
N

4PN + (m1 ↔m2) . (4.2)

The evaluation of ∑50
a=1La represents the main result of this work, and it amounts to

50

∑
a=1

La = 3

8

G5
Nm

5
1m2

r5
+ 31

3

G5
Nm

4
1m

2
2

r5
+ 141

8

G5
Nm

3
1m

3
2

r5
. (4.3)

The individual contributions La are presented in Appendix B. We observe that, al-
though there appear contributions which are divergent in the d → 3 limit, the sum of all
contributions is finite, hence L does not show up in physical observables.

To obtain the whole expression for the 4PN O(G5
N) corrections, one would need to

add contributions generated from lower GN terms when using the equations of motion, in
order to eliminate terms quadratic at least in the accelerations. All such contributions have
been computed also in the EFT framework [17], except for LG

3
N→G

5
N

4PN . We can nevertheless
perform partial checks between eq.(4.3) and eq.(4.1).

The m5
1m2-term. It can be proven that this term does not receive any contribution from

lower GN terms5, and the corresponding coefficient for the two-body Lagrangian of eq.(4.3)
5 Contributions to this term from lower GN orders would come from terms of the type G5−n

N m5−n
1 m2a

n
2

with 2 ≤ n ≤ 4. However, diagrams giving rise to such terms would have exactly one propagator attached
to particle 2, hence a22 or higher power of a2 can be taken out by integration by parts instead of by using
the doube zero trick. It can be checked explicitly in [17] that G5−n

N m5−n
1 m2a

n
2 terms do not appear in the

Lagrangian for n = 3,4.

– 11 –



agrees with the Lagrangian term reported in eq.(4.1).

The π2-term. The contributions coming from the lower GN orders come entirely from
the still unpublished LG

3
N→G

5
N

4PN : for dimensional reasons terms at least quadratic in the
accelerations can appear only in Gm≤n−1

N sectors at n-th PN order, and all the terms up
to O(G2

N) do not contain π2. Although the computational details will be given elsewhere,
such contributions have been computed in the EFT framework and found to be

105

32
π2G

5
Nm

4
1m

2
2

r5
− 71

32
π2G

5
Nm

3
1m

3
2

r5
. (4.4)

This result, alone, already accounts for the Lagrangian π2-term of eq. (4.1), presented in
[20] and previously computed also in [19]. Athough some of the La’s listed in Appendix B
(namely, a = 33,49,50) contain terms proportional to π2, these terms cancel in the sum of
all the diagrams (as shown in ref. [46]), thus providing agreement with the literature.
Other terms. The other terms are not directly comparable without full knowledge of the
LG

3
N→G

5
N

4PN contribution, and without taking into account the different regularization schemes
used here and in [20].

5 Conclusion

We studied the conservative dynamics of the two-body motion at fourth post-Newtonian or-
der (4PN), at fifth order in the Newton constant GN , within the effective field theory (EFT)
framework to General Relativity. We determined an essential contribution of the complete
4PN Lagrangian at O(G5

N), coming from 50 Feynman diagrams. By exploiting the analogy
between such diagrams in the EFT gravitational theory and 2-point 4-loop functions in
massless gauge theory, we addressed their calculation by means of multi-loop diagrammatic
techniques, based on integration-by-parts identities and difference equations. We performed
the calculation within the dimensional regularization scheme, and the contribution to the
Lagrangian of each graph was given as Laurent series in d = 3 + ε, being d the number
of dimensions. Although some individual amplitudes are divergent in the ε → 0 limit and
others contain the irrational factor π2, the sum of the fifty terms is found to be finite at
d = 3 and rational, in agreement with previous calculations performed with other techniques.

Notes

In a first version of this manuscript, L50 appeared to have a different value, yielding to
a disagreement with the literature. Subsequently, the authors of ref. [46] pointed us to a
missing overall factor of “−3” in L50, which we have been able to find and correct: the value
of L50 reported in this version is the amended one. Let us also notice, that the analytic
result for the master integralM3,6 obtained in [46] agrees with the semi-analytic expression
given in our current work.
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A Master integrals

In this appendix, we provide the expressions of the master integrals. They are defined by

M0,1 = ∫
k1...4

1

D1...4D14
, M1,1 = ∫

k1...4

1

D1...4D9D12
,

M1,2 = ∫
k1...4

1

D1...4D10D11
, M1,3 = ∫

k1...4

1

D1...4D8D10
,

M1,4 = ∫
k1...4

1

D1...4D7D13
, M2,2 = ∫

k1...4

1

D1...4D10D15D16
,

M3,6 = ∫
k1...4

1

D1...4D5D6D10D14
,

where ki (i = 1,2,3,4) are the loop momenta and p is the external momentum of the
diagrams depicted in fig. 3. The integral measure is the same as used in sec. 3 and given
by ∫k1...4 = ∫k1 ∫k2 ∫k3 ∫k4 with ∫ki ≡ ∫

ddki
(2π)d

(i = 1,2,3,4). The denominators read

D1...4 = k2
1 k

2
2 k

2
3 k

2
4, D5 = (k2 − k3)2, D6 = (k1 − k4)2,

D7 = (k2 + k3 − k4)2, D8 = (k1 + k2 + k3 − k4)2, D9 = (k1 − p)2,

D10 = (k1 + k2 − p)2, D11 = (k3 + k4 + p)2, D12 = (k2 − k3 − k4 + p)2,

D13 = (k1 − k2 − k3 + p)2, D14 = (k1 + k2 − k3 − k4 − p)2,

D15 = (k1 + k4 − p)2, D16 = (k2 + k3 − p)2.

A.1 Master integrals known in d dimensions

The following master integrals are known in closed analytical form, exact in d:

M0,1 = (4π)−2ds2d−5 Γ(5 − 2d)Γ(d2 − 1)5

Γ(5
2d − 5)

(A.1)

d=3+ε= c(ε)s [ 1

24ε
− 13

36
+ ε(481

216
− 11

288
π2)

−ε2 (3943

324
− 143

432
π2 − 113

72
ζ3) +O(ε3)] , (A.2)

M1,1 = (4π)−2ds2d−6 Γ(4 − 3
2d)Γ(2 − d

2
)Γ(d

2 − 1)6

Γ(d − 2)Γ(2d − 4) (A.3)
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d=3+ε= −c(ε)π2 [1

8
+O(ε1)] , (A.4)

M1,2 = (4π)−2ds2d−6 Γ(3 − d)2Γ(d
2 − 1)6

Γ(3
2d − 3)2

(A.5)

d=3+ε= c(ε) [ 1

4ε2
− 3

2ε
+ (27

4
− 7

48
π2)

−ε(27 − 7

8
π2 − 11

3
ζ3) +O(ε2)] , (A.6)

M1,3 = (4π)−2ds2d−6 Γ(6 − 2d)Γ(3 − d)Γ(2 − d
2
)Γ(d

2 − 1)6
Γ(2d − 5)

Γ(5 − 3
2d)Γ(d − 2)Γ(3

2d − 3)Γ(5
2d − 6)

(A.7)

d=3+ε= c(ε) [ 1

8ε2
− 1

ε
+ 49

8
− 19

96
π2

−ε(34 − 19

12
π2 − 107

24
ζ3) +O(ε2)] , (A.8)

M1,4 = (4π)−2ds2d−6 Γ(6 − 2d)Γ(2 − d
2
)2

Γ(d
2 − 1)6

Γ(3
2d − 4)

Γ(4 − d)Γ(d − 2)2Γ(5
2d − 6)

(A.9)

d=3+ε= −c(ε)π2 [ 1

16ε
− ( 5

16
+ 1

8
log 2) +O(ε1)] , (A.10)

with the Euler Γ function Γ(z) = ∫ ∞0 tz−1e−tdt, the Riemann zeta function ζn = ∑∞k=1
1
kn ,

and s = p2. The coefficient function c(ε) is given by

c(ε) = e2εγEs2ε/(4π)4+2ε. (A.11)

A.2 Master integrals known in d = 3 + ε dimensions

The master integralsM2,2 andM3,6 are known numerically [38]. In three dimensionsM2,2

is finite, i.e. M2,2 = O (ε0), and does not contribute to our amplitudes, since it always
appears multiplied by a positive power of ε. The Laurent expansion in ε around d = 3 for
M3,6 reads,

Md=3+ε
3,6 = c(ε)

s2
[

0.50000000000000000000000000000000000000000000000000000000000/ε2

−0.50000000000000000000000000000000000000000000000000000000000/ε
−3.58876648328794339088189620833849370269526252469830039056611

+15.6234156117945512067218751269082577384023065736147735689317 ε

+O (ε2)] (A.12)
PSLQ
≙ c(ε)

s2
[ 1

2ε2
− 1

2ε
− 4 + π

2

24
− ε(9 − π2 (13

8
− log 2) − 77

6
ζ3) +O (ε2)] . (A.13)

The analytical coefficients in the ε expansion have been obtained from the high precision nu-
merical result with the PSLQ algorithm [47]. We observe that, according to the arguments
in footnote 4, the value of the coefficient of the double pole can be obtained analytically from
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the recurrence relation: its numerical reconstruction agrees with the analytic determined
value.

Moreover, in order to perform a consistency check of the other analytical coefficients
of eq. (A.13), we determined M3,6 also in 1- and 5-dimensions with SummerTime [38] nu-
merically and used the PSLQ algorithm to obtain again the analytical coefficients of the ε
expansion, respectively reading,

Md=1+ε
3,6 = (4π)4 c(ε)

s6
[

11.0000000000000000000000000000000000000000000000000000000000/ε
+750.157936507936507936507936507936507936507936507936507936508

−5333.19383013044510985261411265298578814107960018433010670281 ε

−3509.80936167055655677303026105319710926833682220819489993426 ε2

+O (ε3)] (A.14)
PSLQ
≙ (4π)4 c(ε)

s6
[11

ε
+ 945199

1260
− ε(35338924

6615
− 11

12
π2) + ε2 (160485605363

27783000

−14515601

15120
π2 − 22π2 log 2 + 847

3
ζ3) +O (ε3)] , (A.15)

Md=5+ε
3,6 = 1

(4π)4

c(ε)s2

2520
[

1.00000000000000000000000000000000000000000000000000000000000/ε2

−7.49665930774956257270733971502880747383208927084097052723419/ε
+33.1813244635562837450781924787207309198665172698916969562612

+O (ε)] (A.16)
PSLQ
≙ 1

(4π)4

c(ε)s2

2520
[ 1

ε2
− 1

ε
(467

7
− 6π2)

+123478

147
− 1651

21
π2 + 54π2 log 2 − 333ζ3 +O (ε)] . (A.17)

We verified that the analytical ansätze forMd=1+ε
3,6 ,Md=3+ε

3,6 ,Md=5+ε
3,6 fulfill the dimensional

recurrence relation (3.4) analytically, order-by-order in ε, therefore we have high confidence
in their correctness.

B Results for all the amplitudes

In this appendix we collect the contributions to the Lagrangian in eq. (4.2), coming from
all the amplitudes of fig. 1:

0 = L9 = L12 = L13 = L22 = L26 = L27 = L31 = L36 = L46 = L47 ,

1

2

G5
Nm

3
1m

3
2

r5
= L1 = L3 = 4L5 = 3L14 =

L19

8
= 3L20

2
= 3L21

4
= L23

4
= L24

4
= 3L25

2
,
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1

2

G5
Nm

4
1m

2
2

r5
= L2 = 3L4 =

3L8

2
= 3L10

2
= 3L11

2
= L15

4
= 3L16

4
= 3L17

4
= L18

4
,

1

120

G5
Nm

5
1m2

r5
= L6 =

L7

20
= 3L30

20
= −3L35

56
= L39

24
= L45

12
,

L28 =
G5
Nm

4
1m

2
2

r5
[428

75
+ 4

15
P] , L29 =

G5
Nm

3
1m

3
2

r5
[−409

450
+ 1

5
P] ,

L32 =
G5
Nm

3
1m

3
2

r5
[− 91

450
+ 1

15
P] , L33 =

G5
Nm

3
1m

3
2

r5
(16 − π2) ,

L34 =
G5
Nm

4
1m

2
2

r5
[13

5
− 2

3
P] , L37 = −

G5
Nm

4
1m

2
2

r5
[17 + 2P] ,

L38 =
G5
Nm

4
1m

2
2

r5
[147

25
+ 8

15
P] , L40 =

G5
Nm

4
1m

2
2

r5
[−39

25
+ 4

15
P] ,

L41 =
G5
Nm

3
1m

3
2

r5
[49

18
+ 1

3
P] , L42 = −

G5
Nm

3
1m

3
2

r5
[ 97

225
+ 1

15
P] ,

L43 = −
G5
Nm

3
1m

3
2

r5
[ 53

150
+ 2

15
P] , L44 = −

G5
Nm

3
1m

3
2

r5
[37

75
+ 2

5
P] ,

L48 =
G5
Nm

4
1m

2
2

r5
[578

75
+ 8

5
P] , L49 =

G5
Nm

3
1m

3
2

r5
(32 − 3π2) ,

L50 =
G5
Nm

3
1m

3
2

r5
(4π2 − 124

3
) , (B.1)

where the pole part P ≡ 1
ε − 5 log r

L0
(with L0 defined by L =

√
4πeγEL0) cancels exactly in

the sum of all the terms.
Diagrams which are symmetric under (1 ↔ 2) exchange, i.e. 3, 5, 22, 23, 24, 32, 33,

41, 42, 43, 49, 50 have been multiplied by 1/2.

C Evaluation of A33 and A50

We describe the evaluation of amplitudes 33 and 50 which, along with amplitude 49 already
discussed in detail in section 3, are the only ones containing π2 terms.

C.1 Amplitude 33

A33 = = − i (8πGN)5 ((d − 2)
(d − 1) m1m2)

3

[N33] , (C.1)

with

[N33] ≡ ∫
k1,k2,k3,k4

N33

k2
1 k

2
2 k

2
3 k

2
4 k

2
14 p

2
12 p

2
34 p

2
123

, (C.2)

and

N33 ≡ k3 ⋅ k4 (k2 ⋅ p12 k1 ⋅ p34 + k1 ⋅ k2 p12 ⋅ p34 − k1 ⋅ p12 k2 ⋅ p34)
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+k2 ⋅ k4 (k1 ⋅ p12 k3 ⋅ p34 + k1 ⋅ k3 p12 ⋅ p34 − k3 ⋅ p12 k1 ⋅ p34)
+k1 ⋅ k4 (k3 ⋅ p12 k2 ⋅ p34 − k2 ⋅ p12 k3 ⋅ p34 − k2 ⋅ k3 p12 ⋅ p34)
+k2 ⋅ k3 (k4 ⋅ p12 k1 ⋅ p34 + k1 ⋅ p12 k4 ⋅ p34)
+k1 ⋅ k3 (k2 ⋅ p12 k4 ⋅ p34 − k4 ⋅ p12 k2 ⋅ p34)
+k1 ⋅ k2 (k4 ⋅ p12 k3 ⋅ p34 − k3 ⋅ p12 k4 ⋅ p34) , (C.3)

where p123 ≡ p − k1 − k2 − k3, pab ≡ p − ka − kb, k14 ≡ k1 − k4. By means of IBPs, we express
the 2-point amplitude in terms of MIs,

[N33] = c1 + c2 + c3 +

+ c4 + c5 (C.4)

and

c1 = (d − 2)(3d − 10)(d2 − 12d + 24)s3

4(d − 3)(5d − 16)(5d − 14)(5d − 12) , (C.5)

c2 = (d − 2)(19d4 + 225d3 − 2708d2 + 8140d − 7680)s
4(d − 4)2(2d − 5)(3d − 10)(5d − 12) , (C.6)

c3 = (d − 2)(33d5 − 44d4 − 1936d3 + 11024d2 − 22512d + 16128)s
4(d − 4)2(d − 3)(5d − 16)(5d − 14)(5d − 12) , (C.7)

c4 = −2(d − 2)(d3 + 7d2 − 55d + 78)s
(d − 4)2(d − 3)(5d − 12) , (C.8)

c5 = (d − 2)(2d − 5)(3d4 + 204d3 − 1856d2 + 5296d − 4944)
2(d − 4)2(d − 3)2(3d − 10)(3d − 8) . (C.9)

This result can be expanded around d = 3 + ε, using the expressions of the MIs given in
Appendix A,

A33 = −i(8πGN)5(m1m2)32−4(4π)−(4+2ε)e2εγEs(1+2ε) ×

[1

ε
(π

2

48
− 1

3
) + 49

18
− 5π2

16
+ 7π2

8
log 2 − 37ζ3

8
+O(ε)] . (C.10)

Finally, by applying the Fourier transform formula (3.18) to −iA33, one gets the result for
L33 reported in appendix B.

C.2 Amplitude 50

Coming to amplitude 50, we have

A50 = = −i (8πGN)5 ((d − 2)
(d − 1) m1m2)

3

[N50] , (C.11)
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with

[N50] ≡ ∫
k1,k2,k3,k4

N50

k2
1 k

2
2 k

2
3 k

2
4 k

2
12 k

2
34 k̂

2
24 p

2
13 p̂

2
14

, (C.12)

and

N50 ≡ (k3 ⋅ p13 k12 ⋅ p̂14 − k12 ⋅ p13 k3 ⋅ p̂14 − k3 ⋅ k12 p13 ⋅ p̂14)
×(k2 ⋅ k34 k1 ⋅ k4 + k1 ⋅ k34 k2 ⋅ k4 − k4 ⋅ k34 k1 ⋅ k2)

+ (k12 ⋅ k34 p13 ⋅ p̂14 − k34 ⋅ p13 k12 ⋅ p̂14 − k12 ⋅ p13 k34 ⋅ p̂14)
×(k1 ⋅ k2 k3 ⋅ k4 − k1 ⋅ k3 k2 ⋅ k4 − k1 ⋅ k4 k2 ⋅ k3)

+ (k34 ⋅ p13 k1 ⋅ p̂14 + k1 ⋅ p13 k34 ⋅ p̂14 − k1 ⋅ k34 p13 ⋅ p̂14)(k4 ⋅ k12 k2 ⋅ k3 − k2 ⋅ k12 k3 ⋅ k4)
+ (k1 ⋅ k34 k3 ⋅ k12 + k1 ⋅ k3 k12 ⋅ k34 − k1 ⋅ k12 k3 ⋅ k34)(k2 ⋅ p̂14 k4 ⋅ p13 + k2 ⋅ p13 k4 ⋅ p̂14)
+ (k2 ⋅ k12 k4 ⋅ k34 − k4 ⋅ k12 k2 ⋅ k34)(k1 ⋅ k3 p13 ⋅ p̂14 − k1 ⋅ p13 k3 ⋅ p̂14)
− 2k1 ⋅ k4 k3 ⋅ k34 k2 ⋅ p13 k12 ⋅ p̂14

− 2k1 ⋅ p13 k3 ⋅ k34(k2 ⋅ k4 k12 ⋅ p̂14 + k4 ⋅ k12 k2 ⋅ p̂14)
+ k1 ⋅ p̂14 k4 ⋅ k12(k2 ⋅ k34 k3 ⋅ p13 − 2k2 ⋅ p13 k3 ⋅ k34)
+ k2 ⋅ k4 k12 ⋅ k34(k3 ⋅ p13 k1 ⋅ p̂14 + k1 ⋅ p13 k3 ⋅ p̂14)
+ 2k1 ⋅ k4 k12 ⋅ p13(k2 ⋅ k34 k3 ⋅ p̂14 − k3 ⋅ k34 k2 ⋅ p̂14)
+ 2k1 ⋅ k12 k4 ⋅ k34(k3 ⋅ p13 k2 ⋅ p̂14 + k2 ⋅ p13 k3 ⋅ p̂14)
+ 2k3 ⋅ p̂14 k12 ⋅ p13(k1 ⋅ k34 k2 ⋅ k4 − k4 ⋅ k34 k1 ⋅ k2)
+ k1 ⋅ p̂14 k2 ⋅ k4(k3 ⋅ k12 k34 ⋅ p13 − 2k3 ⋅ k34 k12 ⋅ p13)
+ 2k1 ⋅ k12 k3 ⋅ k4(k34 ⋅ p13 k2 ⋅ p̂14 + k2 ⋅ p13 k34 ⋅ p̂14)
+ k2 ⋅ k4(k34 ⋅ p̂14 k3 ⋅ k12 k1 ⋅ p13 + p13 ⋅ p̂14 k1 ⋅ k12 k3 ⋅ k34)
− k1 ⋅ p̂14 k2 ⋅ k12 k4 ⋅ k34 k3 ⋅ p13 , (C.13)

where kab ≡ ka − kb, k̂24 ≡ k2 + k4, p13 ≡ p − k1 − k3 and p̂14 ≡ p − k1 + k2 − k3 + k4. By means
of IBPs, we express the 2-point amplitude in terms of MIs,

[N50] = c1 + c2 + c3 +

+ c4 + c5 (C.14)

and

c1 = −(d − 2)(3d − 10)(3d3 − 41d2 + 165d − 204)s3

4(d − 3)(2d − 7)(5d − 16)(5d − 14)(5d − 12) , (C.15)

c2 = (d − 2)(51d4 − 769d3 + 4018d2 − 8868d + 7080)s
2(d − 4)2(2d − 5)(3d − 10)(5d − 12) , (C.16)

c3 = (d − 2)(164d5 − 3543d4 + 26298d3 − 90056d2 + 146592d − 92160)s
12(d − 4)2(d − 3)(5d − 16)(5d − 14)(5d − 12) , (C.17)
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c4 = −(d − 2)(9d − 23)(d2 − 12d + 24)s
2(d − 4)2(d − 3)(5d − 12) , (C.18)

c5 = −(d − 2)(609d5 − 8946d4 + 52176d3 − 151096d2 + 217360d − 124320)
2(d − 4)3(d − 3)2(3d − 10)(3d − 8) . (C.19)

This result can be expanded around d = 3 + ε, using the expressions of the MIs given in
Appendix A,

A50 = −i(8πGN)5(m1m2)32−4(4π)−(4+2ε)e2εγEs(1+2ε) ×

[1

ε
(31

36
− π

2

12
) − 985

216
+ 61π2

144
− 3π2

4
log 2 + 37ζ3

8
+O(ε)] . (C.20)

Finally, by applying the Fourier transform formula (3.18) to −iA50, one gets the result for
L50 reported in appendix B.
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