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Università di Padova & INFN sez. di Padova,

Via Marzolo 8, 35131 Padova, Italy

E-mail: npaquett@stanford.edu, volpato@pd.infn.it,

maxzimet@stanford.edu

Abstract: We determine the generating functions of 1/4 BPS dyons in a class of 4d N = 4

string vacua arising as CHL orbifolds of K3×T 2, a classification of which has been recently

completed. We show that all such generating functions obey some simple physical consis-

tency conditions that are very often sufficient to fix them uniquely. The main constraint

we impose is the absence of unphysical walls of marginal stability: discontinuities of 1/4

BPS degeneracies can only occur when 1/4 BPS dyons decay into pairs of 1/2 BPS states.

Formally, these generating functions in spacetime can be described as multiplicative lifts

of certain supersymmetric indices (twining genera) on the worldsheet of the corresponding

nonlinear sigma model on K3. As a consequence, our procedure also leads to an explicit

derivation of almost all of these twining genera. The worldsheet indices singled out in this

way match precisely a set of functions of interest in moonshine, as predicted by a recent

conjecture.

Keywords: Black Holes in String Theory, Conformal Field Models in String Theory,

Discrete Symmetries, Supersymmetry and Duality

ArXiv ePrint: 1702.05095

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP05(2017)047

mailto:npaquett@stanford.edu
mailto:volpato@pd.infn.it
mailto:maxzimet@stanford.edu
https://arxiv.org/abs/1702.05095
http://dx.doi.org/10.1007/JHEP05(2017)047


J
H
E
P
0
5
(
2
0
1
7
)
0
4
7

Contents

1 Introduction 1

2 BPS state counts in 4d N = 4 theories 4

2.1 Construction of CHL models 5

2.2 BPS state counts 8

2.3 Contour prescription and wall crossing 11

3 K3 nonlinear sigma models and their symmetries 16

3.1 Symmetries of NLSMs on K3 17

3.2 Orbifolds and quantum symmetries 19

3.3 The λ > 1 case 20

4 Modular properties of twining genera 22

4.1 The modular groups of twining genera 22

4.2 Constraints from modularity 24

4.3 An example: frame shape 2363 26

5 Second quantized twining genera and 4d physics 27

5.1 BPS degeneracies from twining genera 28

5.2 Wall crossing and poles 30

5.3 Constraints on twining genera from wall crossing 32

5.4 An example: frame shape 12112 33

6 Determining the genera 34

6.1 Pure K3 symmetries 34

6.2 Quantum symmetries in toroidal orbifolds 35

6.3 General case 36

6.3.1 182−848 37

6.3.2 142−24−284 38

6.3.3 244−484 39

6.4 Results 40

7 Implications for moonshine 49

7.1 Twining genera for the frame shapes of Umbral moonshine that do not fix

a 4-plane 51

8 Discussion 53

A Basics on modular forms and Jacobi forms 56

– i –



J
H
E
P
0
5
(
2
0
1
7
)
0
4
7

B Modular forms for congruence subgroups 57

B.1 Introduction 57

B.2 A basis for M2(Γ) 59

B.2.1 Eisenstein series 59

B.2.2 Eta products 59

B.2.3 Newforms 60

B.3 Fourier expanding our basis at various cusps 63

B.3.1 Eisenstein series 63

B.3.2 Eta products 67

B.3.3 Arbitrary cusp forms 67

C Charges in the case λ > 1 68

1 Introduction

Half-maximal (N = 4) supersymmetric string models in four dimensions constitute a rich

class of theories where many exact results can be derived. The prototypical example of

such theories is given by type IIA on K3×T 2 or, dually, by heterotic on T 6. In this model,

the geometry of the moduli space, as well as various terms in the low energy effective

action, are known exactly, including all perturbative and non-perturbative corrections.

Even more remarkably, this is the framework of the first successful attempts of matching

the Bekenstein-Hawking-Wald black hole entropy formula with a precise counting of the

corresponding microstates in string theory [1]. More precisely, the generating functions for

the multiplicities of 1/2- and 1/4-BPS states have been determined [2].

Compactifications of string theory on K3 are also the arena of many interesting open

conjectures in mathematical physics. It was noticed long ago that the generating function

for the multiplicities of 1/4 BPS dyons matches exactly the square of the denominator

of a generalized (Borcherds) Kac-Moody algebra [2]. This observation was one of the

motivations behind the attempts to construct an algebra of BPS states in these models [3,

4]. Despite the efforts, however, the relationship between Borcherds-Kac-Moody algebras

and N = 4 models in four dimensions has not been explained.

Finally, string theories on K3 seem to be the most promising framework where the

mysterious Mathieu [5] and Umbral [6, 7] moonshine phenomena could be understood. In

particular, there are various proposals relating symmetries of these string theories to the

Mathieu and the other Umbral groups appearing in the moonshine conjectures.

A great deal of information in these string theory models is encoded in the geometry of

the compact K3 surface or, more generally, in the nonlinear sigma model (NLSM) describing

the type IIA string worldsheet in the perturbative limit. In recent years, some considerable

progress has been made in the study of the finite symmetry groups of these models and their

action on the BPS states. This is interesting for a variety of reasons. First of all, to each

such symmetry g that commutes with the spacetime supersymmetries, we can associate a
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4d N = 4 string compactification, called a CHL model [8–11], by taking an appropriate

orbifold of the K3×T 2 compactification described above. These generalize the unorbifolded

case (which is the CHL model associated to the identity element of the symmetry group),

with which they share many features. In particular, arguments similar to those alluded to

above allow one to compute the 1/2-BPS state counting functions. They also allow one

to relate the 1/4-BPS counting functions to refined supersymmetric indices, called twining

genera, of the K3 NLSM that take into account the action of g on states in a short represen-

tation of the worldsheet superconformal algebra [2, 12–23]. Returning to string theory on

K3×T 2, the twining genus is sufficient to determine the action of the corresponding sym-

metry on the sector of 1/4 BPS states. Finally, an explicit knowledge of all twining genera

is expected to provide strong evidence for (or to disprove) the conjectural relations between

K3 sigma models and Umbral moonshine [24, 25]. Unfortunately, fundamental difficulties

have, to date, prevented the determination of many twining genera, as we now describe.

There exists a serious obstacle in the study of K3 NLSMs and their symmetries: very

few of these models are known explicitly. Indeed, no explicit metric for a K3 surface has

ever been determined, so all K3 NLSMs that have been studied to date have been specified

by data other than a K3 metric and B-field, and then shown to be equivalent to a K3

NLSM. The spectrum (or, equivalently, the partition function) is known only for some torus

orbifolds or Gepner models. On the other hand, we have a detailed understanding of the

80-dimensional moduli space and its duality group [26–28]. In [29], these general properties

of K3 sigma models were used to classify all finite groups of symmetries commuting with

the N = (4, 4) algebra at all points in the moduli space. Unfortunately, this classification

only provides a description of the symmetries as abstract groups, but not their action on

the states of the theory. A precise description of the symmetry action on the full spectrum

of the NLSM at all points in the moduli space seems completely out of reach, since for most

of these models we don’t even know the partition function! Nevertheless, as we demonstrate

in this paper, by computing all K3 NLSM twining genera, it is possible to understand the

action on a subsector of states.

An important step toward the completion of this program was made in [25], where

it was proved that distinct twining genera — and, therefore, distinct CHL 1/4-BPS state

counting functions — correspond to different conjugacy classes in the NLSM duality group.

As a consequence, there are only a finite number — at most 81 — of such genera.1 In the

case where g is the identity, the twining genus is the elliptic genus, which has been known

for decades [30]. However, the twining genera associated to many other symmetries have

yet to be determined. This might seem surprising, since — like the elliptic genus — twining

genera do not depend on the moduli of the K3 NLSM, as long as we remain at a point in

moduli space where g is a symmetry. However, for about half of the 81 cases mentioned

above, explicit descriptions of NLSMs at these points in moduli space have not been found.

1We note two minor caveats in this result. First, there was one case that could not be completely

determined: there were either one or two conjugacy classes. So, the number of conjugacy classes may

actually be 82. If there are indeed two classes, they have identical twining genera, so the results of [25] do,

indeed, serve to classify all possible twining genera. Second, a number of distinct classes have coincident

twining genera, so the total number of twining genera is actually fewer than 81.
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In this paper, we propose a general approach to compute all twining genera just using

general properties of K3 string compactifications, and without the need of any explicit

description of the NLSM. More precisely, for each point in the moduli space of K3 models

and for each symmetry g of the corresponding sigma model, we either determine the corre-

sponding twining genus precisely or, in the worst case, we limit the possible genus to only

two explicit possibilities.

Our strategy is to start from the results of [25] and, for each of the relevant classes of

symmetries, to derive constraints on the twining genus both from the general properties of

conformal field theory and from the full string theory on K3. General CFT arguments imply

that the twining genus has suitable modular transformations (it is a weak Jacobi form of

weight 0 and index 1) under certain subgroups of SL(2,Z), which were determined in [25].

The space of such Jacobi forms is always finite dimensional, so that the precise form of a

twining genus can in principle be determined once a sufficient number of Fourier coefficients

is known. The lowest of these Fourier coefficients gets contributions only from the Ramond-

Ramond ground states of the theory, and the action of the symmetry g on such states is

known. Thus, the first Fourier coefficient can always be computed, and this is sufficient to

determine the twining genus in a few cases. This technique was already exploited in [25].

A straightforward generalization of this technique is the following. One considers the

functions (the twisted-twining genera) obtained by taking generic SL(2,Z) transformations

of a twining genus. The physical interpretation of these functions is as gi-twined traces

over the gj-twisted sector of the theory, for some i, j ∈ Z. Formally, the Fourier expansions

of these SL(2,Z) transforms correspond to expansions of the original twining genus at

different ‘cusps’ (i.e., points at the boundary) of the upper half-plane. As for the standard

twining genus, one can determine the action of gi on the gj-twisted ground states and

therefore compute the lowest Fourier coefficient of the corresponding gj-twisted gi-twining

genus. This information is sufficient to determine the twining genus whenever the modular

group Γ̂g has genus zero, i.e. the quotient Ĥ/Γ̂g of the upper half-plane by Γ̂g is a sphere.

These conformal field theory techniques fail whenever the modular group Γ̂g admits

a cusp form, i.e. when the space of Jacobi forms contains an element whose first Fourier

coefficient vanishes at all cusps. In these cases, in order to compute the twining genus, one

should know the action of g on some states of higher conformal weight, but this cannot be

determined without an explicit description of the NLSM. Fortunately, further constraints

come from considering the full string theory rather than just the sigma model. As men-

tioned above, the twining genus for a symmetry g is related to the generating function for

1/4 BPS dyons in the CHL orbifold corresponding to g. The latter enjoys a phenomenon

known as wall crossing. As one moves around the Siegel upper half space parametrizing

the arguments of this function, the function’s Fourier expansion (whose coefficients are

the 1/4 BPS degeneracies) is typically unchanging. However, as one crosses certain real

codimension 1 submanifolds (walls) in moduli space, one must employ a different Fourier

expansion: the previous expansion diverges due to poles of the function located along the

walls [2, 31–33]. The connection between moduli and arguments of the function is provided

by a contour prescription [31] (see section 2 for details), which describes how to extract

dyon degeneracies from contour integration. The degeneracies will jump as the contour
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crosses poles of its integrand and picks up a contribution from the corresponding residue.

Physically, this means that while 1/4 BPS degeneracies are locally constant as a function

of moduli, they jump discretely at walls. These jumps occur because some of the 1/4 BPS

states are given by bound states of pairs of 1/2 BPS states, which can become unstable

and disappear from the spectrum as one varies the moduli. This physical interpretation

of wall crossing allows us to precisely locate the walls, as they are the boundaries of the

regions of stability for these bound states. This yields a very strong constraint on twining

genera, since general choices of coefficients in a twining genus would yield unphysical poles

in the corresponding CHL model’s 1/4-BPS counting function.

Before proceeding with our analysis, we highlight the study of these twining genera

in the context of moonshines associated to K3 surfaces. Independently, twining genera

associated to various K3 SCFT symmetries g have been proposed in the context of the

Mathieu [5], Umbral [6, 7], and Conway [34, 35] moonshines. One way to view the classifi-

cation of N = (4, 4)-preserving symmetries of K3 SCFTs is as certain four-plane preserving

subgroups of Co0, the finite ‘Conway-0’ group which governs the automorphisms of the fa-

mous Leech lattice. Putative twining genera associated to the corresponding Co0 conjugacy

classes (which by abuse of notation we also label by some representative g) have been de-

rived from a certain c = 12 CFT which enjoys a global Co0 symmetry [36]. We refer to

these twining genera as arising from ‘Conway moonshine’. For the former two moonshines

(of which Mathieu may be viewed as a special case of Umbral), twining genera associated

to appropriate 4-plane preserving subgroups of Co0 that are moreover subgroups of the

Umbral groups have also been proposed in [24] (with twining genera in the M24 case first

computed in [37–40]). These Umbral genera coincide, in most cases, with those of [36] for

compatible 4-plane preserving conjugacy classes; see [25] for details. Remarkably, our study

singles out the proposed twining genera associated to the Mathieu, Umbral, and Conway

moonshines from an infinite family of candidate Jacobi forms. This result perfectly agrees

with a recent conjecture in [25].

The structure of the paper is as follows. We begin with sections reviewing CHL com-

pactifications and their BPS state counts, and K3 NLSMs and their symmetries, empha-

sizing the relations between these subjects. In particular, the former introduces 1/4-BPS

counting functions, while the ‘twisted-twining’ genera of K3 NLSMs are described in the

latter section. We then explain, in section 4, how modular properties of the twining genera

allow us to strongly constrain (and even completely determine, in many cases) these func-

tions by studying the actions of symmetries on Ramond-Ramond ground states in various

twisted sectors. Section 5 introduces the other constraints we will need, which arise from

considerations in the full CHL string compactification. We combine these constraints in

section 6 and explain how we determine all twining genera. We conclude with a discussion

of our results and ideas for future work.

2 BPS state counts in 4d N = 4 theories

In this section we review some salient facts about CHL orbifolds, which are N = 4 com-

pactifications of the heterotic string to four dimensions on T 6/ZN , or equivalently type II
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on (K3× T 2)/ZN . We largely follow the discussions in [33, 41, 42]; see [14–23, 43–51] for

further results on CHL orbifolds. Our primary reason for interest in these CHL models

is that they provide a class of string compactifications in which the spectrum of 1/4-BPS

dyons can be computed exactly. In particular, the moduli dependence of this spectrum,

which arises from decays of 1/4-BPS states into two 1/2-BPS states at so-called walls of

marginal stability, is well understood.

2.1 Construction of CHL models

The prototypical example of four dimensional string theory with half-maximal supersym-

metry (16 supercharges) is given by heterotic strings compactified on T 6. The resulting

four dimensional N = 4 theory has a gauge group U(1)28 (at generic points in the moduli

space), corresponding to 22 vector multiplets in addition to the six graviphotons. Now

and henceforth, we assume that we are not at a point of enhanced gauge symmetry. The

moduli are given by the axio-dilaton S, the metric and B-field along T 6, and Wilson lines

for the 16 gauge fields of the 10-dimensional heterotic theory. They parametrize the usual

heterotic moduli space,

O(Γ6,22)\O(6, 22)/(O(6)×O(22))× (SL(2,Z)\SL(2,R)/U(1)) , (2.1)

the product of a Narain moduli space and the axio-dilaton moduli space. The discrete

groups acting on the left — O(Γ6,22) and SL(2,Z) — are the T-duality and S-duality

groups, respectively. Here, Γ6,22 denotes the usual Narain lattice of winding-momentum

for heterotic strings on T 6; it is the unique (up to isomorphism) even unimodular lattice

of signature (6, 22). This model admits dual type IIA and type IIB descriptions. More

precisely, upon choosing a splitting T 6 = T 4 × S1 × Ŝ1, this heterotic compactification is

related via string-string duality to type IIA on K3 ×S1 × Ŝ1, and via T-duality along one

of the circles (say, Ŝ1) to type IIB on K3 ×S1× S̃1. The heterotic axio-dilaton S has dual

descriptions as either the complex structure modulus of the S1 × S̃1 torus in type IIB or

the complexified Kähler modulus of the S1× Ŝ1 torus in type IIA. In the type IIA picture,

the Narain lattice Γ6,22 can be interpreted as the direct sum

Γ6,22 = Γ4,20 ⊕ Γ2,2 (2.2)

of the lattice H∗(K3,Z) ∼= Γ4,20 of integral cohomology for K3 and the lattice Γ2,2 of

winding-momentum along S1 × Ŝ1.

Starting from this compactification, one can obtain a whole class of four dimensional

N = 4 models (CHL models, [8–11]) by taking the orbifold by a cyclic symmetry group

ZN commuting with the N = 4 supersymmetry. In the type IIA frame, the generator ĝ

of ZN acts on the nonlinear sigma model (NLSM) on K3 as an order N symmetry g, and

on the T 2 = S1 × Ŝ1 via a shift δ around S1 by 1/N times its circumference. We write

ĝ = (δ, g). The simplest and most studied examples to keep in mind are the ones where g is a

geometric symmetry of the K3 target space that preserves the holomorphic 2-form (in order

to preserve the SU(2) holonomy that yields N = 4 supersymmetry), a.k.a. a symplectic

automorphism. The orbifold procedure projects some massless fields out of the spectrum.

– 5 –
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Furthermore, thanks to the shift δ, the fields in the twisted sector are necessarily massive

and therefore the low energy spectrum is different from the unorbifolded case. Note that

ĝ does not act on Ŝ1, so T-dualizing this circle to translate between IIA and IIB is simple.

We can easily get a larger class of models if we allow g to be a symmetry of the

N = (4, 4) K3 sigma model (which we describe in section 3) but not of the geometric K3

surface itself [42]. As we will explain in section 3, we are interested in symmetries g of the

sigma model that fix the spectral flow generators and worldsheet superconformal algebras,

since these are the conditions for ĝ to commute with all spacetime supercharges. Each

such symmetry g corresponds to a duality in the subgroup2 O+(Γ4,20) ⊂ O(Γ6,22), where

Γ4,20 is the K3 lattice in the splitting (2.2). In particular, g acts trivially on the torus

S1 × Ŝ1 and on the heterotic axio-dilaton. The condition that supersymmetry generators

are preserved restricts us to the elements of O+(Γ4,20) that fix a positive definite 4-plane in

Γ4,20 ⊗R. Considering non-geometric symmetries introduces a new complication: if g acts

asymmetrically on left-movers and right-movers, then the orbifold of the sigma model by

g may be inconsistent, due to a failure of level matching in a twisted sector that destroys

modular invariance. As will be explained in section 3.3 and appendix C, even for such g’s

the corresponding CHL model can be consistently defined by requiring the order of the

shift δ to be a suitable multiple N̂ = Nλ of the order N of g [42]. For simplicity, in this

section we will mostly focus on the case λ = 1, corresponding to the case where the level

matching condition for g is satisfied.

Inequivalent CHL models correspond to different O(Γ6,22) conjugacy classes of pairs

(δ, g). In [42] it was shown that such classes are labeled by the eigenvalues of g ∈ O+(Γ4,20)

in the defining 24-dimensional representation. This set of eigenvalues is conveniently en-

coded into the (generalized) Frame shape of g, i.e. a formal product

πg =
∏
a|N

am(a) (2.3)

where N is the order of g and m(a) are integers such that the characteristic polynomial of

g is3

det(t− g) =
∏
a|N

(ta − 1)m(a) . (2.4)

The Frame shape always exists because g acts rationally in the 24-dimensional representa-

tion. Furthermore, when g acts by permutations, πg is simply the cycle shape. There are

42 possible Frame shapes corresponding to symmetries of K3 sigma models [29, 52]. Differ-

ent Frame shapes obviously correspond to different O+(Γ4,20) classes, but the converse is

2The notation O+(4, 20) denotes the subgroup of O(4, 20) whose maximal compact subgroup is SO(4)×
O(20). The group O+(Γ4,20) is the group of automorphisms of the lattice Γ4,20 that are contained in

O+(4, 20).
3In words, this definition means than when m(a) > 0 we add the a-th roots of unity m(a) times to the list

of eigenvalues of g, and when m(a) < 0 we subtract the a-th roots of unity |m(a)| times from the list of eigen-

values. For example, the eigenvalues corresponding to the Frame shape 1−8216 are eight 1’s and sixteen −1’s.

– 6 –
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not always true — indeed, there are 81 different O+(Γ4,20) classes corresponding to these

Frame shapes4 [25].

The moduli of the CHL model corresponding to the symmetry ĝ = (g, δ) are simply

given by the g-invariant moduli of the parent theory — all moduli are invariant under δ.

As a result, the moduli space is given by a quotient of

O(6, r − 6)

O(6)×O(r − 6)
× SL(2,R)

U(1)
(2.5)

by a discrete U-duality group. Here r, with 8 ≤ r ≤ 28, is the number of gauge fields that

survive the orbifold projection — that is, the rank of the CHL model’s gauge group. The

rank of the gauge group corresponds to dimension of the g-fixed subspace in Γ6,22 ⊗ R.

This subspace has signature (6, d + 2) because by construction g fixes the sublattice Γ2,2

in (2.2) and a four-dimensional subspace in Γ4,20 ⊗ R.

As is typical in toroidal compactifications of heterotic string theory, one can conve-

niently encode the moduli parametrizing the first factor in (2.5) in an r × r matrix M

satisfying

MLMT = M, MT = M , (2.6)

where L is an O(6, r − 6)-invariant matrix with 6 (+1)-eigenvalues and (r − 6) (-1)-

eigenvalues; we define an inner product on R6,r−6 using L: v · w = vTLw. It is sometimes

convenient to express M in terms of a (6× r)-dimensional vielbein µ as M = µTµ. We will

also be interested in the r-dimensional vectors of electric charge, Q, and magnetic charge,

P , that in particular characterize our dyonic states. We will combine these into a vector

that lives in the lattice of electric-magnetic charges:(
Q

P

)
∈ Λe ⊕ Λm. (2.7)

In the unorbifolded theory, the even unimodular lattice Γ6,22 is isomorphic to both the

electric and magnetic charge lattices, Γ6,22 ' Λe ' Λm. For a CHL model based on a

symmetry (δ, g) of order N (where g satisfies the level matching condition), the lattice of

electric charges is

Λe = Γ1,1 ⊕ Γ1,1(1/N)⊕ (ΓgK3)∗ . (2.8)

and the lattice of magnetic charges is its dual

Λm = Γ1,1 ⊕ Γ1,1(N)⊕ ΓgK3 = Λ∗e . (2.9)

Here, Γ1,1(N) and Γ1,1(1/N) denote the even unimodular lattice of signature (1, 1) with

quadratic form rescaled by N and 1/N , respectively, while ΓgK3 is the g-fixed sublattice of

the K3 lattice Γ4,20. For λ > 1 (i.e. when the level matching condition for g is not satisfied),

the lattice of electric-magnetic charges is more complicated [42] (see appendix C).

4In the subsequent section (and see especially [25]), we explain why the relevant duality group for our

purposes is O+(Γ4,20) rather than O(Γ4,20).
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The full U-duality group is, in general, rather complicated [42] — in particular, it is

not simply a product of a T-duality group acting on the left factor and an S-duality group

acting on the right factor — but we can nonetheless identify subgroups that act in these

ways, which we call T- and S-dualities. The S-duality group acts trivially on the moduli

M and as Γ1(N̂) ⊆ SL(2,Z) on the axio-dilaton

S′ =
aS + b

cS + d
,

(
Q′

P ′

)
=

(
a b

c d

)(
Q

P

)
. (2.10)

(See appendix B.1 for the definition of Γ1(N̂)). This is easiest to understand in the type IIB

picture: SL(2,Z) acts on the basis of H1(T 2;Z), and Γ1(N̂) is the subgroup that commutes

with the 1/N̂ shift.5 The T-duality group O(Λe) leaves the heterotic axio-dilaton invariant

but acts on the moduli M and on the charge vector as

P ′ = (ΥT )−1P, Q′ = (ΥT )−1Q (2.11)

and

M ′ = ΥMΥT , (2.12)

where Υ ∈ O(Λe).

2.2 BPS state counts

Having introduced CHL models, we now describe the main focus of our paper: generating

functions that count BPS states in these models. We begin with 1/2 BPS state counts,

both as a warm-up for the more interesting 1/4 BPS case and because 1/2 BPS states play

an important role in describing ‘mortal’ 1/4 BPS states — that is, states that exist only

in parts of the CHL moduli space. We will then proceed to describe 1/4 BPS state counts.

We begin by describing the set of all 1/2 BPS states, although we will shortly spe-

cialize to a subset thereof. As above, we denote the electric-magnetic charge of a state by(
Q

P

)
. One can then easily show that the 1/2 BPS condition implies that Q and P are

parallel (when thought of as r-dimensional vectors in Λe⊗R). For each such charge vector,

one can consider an index counting the number of ‘bosonic’ minus ‘fermionic’ 1/2 BPS su-

permultiplets with the given charges. Here, a supermultiplet is called bosonic or fermionic

depending on the spin of its lowest component. We will loosely refer to these indices as ‘de-

generacies’. Crucially, they are the same at all points in moduli space; this is demonstrated

via the standard argument for moduli-independence of supersymmetric indices.

In the CHL model associated to the identity — that is, heterotic on T 6 — all 1/2

BPS states can be mapped via S-duality to states carrying purely electric charges, i.e.

with P = 0. At a perturbative point in moduli space, 1/2 BPS states with these charges

5In addition, for each γ ∈ Γ0(N̂), there is an element of the U-duality group that acts on the axio-dilaton

as γ [13, 44]. This fact — rather surprising from the above geometric reasoning — relies on the fact that

when a is coprime to N̂ , a CHL model obtained by orbifolding by ĝ = (aδ, g) is dual to a model with g

replaced by ga. We then note that 〈(aδ, ga)〉 = 〈(δ, g)〉 [42].

– 8 –



J
H
E
P
0
5
(
2
0
1
7
)
0
4
7

are given by perturbative heterotic states that have only left-moving excitations, a.k.a.

Dabholkar-Harvey states [53]. In particular, the level matching condition tells us that for

these states the level of the left-moving oscillators is n = 1 +Q2/2. As a consequence, we

can encode all 1/2 BPS state degeneracies b(n) in the generating function

1

∆(τ)
=

1

η24(τ)
=
∑
n

b(n)qn−1 , q = e2πiτ . (2.13)

See appendix A for the definition of η(τ).

Unfortunately, the story for more general CHL models is not as nice — in particular,

the S-duality group Γ1(N̂) is not always sufficient to map every 1/2 BPS charge vector to

a purely electric one. Even if we restrict to purely electric states, the degeneracies depend

not only on Q2, but also on other discrete T-duality invariants [50].6 For the purpose of this

paper, we will only need a formula for the degeneracy of a certain class of purely electric

1/2 BPS states that are obtained as Dabholkar-Harvey states in the ĝ-twisted sector of the

CHL orbifold. For such a class of charges, the generating function is a simple generalization

of (2.13) (see eq. (5.5)). We refer the reader to refs. [54, 55] for the more general results.

We can now proceed to describe 1/4 BPS state counts. 1/4 BPS states are characterized

by a charge vector

(
Q

P

)
where Q and P are not parallel and are therefore dyonic in

every duality frame. The degeneracies of 1/4 BPS states (i.e., the number of bosonic

minus fermionic quarter BPS supermultiplets carrying given charges

(
Q

P

)
) are invariant

under dualities. The only quadratic invariants under the ‘classical’ duality group O(6, r −
6) are Q2, P 2 and P · Q, so that quantities that can be computed in the supergravity

approximation, such as the macroscopic BHW entropy of a 1/4 BPS black hole, only

depend on them. Signed degeneracies of 1/4 BPS states are usually described as functions

(−1)P ·Q+1d(Q2/2, P 2/2, P ·Q) of these invariants.7 However, at a microscopic (quantum)

level, the relevant T-duality group is the discrete O(Λe) ⊂ O(6, r − 6). Vectors

(
Q

P

)
with

the same invariants Q2, P 2, P ·Q can belong to different O(Λe) orbits and have different

degeneracies. In the unorbifolded case (g = e), most results in the literature focus on the

case where the charges P,Q ∈ Γ6,22 span a primitive sublattice of rank 2 in Γ6,22 — this

condition ensures that there is a single T-duality orbit for each value of the invariants Q2,

P 2, P ·Q. We will impose the analogous condition also in the CHL models. However, in this

case, this might not be sufficient to ensure that there is a unique T-duality orbit. Rather

than attempt a complete classification of the discrete invariants, we will consider only the

T-duality orbits of a specific set of charges, for which the calculation of the degeneracies is

particularly simple.

6Note, however, that certain quantities, such as the asymptotic degeneracy of 1/2 BPS states in the

limit of large charges, are expected to be invariant under the ‘classical’ duality group and therefore depend

only on Q2.
7In the following, with some abuse of language, we will ignore the sign (−1)P ·Q+1 and simply refer to

the functions d(Q2/2, P 2/2, P ·Q) as degeneracies.
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First of all, we will consider states that are charged only under the four gauge fields

given by the metric and B-field with one leg along the torus S1 × Ŝ1 and one leg in the

uncompactified directions. In the heterotic frame, these are states with winding −ŵ and

momentum m̂ along Ŝ1, winding −w′ and momentum m′ along S1, and Kaluza-Klein and

H-monopole charges8 M̂,−Ŵ along Ŝ1 and M ′,−W ′ along S1. Focusing on the sublattice

of the electric-magnetic charge lattice that contains these states, we can describe these

dyons with the charge vectors

Q =


m̂

m′

ŵ

w′

 , P =


Ŵ

W ′

M̂

M ′

 , (2.14)

where m′ is quantized in units of 1/N , M ′ is quantized in units of N , and the other quantum

numbers are integrally quantized.9

Then, we further restrict ourselves to a subclass of these dyons that has a perhaps more

transparent description in the IIB frame (called frame 1 in [33]). The counting of 1/4 BPS

dyons in the unorbifolded theory was originally carried out in this picture [15–17]. One can

get from IIB to the heterotic picture by first making an S-duality transformation, then a

T-duality on S̃1 to go to type IIA, and then finally using string-string duality to go to the

heterotic string. Consider a single D5-brane on K3× S1, a single Kaluza-Klein monopole

on Ŝ1, momentum −n/N on S1, momentum l along Ŝ1, and m units of D1-brane charge

on S1. The D5-brane has an induced D1-charge coming from wrapping K3, shifting the

total D1 charge by −χ(K3)/24 = −1, which we have included in m. Going through the

aforementioned chain of dualities, we see that this configuration maps to a configuration

in the heterotic string with momentum −n/N on S1, a KK monopole on Ŝ1, −m units of

NS5-brane charge along T 4× S1, l NS5-brane charge wrapped along T 4× Ŝ1 and one unit

of fundamental string charge along S1. This gives the charge vectors

Q =


0

−n/N
0

−1

 , P =


m

−l
1

0

 (2.15)

with T-duality invariants

Q2 = 2n/N, P 2 = 2m, P ·Q = l . (2.16)

8From the ten-dimensional perspective, an H-monopole along one of the circles roughly corresponds to

NS5-branes wrapping T 4 times the other circle, while a Kaluza-Klein monopole may be thought of as arising

from a Taub-NUT space with the appropriately identified asymptotic circle.
9We are using the conventions of [33] where before (after) orbifolding the circles Ŝ1, S1 have radii

2π
√
α′, 2πN

√
α′ (2π

√
α′, 2π

√
α′).
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In the simplest model where ĝ is the identity, this set of charges contains a representative

for each T-duality orbit of a primitive charge vector

(
Q

P

)
.

Let us consider the generating function 1/Φg,e
10 for the degeneracies d(Q2/2, P 2/2, P ·

Q) of these orbits of 1/4 BPS states in the CHL model corresponding to a symmetry ĝ,

namely
1

Φg,e(Ω)
=
∑
n,m,l

d(m,n, l)pmq
n
N yl , (2.17)

where we have defined the symmetric matrix

Ω =

(
σ z

z τ

)
. (2.18)

σ, τ, z ∈ C are complexified chemical potentials for P 2/2, Q2/2 and P ·Q, and

q = e2πiτ , y = e2πiz, p = e2πiσ . (2.19)

The series 1/Φg,e can be computed in a weak coupling limit in the type IIB frame. This

requires an explicit knowledge of the action of g on the states of the nonlinear sigma model.

For this reason, we postpone the statement and derivation of the precise expression to

section 5. In general, the inverse generating function Φg,e converges (in a suitable domain)

to a meromorphic Siegel modular form of genus 2 with respect to some discrete subgroup

of Sp(4,R).

2.3 Contour prescription and wall crossing

The above dyon degeneracies were determined at a particular point in moduli space. By

the standard argument for moduli-independence of supersymmetric indices, one would

naively expect this function to count BPS states at all points in moduli space, similarly

to the 1/2 BPS counting function. A more careful analysis shows that the degeneracies

d(Q2/2, P 2/2, P ·Q), while locally constant on the moduli space, jump discontinuously at

certain real codimension one subspaces, called walls, in moduli space. This is due to the fact

that at these walls 1/4 BPS states can decay into pairs of 1/2 BPS states.11 These decaying

1/4 BPS states are bound states of 1/2 BPS states, and as we approach a wall (from the side

where the bound state exists) the constituent 1/2 BPS states approach infinite separation.

Following [33], let us classify all possible decay channels of a 1/4 BPS state into a pair

of 1/2 BPS states. Consider a 1/4 BPS dyon with charges

(
Q

P

)
as in (2.15) and consider

10The reason for the second subscript denoting the identity element is to emphasize the similarity with

the twisted-twining genera of the next section. We consider elliptic genera with twisted boundary conditions

along both cycles of the torus, i.e. φg,h, and indeed more general second-quantized functions Φg,h — counting

h-twining dyons in the CHL model labeled by g — can be defined.
11Other decay channels of 1/4 BPS dyons (for example, into a pair of 1/4 BPS dyons) are allowed at

submanifolds in moduli space of higher codimension and as such those loci can be avoided as we continuously

move around moduli space [56]. (Strictly speaking, this has been proven only for charges satisfying the

primitivity condition described above).
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the splitting into a pair of 1/2 BPS charge vectors(
Q

P

)
→

(
Q1

P1

)
+

(
Q2

P2

)
. (2.20)

Since the electric and magnetic charge vectors of 1/2 BPS states are parallel,

(
Q1

P1

)
and(

Q2

P2

)
can be written

(
dM1

−cM1

)
and

(
−bM2

aM2

)
, for some a, b, c, d ∈ R and some vectors

M1,M2. We can take M1 and M2 to take values in the real space R2,2 spanned by charges

of the form (2.14), and normalize them so that ad− bc = 1. Then, requiring these charges

to sum to (Q,P ) as in (2.20) determines M1 = aQ + bP and M2 = cQ + dP . Therefore,

the charges of the 1/2 BPS states are encoded in the matrix
(
a b
c d

)
as(

Q1

P1

)
=

(
da db

−ca −cb

)(
Q

P

)
,

(
Q2

P2

)
=

(
−bc −bd
ac ad

)(
Q

P

)
. (2.21)

Given the expression (2.15) for the charges Q and P , the requirement that

(
Q1

P1

)
and(

Q2

P2

)
satisfy the quantization conditions described below equation (2.14) is equivalent to

bc, bd, ad ∈ Z ac ∈ NZ , for λ = 1 . (2.22)

More precisely, this is the constraint on a, b, c, d in the simpler case when the level matching

condition for g is satisified (i.e. λ = 1). For λ > 1, the quantization conditions (2.14) are

modified and lead to more complicated constraints on a, b, c, d (see appendix C). Note that

there are infinitely many matrices

(
a b

c d

)
corresponding to the same splitting (2.20). In

particular, one can rescale

(
a b

c d

)
→

(
xa xb

x−1c x−1d

)
for any real non-zero x. Using this

freedom, we can assume that a and b are integral and coprime (or equal to 0 and ±1, in

case one of the two vanishes); this fixes x up to a sign. With this choice, (2.22) implies

that c and d are integral as well, so that

(
a b

c d

)
∈ SL(2,Z). Finally, the two matrices(

a b

c d

)
and

(
−c −d
a b

)
determine the same wall, just with Q1, P1 and Q2, P2 exchanged.

We conclude that the distinct splittings (2.20) are in one to one correspondence with

elements of PSL(2,Z)/Z2, where the Z2 is generated by S =

(
0 −1

1 0

)
, with the additional

constraint ac ∈ NZ.
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Let us now determine the location of the wall in the moduli space corresponding to a

matrix

(
a b

c d

)
. It is useful to arrange the charges as [32]

ΛQ,P =

(
Q ·Q −Q · P
−Q · P P · P

)
=

(
2n/N −l
−l 2m

)
(2.23)

and define the ‘left-moving’ charge vector

ΛQL,PL =

(
QL ·QL −QL · PL
−QL · PL PL · PL

)
(2.24)

in terms of the projections of the charge vectors onto the ‘left’, positive-definite 6-

dimensional space:

QaL = µaIQ
I , P aL = µaIP

I , a = 1, . . . , 6, I = 1, . . . , r. (2.25)

Notice that this projection introduces dependence on the T-moduli in M (more precisely

through the vielbein µ). Introduce the norm ‖X‖2 = −2 detX on the space R2,1 of

symmetric matrices.12 The polarization identity then gives

(X,Y ) =
1

4
(‖X + Y ‖2 − ‖X − Y ‖2) = −a1d2 − a2d1 + 2b1b2 = − detY Tr(XY −1),

where X =

(
a1 b1

b1 d1

)
and Y =

(
a2 b2

b2 d2

)
. This scalar product is invariant under SL(2,R)

transformations

(γXγT , γY γT ) = (X,Y ) . (2.26)

Then, following [32], we define a ‘central charge vector’ Z in terms of ΛQL,PL and the

axio-dilaton S = S1 + iS2 as

Z ≡ Z
((

QL
PL

)
, S
)

=
1√

‖ΛQL,PL‖
ΛQL,PL +

√
‖ΛQL,PL‖
S2

(
|S|2 S1

S1 1

)
. (2.27)

From this definition, it is easy to see that Z transforms covariantly under SL(2,R) trans-

formations

Z

((
a b

c d

)(
QL
PL

)
,
aS + b

cS + d

)
=

(
a b

c d

)
Z

(
a b

c d

)T
,

(
a b

c d

)
∈ SL(2,R) . (2.28)

12The signature is easily determined by looking at the norms of the following basis elements:(
0 1

1 0

)
,

(
−1 0

0 1

)
,

(
1 0

0 1

)
.
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Here, SL(2,R) is the classical S-duality group. As discussed in the sections above, quan-

tization breaks this classical real group to a discrete subgroup. Nevertheless, formally Z
transforms covariantly under the full SL(2,R).

The central charge vector Z has the property that its norm equals (up to a normal-

ization) the mass of the corresponding BPS state

M
((

QL
PL

)
, S
)2

=−1

2
‖Z(

(
QL
PL

)
, S)‖2 =

(QL+S̄PL)·(QL+SPL)

S2
+2
√
Q2
LP

2
L−(QL ·PL)2 .

(2.29)

In particular, M is formally invariant under SL(2,R) transformations of its arguments

M

((
a b

c d

)(
QL

PL

)
,
aS + b

cS + d

)
= M

((
QL
PL

)
, S
)
. (2.30)

The domain wall corresponding to a decomposition (2.20) is the submanifold of the

moduli space characterized by the equation

M
((

QL
PL

)
, S
)

= M
((

Q1L
P1L

)
, S
)

+M
((

Q2L
P2L

)
, S
)
. (2.31)

It is useful to regard this as an equation in the unknown S for fixed values of the charges

P,Q and the moduli µ. For the simplest decomposition(
Q

P

)
→

(
Q

0

)
+

(
0

P

)
, (2.32)

corresponding to the matrix

(
a b

c d

)
=

(
1 0

0 1

)
, it is easy to check that the wall equation

M
((

QL
PL

)
, S
)

= M
((

QL
0

)
, S
)

+M
((

0
PL

)
, S
)

(2.33)

is equivalent to (
Z
((

QL
PL

)
, S
)
, α0

)
= 0 , α0 =

(
0 −1

−1 0

)
. (2.34)

The most general decomposition (2.21) can be written as(
Q

P

)
→ γ−1

(
1 0

0 0

)
γ

(
Q

P

)
+ γ−1

(
0 0

0 1

)
γ

(
Q

P

)
(2.35)

where γ =

(
a b

c d

)
∈ SL(2,R) and a, b, c, d satisfy (2.22). Using the SL(2,R) invari-

ance (2.30) of the mass formula, the wall equation

M
((

QL
PL

)
, S
)

= M
(
γ−1 ( 1 0

0 0 ) γ
(
QL
PL

)
, S
)

+M
(
γ−1 ( 0 0

0 1 ) γ
(
QL
PL

)
, S
)

(2.36)
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is equivalent to

M
(
γ
(
QL
PL

)
, γ · S

)
= M

(
( 1 0

0 0 ) γ
(
QL
PL

)
, γ · S

)
+M

(
( 0 0

0 1 ) γ
(
QL
PL

)
, γ · S

)
. (2.37)

This is of the same form as (2.33), so its solutions are(
Z(γ

(
QL
PL

)
, γ · S), α0

)
= 0 . (2.38)

Finally, using covariance of Z and invariance of the scalar product under SL(2,R) trans-

formations, this equation is equivalent to(
Z(
(
QL
PL

)
, S), αγ

)
= 0 , (2.39)

where, explicitly

αγ := γ−1α0γ
−T =

(
2bd −ad− bc

−ad− bc 2ac

)
. (2.40)

Formally, the moduli dependence of the coefficients d(m,n, `) is directly related to

the fact that different Fourier expansions of 1/Φg,e converge for different values of the

arguments σ, z, τ .13 For a CHL orbifold with orbifold group ZN , we can extract the signed

degeneracy of dyons with charges (Q,P ) — a Fourier coefficient of 1/Φg,e — at a point in

the moduli space via

d(Q2/2, P 2/2, P ·Q) =
1

N

∮
C
dΩ

eπi(ΛQ,P ,Ω)

Φg,e(Ω)
, (2.41)

where C is a contour over the periods of the real parts <σ,<τ,<z of the chemical potentials.

At first sight, eq. (2.41) is independent of the moduli, in contradiction with our

discussion of dyon decay. Even more confusingly, extracting the degeneracy seems ambigu-

ous since the Fourier expansion of 1/Φg,e converges only in a certain proper subdomain

of the Siegel upper half-space; in a different subdomain, there can be another Fourier

expansion with different coefficients. These confusions can be resolved simultaneously by

first noticing that 1/Φg,e has poles, so that the integral in (2.41) is not invariant under

deformations of the contour C: namely, when the contour C crosses one of the poles of

1/Φg,e, the integral picks up the corresponding residue. Therefore, in order to make sense

of (2.41), it is necessary to give a precise prescription for (the imaginary part of) the

contour C. It has been proposed in [31] that the contour depends on both the charges and

the moduli through the central charge vector Z:

C := C(Q,P )|µ,S =

{
=Ω = ε−1Z, 0 ≤ <σ, 1

N
<τ,<z < 1

}
, (2.42)

where ε� 1. This prescription was proposed in [31] for the unorbifolded case (g = e), based

on the observation that it provides the right Fourier coefficients at all points in the moduli

13This raises the question of why 1/Φg,e should be the correct counting function at all points in moduli

space. [31, 33] show that the jumps at walls are exactly as we would expect from the description of walls as

arising from decays of 1/4 BPS states into pairs of 1/2 BPS states. [21, 44] explain the appearance of the

genus 2 Siegel form 1/Φg,e via a string web construction.
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space. The fundamental reason for this is that, with such a definition, the contour C crosses

a pole of 1/Φe,e when there is wall crossing and nowhere else. Furthermore, the difference

between the two contour integrals on the two sides of the wall matches exactly the degen-

eracy of the pair of 1/2 BPS states disappearing from the spectrum. Subsequently, this

contour prescription was given an independent interpretation in terms of 1/4 BPS string

networks [21, 44, 50] and as a saddle point in a 1/4 BPS instanton contribution to a 3D

effective coupling [57]. It is therefore natural to assume that even in CHL orbifolds this con-

tour prescription provides the exact counting of 1/4 BPS states everywhere in the moduli

space. This assumption holds in all cases where the generating function 1/Φg,e is known.

3 K3 nonlinear sigma models and their symmetries

Having explained the important role played by K3 nonlinear sigma models (NLSMs) and

their symmetries in CHL models, we now review a number of important results pertaining

to them.

NLMS on K3 are two-dimensional N = (4, 4) superconformal field theories at central

charge c = c̄ = 6. They arise as the worldsheet description of perturbative type IIA string

theory on a K3 surface. The 80-dimensional moduli space of K3 NLSMs is given by

MK3 = O+(Γ4,20)\O+(4, 20)/(SO(4)×O(20)) , (3.1)

and parametrizes the metric and the B-field on the K3 surface, which are part of the

132-dimensional moduli space (2.1) parametrizing compactification of type IIA on K3×T 2.

The space MK3 is the quotient of the Grassmannian of positive definite oriented four-

planes Π ⊂ Γ4,20⊗R by the duality group O+(Γ4,20); this implies that it is connected. The

spacetime (string theory on K3) interpretation of Γ4,20 is that it is the lattice of charges of D-

branes wrapping cycles of the K3. The NLSM is believed to become a singular (inconsistent)

CFT in the limit where when Π becomes orthogonal to a root, i.e. a vector v ∈ Γ4,20 with

v2 = −2. At these points in the moduli space, the D-branes corresponding to the cycle v

become massless and the compactification develops an enhanced gauge symmetry. Since

we are only interested in compactifications with a generic abelian gauge group, we can

henceforth assume our NLSMs are non-singular.

At such a point in MK3, we can define a supersymmetric index, called the elliptic

genus, as the following trace over the Ramond-Ramond sector of the theory:

φ(τ, z) = TrRR

(
(−1)2(J0+J̄0)qL0−c/24q̄L̄0−c̄/24y2J0

)
q := e2πiτ , y := e2πiz . (3.2)

Here, c = c̄ = 6 are the holomorphic and anti-holomorphic central charges, L0 and L̄0 are

Virasoro generators, and J0 and J̄0 are the Cartan generators of the left- and right- moving

SU(2) R-symmetries of the N = 4 superconformal algebra. Although the right hand side

appears to depend on q̄, this is misleading: the elliptic genus gets non-vanishing contri-

butions only from states that are BPS with respect to the right-moving superconformal

algebra — that is, states with L̄0 = 1/4. As a consequence, φ(τ, z) is actually holomorphic
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both in τ and in z. The elliptic genus satisfies modular and elliptic properties that are the

characteristic features of a weak Jacobi form of weight 0 and index 1 (see [58]):

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= e

2πicz2

cτ+d φ(τ, z) ,

(
a b

c d

)
∈ SL(2,Z) (3.3)

φ(τ, z + `τ + `′) = e−2πi(`2τ+2`z)φ(τ, z) , `, `′ ∈ Z , (3.4)

and its Fourier expansion

φ(τ, z) =

∞∑
n=0

∑
`∈Z

c(n, `)qny` (3.5)

has only non-negative powers of q. Furthermore, it is invariant under (supersymmetry

preserving) exactly marginal deformations, and therefore it is the same function

φ(τ, z) = 2y + 2y−1 + 20 +O(q) , (3.6)

for all NLSMs on K3, sinceMK3 is connected. This function may be easily determined by

considering a K3 that is realized as an orbifold T 4/Z2. Setting y = 1 in (3.2) yields the

Witten index, i.e. the Euler characteristic of the target space, which for K3 NLSMs is 24.

It is believed that NLSMs on K3 and on T 4 are the only examples of N = (4, 4)

superconformal field theory at c = c̄ = 6 giving rise to string models with spacetime

supersymmetry (we will implicitly assume that this is the case in the following). Both the

elliptic genus and the Witten index of NLSMs on T 4 vanish identically. Such torus models

can be also be characterized by the presence of R-R ground states with L0 = L̄0 = 1
4 and

(−1)2(J0+J̄0) = −1. Such states, which would contribute −y±1 to the elliptic genus, are

absent in NLSMs on K3 [28]. We will use this fact in the following sections.

3.1 Symmetries of NLSMs on K3

Our interests in the CHL models described in section 2 motivate us to study the groups

G of discrete symmetries of NLSMs on K3 that preserve all 16 spacetime supersymmetries

of type IIA strings compactified on K3. From a worldsheet viewpoint, spacetime super-

symmetries are a consequence of the worldsheet N = (4, 4) superconformal algebra and

of the independent left- and right-moving half-integral spectral flow symmetries of NLSMs

on K3. Half-integral spectral flow exchanges the Ramond and Neveu-Schwarz sectors and

transforms L0 and J0 as follows (in the case of left-moving spectral flow)

L0 7→ L0 ± J0 + 1/4, J0 7→ J0 ± 1/2 . (3.7)

Analogous formulae hold for L̄0 and J̄0 for right-moving spectral flow. In particular, the

action of this transformation on the Ramond sector ground states, labeled by their (L0, J0)

eigenvalues, reads (1/4, 1/2) ↔ (0, 0), (1/4, 0) ↔ (1/2,−1/2), (1/4,−1/2) ↔ (1,−1).

Therefore, the condition that the symmetries g ∈ G preserve all spacetime supersymme-

tries translates, from the worldsheet perspective, to the condition that these symmetries

commute with the worldsheet N = (4, 4) superconformal algebra and with the half-integral
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spectral flows. From now on, whenever we talk about symmetries of K3 NLSMs, we will

implicitly assume that these properties hold.

Such symmetries turn out to have a simple mathematical characterization [29]. To

see this, note that the spacetime picture of Γ4,20 as a lattice of D-brane charges translates

to a sigma model interpretation of Γ4,20 ⊗ R as the 24-dimensional space of Ramond-

Ramond ground states contributing to the q0 term in the elliptic genus. The four plane

Π ⊂ Γ4,20⊗R, which is parametrized by the moduli spaceMK3, can be identified with the

four states contributing 2y + 2y−1 to the elliptic genus. The latter are very special states:

the corresponding Ramond-Ramond vertex operators are the generators of simultaneous

left- and right-moving half-integral spectral flow [30]. By the arguments above, symmetries

g of the NLSM preserving all spacetime supersymmetries must fix these four states, and

each such g can be identified with an element in the duality group O+(Γ4,20) fixing the

four-plane Π pointwise [29].

Let us consider a NLSM on K3 with a group of symmetries G ⊂ O+(Γ4,20) preserving

the N = (4, 4) superconformal algebra and the four R-R spectral flow generators. For each

g ∈ G, we define the twining genus

φg(τ, z) := TrRR(g (−1)2(J0+J̄0)qL0− c
24 q̄L̄0− c̄

24 y2J0) . (3.8)

These functions share a number of properties with the elliptic genus. In particular, they

receive contributions only from BPS states, so they are holomorphic in both τ and z.

Furthermore, they are invariant under deformations of the NLSM that preserve the sym-

metry g, i.e. that are generated by g-invariant exactly marginal operators. Since the 24 R-R

ground states transform in the defining 24-dimensional representation of G ⊂ O(Γ4,20), and

in particular the spectral flow generators are fixed by G, the twining genus has the form

φg(τ, z) = 2y + 2y−1 + (Tr24(g)− 4) +O(q) . (3.9)

The twining genus is invariant under conjugations by the duality group O+(Γ4,20), i.e.

φg(τ, z) = φhgh−1(τ, z) h ∈ O+(Γ4,20) . (3.10)

As discussed in [28], elements h ∈ O(Γ4,20) that are not in O+(Γ4,20) correspond to dualities

flipping the parity of the worldsheet. In particular, such h do not commute with the

generators of the N = (4, 4) superconformal algebra: conjugation by h exchanges the

holomorphic and anti-holomorphic N = 4 algebras. Since (3.8) is manifestly left-right

asymmetric, the identity (3.10) does not hold, in general, for h ∈ O(Γ4,20) \O+(Γ4,20) [25].

The family Fnsg of non-singular K3 NLSMs which share the symmetry g ∈ O+(Γ4,20)

may be shown to form a connected subset of MK3 [25]. Therefore, physically independent

twining genera, i.e. twining genera that are not related by dualities or continuous deforma-

tions, correspond to O+(Γ4,20) conjugacy classes fixing a subspace of Γ4,20⊗R of signature

(4, d), d ≥ 0, that is orthogonal to no roots. (The latter condition ensures that the family

Fnsg is non-empty, so that φg is well-defined). These O+(Γ4,20) conjugacy classes have been

classified in [25].
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3.2 Orbifolds and quantum symmetries

We conclude this section with a discussion of some general aspects of orbifolds, as well as of

some issues that interest us because of the particular orbifolds that arise in the construction

of CHL models.

Consider a N = (4, 4) SCFT C (a NLSM on K3 or T 4) with c = c̄ = 6 and a symmetry

g of order N preserving the superconformal algebra and the spectral flow. The orbifold

C/〈g〉 of C by the cyclic group 〈g〉 is obtained by projecting on the g-invariant subspace of

all the twisted and untwisted sectors Hgr , r ∈ Z/NZ. It is often useful to split each Hgr
into its g-eigenspaces

Hr,s := {v ∈ Hgr | g(v) = e
2πis
N v} (3.11)

so that the spectrum of C/〈g〉 is given by

HC/〈g〉 = ⊕Nr=1Hr,0 . (3.12)

The spaces Hr,s are also useful for describing the spectrum of the CHL model. Recall that

this model is obtained by taking the orbifold of an NLSM on K3×S1 by a symmetry (δ, g),

where δ is 1/N -th of a period along S1. The spectrum of this orbifold is given by tensoring

states in Hr,s with states of the circle CFT with winding r mod N and momentum s/N

mod 1.

The orbifold C/〈g〉 is a consistent CFT only if the level matching condition

L0 − L̄0 ∈
1

N
Z on Hg , (3.13)

is satisfied. If this is the case, then C/〈g〉 is again an N = (4, 4) SCFT at the same central

charge and therefore an NLSM on K3 or T 4. In general, the level matching condition might

fail; in this case, one can still define the twisted sectors Hgr , but one cannot construct a

consistent CFT with a local OPE that includes g-twisted vertex operators. This general

case will be considered in section 3.3.

The action of any h ∈ G commuting with g on the untwisted fields induces an action of

h on all twisted sectors. In particular, one has gr = e2πi(L0−L̄0) on the Hgr twisted sector.

This leads to an obvious generalization of the twining genera φg. For each commuting pair

g, h ∈ G, we define the twisted-twining genus

φg,h(τ, z) := TrHg(h (−1)2(J0+J̄0)qL0− c
24 q̄L̄0− c̄

24 y2J0) , (3.14)

where the trace is taken over the g-twisted Ramond-Ramond sectorHg. The twining genera

φh correspond to the special case where the ‘twist’ g is the identity: φh ≡ φe,h.

We will be mostly interested in the twisted-twining genera of the form φgi,gj , i.e. when

the commuting pair generate a cyclic subgroup of G. These twisted-twining genera are

related to the characters for the spaces Hr,s

φ̂r,s(τ, z) = TrHr,s((−1)2(J0+J̄0)qL0− c
24 q̄L̄0− c̄

24 y2J0) , (3.15)

by a discrete Fourier transform

φ̂r,s(τ, z) :=
1

N

N∑
k=1

e−
2πisk
N φgr,gk(τ, z) . (3.16)
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By definition, all Fourier coefficients of φ̂r,s

φ̂r,s(τ, z) =
∑
n∈Q

∑
l∈Z

ĉgr,s(n, l)q
nyl , (3.17)

are (possibly negative) integers ĉgr,s(n, l) ∈ Z. For later convenience, we also define coeffi-

cients ĉr,s,t(D), r, s ∈ Z/NZ, t ∈ Z/2Z, by

ĉgr,s(n, l) = ĉgr,s,l (mod 2)(4n− l
2) . (3.18)

Here, we used the fact that, for weak Jacobi forms of index 1, ĉgr,s(n, l) depends on n, l only

through the discriminant D = 4n− l2 and l (mod 2). From (3.12), (3.16) and (3.17), it is

also easy to derive the elliptic genus of the orbifold theory C/〈g〉

φC/〈g〉(τ, z) =
∑

r∈Z/NZ

φ̂r,0(τ, z) =
1

N

∑
r,k∈Z/NZ

φgr,gk(τ, z) . (3.19)

Mathematically, the twisted-twining genera are weak Jacobi forms of weight 0 and

index 1 and are the components of a vector-valued representation of SL(2,Z)

φg,h(τ, z)

(
aτ + b

cτ + d
,

z

cτ + d

)
= e

2πicz2

cτ+d φgahc,gbhd(τ, z) ,

(
a b

c d

)
∈ SL(2,Z) . (3.20)

Note that this transformation law holds only when the level-matching condition is satisfied.

In the λ > 1 case, additional phases might appear on the right-hand side of this formula

(see (3.23)).

If C′ = C/〈g〉 is a consistent orbifold by a cyclic group 〈g〉, then C′ has a symmetry

g′ (often called the quantum symmetry) of the same order N that acts by e
2πir
N on the

gr-twisted sector. By taking the orbifold of C′ by g′, one recovers the original theory C.
More generally, the space Hr,s, i.e. the g = e

2πis
N eigenspace in the gr-twisted sector of C,

can be identified with H′s,r, i.e. the g′ = e
2πir
N eigenspace in the g′s-twisted sector of C′.

3.3 The λ > 1 case

Many of the constructions of the previous section generalize to the case where the states

in the g-twisted sector do not satisfy the level matching condition, i.e. when

(L0 − L̄0)|Hg ∈
E ′

Nλ
+

1

N
Z . (3.21)

Here, N is the order of g, λ is a divisor of N and E ′ ∈ Z/λZ is coprime to λ, i.e. gcd(E ′, λ) =

1. In this case, the orbifold C/〈g〉 is not a consistent CFT. However, one can still consider

the twisted sectors as vector spaces or as modules over the untwisted sector (that is, the

action of an untwisted vertex operator on a twisted state is well defined). One can still

define an action ρgi(h) on the twisted sectors Hgi of any symmetry h commuting with g,

in a way compatible with the action on the untwisted sector. However, this definition is

ambiguous, since one can multiply ρgi(h) by a phase. This implies that the map ρgi : 〈g〉 →
GL(Hgi) is only a projective representation of 〈g〉; equivalently, ρgi can be thought of as a
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representation of a central extension of 〈g〉, which can be chosen to have order Nλ. As a

conseqeunce, the very definition of the spaces Hr,s and of the functions φgj ,gk and φ̂r,s is

also ambiguous.

Assuming that a choice has been made for ρgi , one can tentatively define the twisted-

twining genera as

φgi,gj (τ, z) := TrHgi (ρgi(g
j) (−1)2(J0+J̄0)qL0− c

24 q̄L̄0− c̄
24 y2J0) . (3.22)

Eq. (3.20) then generalizes to

φg,h

(
aτ + b

cτ + d
,

z

cτ + d

)
= εg,h

(
a b

c d

)
e

2πicz2

cτ+d φgahc,gbhd(τ, z) ,

(
a b

c d

)
∈ SL(2,Z) ,

(3.23)

where εg,h : SL(2,Z)→ U(1) is a phase depending on the choice of the representations on

the twisted sectors.

Note that, in the case λ = 1, this ambiguity is fixed by setting ρg(g) = e2πi(L0−L̄0) and

requiring the fusion

Hr,s �Hr′,s′ → Hr+r′,s+s′ , r, s, r′, s′ ∈ Z/NZ . (3.24)

These conditions cannot hold when λ > 1. One can always require that ρg(g) = e2πi(L0−L̄0).

However, by (3.21), ρg(g)N = e2πiE
′
λ 6= 1 is only proportional to the identity, up to a non-

trivial phase, so that the ρg(g) eigenvalues are not, in general, N -th roots of unity. As a con-

sequence, the very definition of Hr,s is more subtle in this case. A simple way to circumvent

these issues is to think of g as generating a central extension ZNλ of ZN , with the central

element gN acting trivially on the untwisted sector and by a phase on each twisted sector.

From this viewpoint, it is natural to define (Nλ)2 spaces Hr,s, r, s ∈ Z/NλZ such that

Hr,s := {v ∈ Hgr | ρr(g)(v) = e
2πis
Nλ v} r, s ∈ Z/NλZ , (3.25)

where the maps ρr, r ∈ Z/NλZ are such that ρr(g
r) = e2πi(L0−L̄0) and the fusion rules

Hr,s �Hr′,s′ → Hr+r′,s+s′ , r, s, r′, s′ ∈ Z/NλZ (3.26)

hold. The spaces Hr,s satisfy

s− rE ′g 6≡ 0 (mod λ) ⇒ Hr,s = 0 . (3.27)

Furthermore, there are isomorphisms (as H0,0 modules)

Hr,s ∼= Hr+N,s−E ′N , (3.28)

so that there are only N2 independent non-trivial irreducible H0,0-modules, as expected

for a symmetry of order N .

In the same spirit and with a certain abuse of notation, we will conventionally define

the twisted-twining genera φgi,gj as (Nλ)2 independent functions

φgi,gj (τ, z) = TrHgi (ρi(g)j (−1)2(J0+J̄0)qL0− c
24 q̄L̄0− c̄

24 y2J0) , i, j ∈ Z/NλZ , (3.29)
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where indices i labeling the representations ρi take values in i ∈ Z/NλZ rather than

Z/NZ, and ρi(g) has (in general) order Nλ. With this definition, all the factors εg,h
in (3.23) get absorbed into the definition of φgi,gj and eq. (3.20) formally holds also for

λ > 1. Of course, the functions φgi,gj and φgk,gl are not really independent for i ≡ k, j ≡
l (mod N): consistently with equation (3.22), they just correspond to different choices of

the representation ρgi on the gi-twisted sector, so that they just differ by an overall phase

(see section 4 for more details).

Similarly, one can define the (Nλ)2 characters φ̂r,s of the spaces Hr,s, r, s ∈ Z/NλZ,

that are related to φgi,gj by a discrete Fourier transform

φ̂r,s(τ, z) = TrHr,s((−1)2(J0+J̄0)qL0− c
24 q̄L̄0− c̄

24 y2J0) =
1

Nλ

Nλ∑
k=1

e−
2πisk
Nλ φgr,gk(τ, z) . (3.30)

The Fourier coefficients of φ̂r,s, defined as in see (3.17) and (3.18), are still denoted by

ĉgr,s(n, l) or ĉgr,s,l(4n− l
2) , but the subscripts r, s now run in Z/NλZ rather than Z/NZ.

As stressed in section 2, the CHL orbifold can be defined also when λ > 1, simply by

taking the shift δ to have order Nλ rather than N . Indeed, the spectrum of the CHL model

can be described exactly in the same way as for λ = 1, i.e. it is obtained by tensoring states

in Hr,s with states in the circle CFT with winding r mod Nλ and momentum s
Nλ mod 1.

Eq. (3.26) ensures that the OPE is well-defined. Notice however that, because of (3.27),

certain values of winding and momentum do not correspond to any state in the theory. As

a consequence, the lattice of electric-magnetic charges is more complicated for λ > 1. We

refer the reader to appendix C and to [42] for more details.

4 Modular properties of twining genera

We next develop some modular machinery which will provide us with many constraints on

twisted-twining genera in K3 NSLMs. Our logic builds upon ideas in [25], which employed

modularity arguments to determine the twining genera associated to the Frame shapes 38

and 46. In the sequel, we will combine these considerations with constraints from wall

crossing.

4.1 The modular groups of twining genera

Let g be a symmetry of order N of a NLSM on K3. The transformation law (3.20) implies

that φe,g transforms into itself under a group Γ̂g, which we call the fixing group of φe,g.

More precisely, we have

φe,g

(
aτ + b

cτ + d
,

z

cτ + d

)
= e

2πicz2

cτ+d φe,g(τ, z) ,

(
a b

c d

)
∈ Γ̂g . (4.1)

As we discuss in the next section, this transformation law strongly constrains φe,g. When

λ > 1, rather than describing Γ̂g directly, it is convenient to first consider a larger group Γg,
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which we call the eigengroup of g, such that φe,g transforms into itself up to a phase, i.e.

φe,g

(
aτ + b

cτ + d
,

z

cτ + d

)
= ξe,g

(
a b

c d

)
e

2πicz2

cτ+d φe,g(τ, z) ,

(
a b

c d

)
∈ Γg , (4.2)

where ξe,g : Γg → U(1) (the multiplier of φe,g) is a suitable homomorphism. Invariance of

φe,g under charge conjugation and conjugation of g in O+(Γ4,20) implies14 [25]

Γg :={
(
a b
c d

)
∈SL(2,Z) | c≡0 (mod N), ∃h∈O+(Γ4,20) s.t. gd=hgh−1 or gd=hg−1h−1} .

(4.3)

A non-trivial multiplier ξe,g can only arise when λ > 1, and in this case it has order λ,

i.e. ξλe,g = 1. In particular, if one adopts the definition where there are N2 functions φgi,gj

labeled by i, j ∈ Z/NZ, then by eq. (4.2) the multiplier ξe,g is simply the restriction of εe,g
to Γg. Equivalently, as described in section 3.3, one could eliminate the multiplier on the

right hand side of (4.2) at the cost of considering φgi,gj as (Nλ)2 distinct functions labeled

by i, j ∈ Z/NλZ. With this convention (that we adopt henceforth), ξe,g determines the

relative phases between φgi,gj , i ≡ 0 (mod N), j ≡ 1 (mod N), and φe,g, i.e.

φgc,gd(τ, z) = ξe,g

(
a b

c d

)
φe,g(τ, z) ,

(
a b

c d

)
∈ Γ1(N) ⊂ Γg . (4.4)

Unlike εe,g, ξe,g is independent of the choice of the representations ρgi ; this is clear from

the fact that g has an unambiguous action on the untwisted sector. When λ = 1, the fixing

group and eigengroup coincide (i.e. Γ̂g = Γg); in general, the fixing group is the kernel of ξe,g.

The groups Γg and the order λ of the multiplier depend only on the Frame shape of g

and have been determined in [25]. When the multiplier is trivial, Γg is either

Γ0(N) := {
(
a b
c d

)
∈ SL(2,Z) | c ≡ 0 (mod N)} , (4.5)

or

Γ〈−1〉(N) := {
(
a b
c d

)
∈ SL(2,Z) | c ≡ 0, a ≡ ±1 (mod N)} . (4.6)

When the multiplier has order λ > 1, then the eigengroup is always Γ0(N).

It turns out that the possible orders of a non-trivial multiplier are 2, 3, 4 and 6 [25].

The multiplier is always of the form

ξe,g
(
a b
c d

)
= e−2πiE

′
λ
cd
N ,

(
a b
c d

)
∈ Γ0(N) . (4.7)

Here, E ′ ∈ Z/λZ, gcd(E ′, λ) = 1, parametrizes the possible different multipliers of order λ,

and depends on the given g. In fact, it is easy to check that it is the same E ′ determining

the spectrum of L0 − L̄0 of the g-twisted sector (see eq. (3.21)). Indeed, by (3.21), the

g-twisted genus φg,e, which is the S-transform of φe,g, has a Fourier expansion of the form

φg,e(τ, z) =
∑

n∈ E′
Nλ

+ 1
N
Z

∑
l∈Z

cg,e(n, l)q
nyl , (4.8)

14Strictly speaking, we cannot exclude that the eigengroup is larger just by accidental coincidences. For

simplicity, we will ignore this possibility.
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so that φe,g gets multiplied by a phase e
2πiE′
λ under the transformation STNS−1 =

(
1 0
−N 1

)
.

For λ = 2, there is only one possible non-trivial multiplier (E ′ ≡ 1 (mod 2)). For each

λ > 2, there are two possible multipliers (E ′ ≡ ±1 (mod λ)), that are complex conjugate

to each other. Using worldsheet parity, one can show that both multipliers must appear

for the twining genera of a given Frame shape [25].

Finally, we provide the fixing groups, Γ̂g. Of course, if the multiplier is trivial, one has

Γ̂g = Γg. One can show by a case by case analysis that whenever λ > 1, the fixing group

is equal to Γ0(Nλ). (For all of our multipliers, Γ̂g ⊆ Γ0(Nλ) follows from E ′ ≡ ±1 (mod λ)

and the fact that λ dividesN . To see this, suppose that

(
a b

c d

)
∈ Γ̂g ⊂ Γ0(N); in particular,

this implies that (c, d) = 1 and N |c. The condition E ′ ≡ ±1 (mod λ) implies Nλ|cd; since

N |c and λ|N , we must have λ|c. Recalling that c and d are coprime, we find Nλ|c).

4.2 Constraints from modularity

The ring of weak Jacobi forms under a subgroup of SL(2,Z) is generated by the standard

forms χ0,1 and χ−2,1 and by a suitable set of modular forms (see appendix A). In particular,

any twining genus can be written as

φe,g(τ, z) =
Tr24(g)

12
χ0,1(τ, z) + Fe,g(τ)χ−2,1(τ, z) , (4.9)

where

Fe,g(τ) = 2− Tr24(g)

12
+O(q) (4.10)

is a modular form of weight 2 with multiplier ξe,g for the eigengroup Γg described in the

previous section. In particular, Fe,g is a modular form of weight 2 with trivial multiplier

for Γ̂g. Since χ0,1 has no multiplier, (4.9) makes it clear that the multiplier is necessarily

trivial when φe,g(τ, 0) ≡ Tr24(g) 6= 0.

See appendix B.1 for background on modular forms for congruence subgroups; we sum-

marize here the most important definitions and results. Let us denote by M2(Γ) the space of

modular forms of weight 2 with trivial multiplier for a group Γ ⊆ SL(2,Z). Modular forms

F (τ) of weight 2 under Γ correspond to meromorphic 1-differentials F (τ)dτ on Ĥ/Γ, with at

most single poles at the cusps and which are holomorphic elsewhere. Indeed, in a neighbor-

hood of a cusp τ → c of width wc, a good coordinate is given by qc = e
2πiτc
wc , where τc = γ(τ)

and γ ∈ SL(2,Z) is such that γ(c) = i∞. By the latter statement, we mean that if we write

F (τ)dτ = Fc(τc)dτc , (4.11)

then we have an expansion

Fc(τc) = a0(c) + a1(c)qc + a2(c)q2
c + . . . (4.12)

about τ → c (or τc → i∞) in integral powers of qc. (Note that there is nothing stopping us

from replacing τc by τ ′c = τc+1 even though, when wc 6= 1, this yields a different expansion.

Thus, implicit in the notation τc is our choice of γ). Making another change of coordinates,

F (τ)dτ = F̃c(qc)dqc , (4.13)
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and using dτc = w
2πi

dqc
qc

, we obtain

F̃c(qc) = a0(c)
wc

2πi
q−1
c + . . . (4.14)

Therefore, the residue of F (τ)dτ at the cusp c is determined by the q0
c Fourier coefficient

a0(c) in the expansion about c. If Ĥ/Γ has genus 0 and n cusps, then the dimension of

M2(Γ) is the number of independent residues a0(c), i.e. dimM2(Γ) = n− 1 (the −1 is due

to the fact that the sum over all residues must be zero). In general, one has

dimM2(Γ) = genus(Γ) + n− 1 . (4.15)

The fixing groups relevant for the twining genera are all genus 0 or 1.

When the group Γ̂g is genus zero and has n cusps, the space of weak Jacobi forms

of index 1 and weight 0 has dimension n (1 parameter from the constant in front of χ0,1

and n− 1 parameters for Fe,g(τ)). Therefore, φe,g is completely determined by the leading

(q0
c ) term in the expansion of φe,g around each cusp (actually, it is sufficient to know

the expansion around n − 1 cusps, since at ∞ we know both the coefficient of y and the

constant term of φe,g). The expansion at a given cusp corresponds to the expansion at∞ for

a twisted-twining genus φgr,gs and the leading coefficient is determined by the action of gs on

the ground states of the gr twisted sector. More explicitly, say that γ =

(
s a

−r b

)
∈ SL(2,Z)

maps the cusp c = b/r to ∞. Then, the expansion of φe,g about c corresponds to the

expansion of φgr,gs about ∞. The latter takes the form

φgr,gs(τc, z) =
Tr24(g)

12
χ0,1(τc, z) + Fgr,gs(τc)χ−2,1(τc, z) (4.16)

= b1(c)(y + y−1) + b2(c) +O(qc), (4.17)

where b1(c) and b2(c) satisfy

2b1(c) + b2(c) = Tr24(g) . (4.18)

For a general φgr,gs , one would have 2b1 + b2 = Tr24(ggcd(r,s,N)), but we are focusing

on those φgr,gs obtained by an SL(2,Z) transformation of φe,g, and in this case one has

gcd(r, s,N) = 1. In particular, (3.9) shows that when r = 0, b1(c) = 2. In (4.16), we have

introduced Fgr,gs(τ), which is given by

Fe,g(τ)dτ = Fgr,gs(τc)dτc. (4.19)

Rearranging (4.16) yields the residue of Fe,g(τ)dτ at c:

a0(c) = b1(c)− Tr24(g)

12
. (4.20)

With the values a0(c) at each cusp in hand, we may expand Fe,g in a basis for M2(Γ̂g).

In fact, frequently a smaller basis suffices, due to the fact that Fe,g lies in the space
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M
ξe,g
2 (Γg) ⊂ M2(Γ̂g) of modular forms which are modular for Γg with multiplier ξe,g.

Appendix B.3 describes how knowledge of the values a0(c) at all cusps of Ĥ/Γ̂g allows us

to expand Fe,g in a basis for M
ξe,g
2 (Γg).

When Γ̂g has genus 1, the leading Fourier coefficients at the cusps are not sufficient to

determine φe,g. Indeed, in this case M2(Γ̂g) contains a cusp form (a form with vanishing

residues at all cusps) f , and one is free to add αf(τ)χ−2,1(τ, z), for any α ∈ C, without

affecting the leading coefficients at the different cusps. There is a physically motivated

restriction on α: the discrete Fourier transforms φ̂r,s defined in (3.16) are interpreted as

Z2-graded dimensions of the spaces Hr,s, i.e. the g = e
2πis
N eigenspaces in the gr-twisted

sector. As such, the Fourier coefficients must be (possibly negative) integers. Therefore,

for a suitable normalization of f , we are only allowed to add to the twining genus a term

αf(τ)χ−2,1(τ, z) for α integral rather than complex.

Even with this restriction, there are still infinitely many possibilities for the twining

genus. Therefore, to determine φe,g in these cases, one should know its action on the massive

BPS states, which is a priori difficult. We will shortly show how additional constraints can

be derived from string theory arguments. However, we first demonstrate, via an example,

the reasoning that allows us to compute many twining genera for which Γ̂g has genus 0.

4.3 An example: frame shape 2363

We compute the twining genus associated to the Frame shape 2363. The eigengroup is

Γ0(6); however, there is a multiplier with λ = 2, so we are really interested in the genus 0

fixing group Γ̂g = Γ0(12). This has cusps at ∞, 0, 1/2, 1/3, 1/4, and 1/6. The expansion

of φe,g at each of these cusps corresponds to the expansion at τ →∞ of

φe,g , φg,e , φg2,g , φg3,g , φg4,g5 , and φg6,g , (4.21)

respectively. If we remember to account for multipliers, Γ0(6) transformations let us replace

these by

φe,g , φg,e , φg2,g , φg3,g , −φg2,g , and − φe,g . (4.22)

From (3.9), we have

a0(∞) = 2 . (4.23)

The orbifolds by g and g3 are inconsistent, so the twisted sectors associated to these

symmetries do not satisfy the level matching condition. By (3.21), this implies that φg,e
and φg3,g have no term of order q0 and

a0(0) = a0(1/3) = 0 . (4.24)

Next, we argue that because g2 is a K3 orbifold quantum symmetry, b1(1/2) = 0 and

a0(1/2) = 0 . (4.25)

We do so by arguing that there are no states in the CFT that could contribute to the

coefficient of q0y in φg2,g. Suppose otherwise, towards a contradiction. This coefficient

receives contributions from the states in the R-R g2-twisted sector with L0 = L̄0 = 1/4,
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J0 = 1/2 and (−1)FL+FR = ±1, i.e. (−1)FR = ∓1. These states are necessarily g2-invariant,

since in the g2-twisted sector the g2 eigenvalue is always the eigenvalue of e2πi(L0−L̄0). This

means that these states are contained in the orbifold of the K3 model by g2. By spectral

flow to the NS-NS sector, the states with (−1)FR = −1 flow to states with L0 = L̄0 = 0,

while states with (−1)FR = +1 flow to (L0, L̄0) = (0, 1/2). The first case is impossible,

because states in the twisted sector cannot have zero conformal weight, by uniqueness of

the vacuum. On the other hand, if the orbifold theory contains states with weights (0, 1/2),

then it must necessarily be an NLSM on T 4. But we know that the orbifold by g2 is a

K3 model, since we can compute its Witten index. We conclude that there cannot be

any states contributing to b1(1/2). Finally, we note that (4.22) gives us a0(1/4) = 0 and

a0(1/6) = −2 for free. As a check on our work, we note that the sum of residues∑
c

wca0(c) = 2− 2 = 0 (4.26)

vanishes, as expected. We find a unique twining genus:

Fe,g(τ) = −1

4
E2 −

1

4
E3 +

1

6
E4 +

3

4
E6 −

1

2
E12 . (4.27)

The functions on the right hand side are defined in appendix B.3.

A K3 NLSM with a symmetry whose Frame shape is 2363 can be explicitly constructed

as an orbifold of T 4 [25]; as expected, the twining genus one obtains agrees with our above

result. Remarkably, this function also agrees with the weight 0, index 1 weak Jacobi form

that Umbral (A12
2 , A8

3, and A4
6) and Conway moonshines associate to this Frame shape (see

section 7).

5 Second quantized twining genera and 4d physics

In this section, we will derive additional constraints on the twining genera φe,g coming from

the properties of CHL models. This will enable us to fix φe,g in the case where Γg is genus 1,

i.e. fix the coefficient of the nontrivial cusp form of Γg. In particular, with these additional

considerations we can fix all φe,g associated to 4-plane preserving symmetries of K3 NSLMs.

The line of reasoning is the following. As discussed in section 2, given a symmetry g

of a K3 NLSM one can consider the corresponding four dimensional CHL model and the

generating function 1/Φg,e of 1/4 BPS degeneracies in this model. As we will review in the

next subsection, Φg,e is determined in terms of the twining genus φe,g (or rather from φ̂r,s,

which also depend on φe,gn for higher powers of g) via a multiplicative lift

{φ̂r,s} → Φg,e , (5.1)

mapping a (vector valued) weak Jacobi form for SL(2,Z) to a Siegel modular form under

some subgroup of Sp(4,Z). As described in section 2, the 1/4 BPS degeneracies are com-

puted by taking suitable contour integrals of 1/Φg,e. In particular, the poles of 1/Φg,e are

related via a precise contour prescription to the decay of 1/4 BPS dyons into a pair of 1/2

BPS particles.
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Now — due to the multiplicative lift, which we will write explicitly below — the

aforementioned singular divisor of Φg,e is determined by certain Fourier coefficients of φ̂r,s
(the so-called polar coefficients). We will show that all expected poles, i.e. the ones related

to physically meaningful wall-crossing, are completely taken into account by the polar

coefficients of φ̂0,0. The requirement that there are no additional unphysical poles puts

strong constraints on the Fourier coefficients of φ̂r,s.

We will show that the constraints from wall-crossing, together with the ones from

modularity discussed in the previous section, are sufficient to single out a finite set of weak

Jacobi forms.

5.1 BPS degeneracies from twining genera

In this section, we describe the relation between the generating functions 1/Φg,e of 1/4

BPS states in CHL models and the twining genera φe,g of the corresponding NLSMs on

K3 in more detail.

The dyon partition function for the unorbifolded theory was postulated in [2] and anal-

ogous formulas for the CHL orbifolds were computed in [15–17]. Although these references

consider only geometric symmetries of the K3 sigma model, the extension to more general g

presents only minor technical modifications. This subsection is essentially a reformulation

of these results in order to include this general case.

We are interested in counting the microstates for the set of charges described in sec-

tion 2 which correspond, in the type IIB frame, to a D1-D5 system with momentum in a

KK-monopole background. At weak coupling in the type IIB frame, the function 1
Φg,e

is

the product of three contributions:

1

Φg,e(Ω)
= ZD1(p, q, y)ZKK(q)ZCM (q, y), Ω =

(
σ z

z τ

)
. (5.2)

ZD1 counts the states associated with the worldvolume of the D1-D5 bound state, ZKK is

the contribution associated with a KK monopole with momentum, and ZCM counts states

associated with the center of mass of the D1-D5 system in the Taub-NUT background. We

can evaluate ZD1 by noting that, in the limit where the volume of the K3 is small com-

pared to the radius of S1, the effective worldvolume theory describing the bound state of

a D5-brane and m+ 1 D1-branes is (a deformation of) the symmetric product Symm+1K3

obtained by orbifolding the (m+ 1)-fold product of the K3 sigma model by the symmetric

group. Any symmetry g of the original NLSM induces a symmetry of the n-th symmetric

product, so that one can define the g-twining and g-twisted genera φSymnK3
e,g and φSymnK3

g,e

in each of these CFTs.15 These functions are Jacobi forms of index n under suitable con-

gruence subgroups of SL(2,Z). The contribution ZD1 is essentially the generating function

for all twisted genera φSymnK3
g,e , namely

ZD1(p, q, y) = p−1Ψg,e(
σ z
z τ ) =

∞∑
m=−1

pmφSymm+1K3
g,e (τ, z) . (5.3)

15More generally, one can defined twisted-twining genera φSymnK3
g,h for any commuting pair of symmetries

g, h. We will only focus on the cases (g, e) and (e, g).
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The function Ψg,e is known as the second quantized elliptic genus [12]. This may seem like

it will be unwieldy to deal with, as it involves computations in an infinite tower of CFTs,

but fortunately a remarkable identity allows us to compute this function by only studying

the original K3 sigma model [12]. Specifically, we have

Ψg,e(
σ z
z τ ) =

∞∏
m=1

∞∏
n=0

∏
l∈Z

(1− pmq
n
Nλ yl)−ĉ

g
m,n(mn

Nλ
,l) , (5.4)

where ĉgm,n are the Fourier coefficients of the functions φ̂m,n (see eq. (3.18)). The next

factor, ZKK , is easier to deal with: a chain of dualities relates BPS KK monopoles with

momentum in type IIB to perturbative heterotic left-movers — that is, the 1/2 BPS states

we discussed in section 2.2. In particular, one KK monopole along Ŝ1 and −n/Nλ units of

momentum along S1 in type IIB get mapped to a fundamental heterotic string with winding

1 and with momentum −n/Nλ along S1. The generating function for the multiplicity of

these states is the partition function for 24 bosonic oscillators in the g-twisted sector —

recall that, in CHL models, states with winding number w (mod Nλ) along S1 belong to

the ĝw-twisted sector. Taking into account the ground level of the twisted sector, the

partition function is [47, 54, 55]

ZKK = q−
1
24

∑
a|N

m(a)
a

24∏
i=1

∞∏
n=1

(1− qri+n)−1 = q−
A

24Nλ

∞∏
n=1

(1− q
n
Nλ )−

∑
l∈Z ĉ

g
0,n(0,l) . (5.5)

Here,
∏
a|N a

m(a) is the Frame shape of g, r1, . . . , r24 are rational numbers with 0 ≤
ri < 1 such that e2πiri are the eigenvalues of g in the 24-dimensional representation, and∑

`∈Z ĉ
g
0,n(0, `) is the multiplicity of the eigenvalue e

2πin
Nλ (which, by (3.27), vanishes unless

n ≡ 0 (mod λ)). Furthermore, the constant

A =
∑
a|N

m(a)
Nλ

a
=

Nλ−1∑
m=0

∑
`∈Z

ĉgm,0(0, `) =

{
24 if gλ-orbifold is K3 NLSM

0 if gλ-orbifold is T 4 NLSM
, (5.6)

is the Witten index of the gλ-orbifold (see [42] for a proof of these identities). The compu-

tation of ZCM is slightly more complicated, so since the derivation of [15] applies directly

to the case of a general g, we simply state the result:16

ZCM (q, y) =
1

χ−2,1(τ, z)
=

∏∞
n=1(1− qn)4

y(1− y−1)2
∏∞
n=1(1− qny)2(1− qny−1)2

. (5.7)

χ−2,1 is a standard weak Jacobi form of weight −2 and index 1 defined in appendix A and

in particular is g-independent.17 For consistency with the automorphic forms literature,

it is convenient to repackage the factors ZCM and ZKK into a g-dependent Jacobi form

called ψg,e, defined as

ψg,e(τ, z) ≡ 1

ZKKZCM
= q

A
24Nλ y

∏
l∈Z<0

(1− yl)ĉ
g
0,0(0,l)

∞∏
n=1

∏
l∈Z

(1− q
n
Nλ yl)ĉ

g
0,n(0,l) , (5.8)

16Cf. also section 4.2 of [59].
17The argument ρ̂ in [15] is related to τ in our conventions by a rescaling ρ̂ = Nτ ; this introduces a

dependence on the order N of g in [15].
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where we used
∑

l∈Z<0
ĉg0,0(0, l) = ĉg0,0(0,−1) = 2.

To summarize, we find that, up to the automorphic correction ψg,e, the 1/4-BPS

counting function is essentially equal to the second quantized elliptic genus:

1

Φg,e(Ω)
=

Ψg,e(Ω)

pψg,e(τ, z)
. (5.9)

The factor pψg,e is known as the ‘automorphic correction’, so named because it restores the

p↔ q exchange symmetry characteristic of Siegel modular forms. More explicitly, we have

Φg,e(
σ z
z τ ) = pq

A
24Nλ y

∏
(m,n,l)>0

(1− pmq
n
Nλ yl)ĉ

g
m,n(nm

Nλ
,l) , (5.10)

where (m,n, l) > 0 means

m,n ∈ Z≥0 and

{
l ∈ Z<0 if m = n = 0

l ∈ Z otherwise
. (5.11)

In mathematics, infinite products of the form (5.10) are known as multiplicative lifts and

were studied in [60–63]. In general, they are automorphic forms for some congruence

subgroup of Sp(4,Z). When g is the identity, we obtain the famous Igusa cusp form

Φe,e = Φ10 of weight 10 under Sp(4,Z).

5.2 Wall crossing and poles

As discussed in section 2, the Fourier coefficients defining the 1/4 BPS multiplicities jump

whenever the contour of integration crosses a pole of 1
Φg,e

. In this section, we study the

locations of the poles of 1
Φg,e

that contribute to wall crossing. In particular, we show

that only a subset of the potential poles correspond to locations of physical wall crossing.

We thus constrain 1
Φg,e

by demanding the nonexistence of any additional poles, which we

conjecture are unphysical. As in [32], we restrict our attention to the poles that ‘intersect

the cusp at infinity’, i.e. that intersect the region in the Siegel upper half-space where =Ω

has very large eigenvalues, so that the product formula (5.10) converges. As (2.42) demon-

strates, this is the region that is relevant for extracting 1/4 BPS state degeneracies. For

simplicity, in this section we only consider the case λ = 1, i.e. we assume that the orbifold

of the K3 NLSM by g satisfies level-matching; the case λ > 1 is described in appendix C.

The divisors that intersect the cusp at infinity for Φg,e are clear from the product for-

mulas (5.10) (see [61] for a rigorous proof). The possible zeroes or poles of Φg,e are given by

mσ + n
τ

N
+ lz = k , (5.12)

for m,n, l, k ∈ Z with 4mnN − l2 < 0 (this is a necessary and sufficient condition

for (5.12) to have a solution in the Siegel upper half-space), and the multiplicity is

ĉgm,n(mnN , l) ≡ ĉgm,n,l(4
mn
N − l

2). Of course, whether the divisor is a zero or a pole depends

on the sign of ĉgm,n,l(4
mn
N − l

2).

A special subset of poles is the one given by m ≡ 0 (mod N). In this case, the only

non-vanishing polar coefficient (i.e. with negative discriminant) is ĉg0,0,1(−1) = 2, so that

– 30 –



J
H
E
P
0
5
(
2
0
1
7
)
0
4
7

n must also be a multiple of N . Therefore, Φg,e has double zeroes (hence, 1
Φg,e

has double

poles) at

Nrσ + sτ + lz = k , (5.13)

for r, s, l, k ∈ Z with 4Nrs− l2 = −1. Notice that we have set m = Nr and n = Ns. This

subset of poles exists for any g of order N .

Besides the poles of the form (5.13), we have additional potential poles for 1
Φg,e

if some

ĉgm,n,l(4
mn
N − l

2) > 0 for some 4mnN − l
2 < 0 with m 6= 0 (mod N). In particular, if for φg,e

the Fourier coefficient relative to qs/Ny is positive, for some s/N < 1/4, then there is a

pole of order ĉg1,s,1(s/N − 1/4) = ĉ1,s(s/N, 1) > 0 corresponding to m = 1, n = s, l = 1

with equation

σ + s
τ

N
+ z = k . (5.14)

for s, k ∈ Z, s/N < 1/4. This is not of the form (5.13).18

As described in section 2, the degeneracy (2.41) of 1/4 BPS dyons ‘jumps’ whenever

the integration contour (2.42) crosses one of the poles of 1/Φg,e. The contour comprises a

full period of the real part <Ω of the arguments, at a fixed value of their imaginary part

=Ω = ε−1Z. Therefore, a necessary and sufficient condition for the contour to cross the

pole of 1/Φg,e is that Z satisfy the imaginary part of (5.12), i.e.(
Z,

(
2n/N −l
−l 2m

))
= 0 . (5.15)

On the other hand, as discussed in section 2 (see also [33, 41]), ‘physical’ wall-crossing is

only expected for those values of the moduli where 1/4 BPS dyons can decay into a pair

of 1/2 BPS states, namely for

(Z, α) = 0 , (5.16)

for the matrices

α =

(
2bd −(ad+ bc)

−(ad+ bc) 2ac

)
, for a, b, c, d ∈ Z, ad− bc = 1, ac ∈ NZ , (5.17)

given in eq. (2.40).

We will now show that the walls corresponding to the subset of poles (5.13), i.e.(
Z,

(
2s −l
−l 2Nr

))
= 0, for r, s, l ∈ Z, 4Nrs− l2 = −1 , (5.18)

are in one to one correspondence with the locations of the ‘physical’ domain walls labeled

by (5.17). This implies that all the other potential poles, and in particular (5.14), never

arise in a function 1/Φg,e counting 1/4 BPS dyons in a CHL model. This argument puts

strong constaints on the Fourier coefficients of φ̂r,s that will be discussed in the next section.

18Naively, rescaling (5.14) by N gives an equation of the form (5.13). However, it is easy to see that

the coefficients of the resulting equation do not satisfy the condition 4Nrs− l2 = −1.
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Let us consider a wall located at (Z, α) = 0, where α is as in (5.17). For convenience,

we can define

s = bd, l = ad+ bc, Nr = ac ,

so that the equation of the wall becomes of the form (5.18), with

4Nrs− l2 = 4acbd− (ad+ bc)2 = 4abcd− (ad)2 − (bc)2 − 2abcd = −(ad− bc)2 = −1.

This shows one of the required directions of our argument: that every wall is a solution

to (5.18).

Next, we show the reverse direction. Consider a pole of the form (5.13), and the

corresponding wall with equation (5.18), labeled by some r, s, l ∈ Z satisfying 4Nrs− l2 =

−1. We can trivially rewrite the latter equation as 4Nrs = l2 − 1 = (l + 1)(l − 1). Since l

is odd, both l+ 1 and l− 1 are multiples of two. Thus, Nrs = l+1
2 ·

l−1
2 is a factorization of

Nrs as a product of consecutive integers (in particular, these factors are coprime). Make

the following definitions for convenience:

t =
l − 1

2
, a = gcd (Nr, t+ 1), c = gcd (Nr, t), b = gcd (s, t), d = gcd (s, t+ 1).

(5.19)

Thinking for a moment about factors (and remembering that gcd (t, t + 1) = 1) demon-

strates the following facts:

ad = t+ 1, bc = t⇒ ad− bc = 1.

ac = Nr, bd = s ad+ bc = 2t+ 1 = l.

Thus, any pole (5.13) corresponds to a physical domain wall (α,Z) = 0, with α as in (5.17)

and a, b, c, d as in (5.19).

In summary, we indeed have a one-to-one correspondence between poles (5.18) and

walls corresponding to physically meaningful decay channels. Analogous results hold for

the case where λ > 1 (see appendix C): the physical domain walls are in one to one

correspondence with a special set of poles corresponding to the gm-twisted sector for m ≡
0 (mod N). Therefore, a physically consistent 1/Φg,e cannot have any other pole related to

the gm-twisted sectors for m 6= 0 (mod N). In the next subsection, we will put constraints

on (the sign of) ĉgm,n,l(4
mn
Nλ − l

2) to eliminate the unphysical poles.

A remark: notice that we could have run the same analysis for Φe,g or more general

Φg,h. In fact, one can easily show that the walls corresponding to the poles of 1
Φe,g

are pre-

cisely those of 1
Φe,e

, as expected since 1
Φe,g

counts (g-equivariant) dyons in the unorbifolded

model. Similarly, we expect that the constraints one may derive from studying the poles

of 1
Φg,h

correspond to restricting to the set of physical walls obtained already for 1
Φg,e

.

5.3 Constraints on twining genera from wall crossing

From the previous subsection, we learned that the physically meaningful walls of marginal

stability are in one-to-one correspondence with the poles of 1/Φg,e associated with the

Fourier coefficient ĉg0,0,1(−1) of φ̂0,0 (or, more generally, with the Fourier coefficient
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ĉgNr,−E ′Nr,1(−1) of φ̂Nr,−E ′Nr). The other potential poles, associated with the coefficients

ĉgm,n,l(4
mn
Nλ − l

2) with 4mnNλ − l
2 < 0 and m 6= 0 (mod N), are unphysical, in the sense that

they do not correspond to any instability of 1/4 BPS dyons.

We recall that the correspondence between walls of marginal stability and poles of

Φg,e is based on the assumption that the degeneracy of 1/4 BPS states in CHL models is

always recovered by a contour integral of Φg,e where the contour is given by the standard

prescription. We refer to this as the standard contour assumption. Thus, we have

Claim 1 Let g be a symmetry of a NLSM on K3. Under the standard contour assumption,

the Fourier transformed twisted-twining genera φ̂j,k =
∑

n,l ĉ
g
j,k(n, l)q

nyl for j 6= 0 (mod N)

have no positive polar Fourier coefficients, i.e.

ĉgj,k(n, l) ≤ 0 ∀j, k, n, l with j 6= 0 (mod N), 4n− l2 < 0 . (5.20)

Notice that ĉgj,k(n, l) is non-zero only when n ≡ jk
Nλ (mod Z). This follows from the fact

that gj coincides e2πi(L0−L̄0) in the gj-twisted sector. On the other hand, for the states

contributing to φ̂j,k one has g = e2πi k
Nλ by definition, so that e2πi(L0−L̄0) = gj = e2πi jk

Nλ .

The following (strictly weaker) corollary is often easier to utilize and will suffice for

our purposes:

Corollary 2 Under the standard contour assumption, the twisted genus φg,e =∑
n,l cg,e(n, l)q

nyl has no positive Fourier coefficients with n < 1/4 and l = ±1, i.e.

cg,e(n,±1) ≤ 0 ∀n < 1/4 . (5.21)

This follows immediately by noticing that for n = s
Nλ , one has

cg,e(n,±1) = ĉg1,s,1

(
4
s

Nλ
− 1
)
, (5.22)

so if cg,e(n,±1) > 0 for some n = s
Nλ <

1
4 , then φ̂1,s has a positive polar coefficient.

In the following section we will loosely refer to φg,e as the S transform of φe,g, for

succinctness.

5.4 An example: frame shape 12112

As an example, let us consider a symmetry g with Frame shape 12112. The fixing group

Γg = Γ̂g = Γ0(11) has two cusps (at ∞ and 0) and genus 1. The expansion of φe,g at each

of these cusps corresponds to the expansion at τ →∞ of

φe,g and φg,e , (5.23)

respectively. From (3.9), we have

a0(∞) = 2− 2

12
=

11

6
. (5.24)
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Next, we argue as in section 4.3 that because g is a K3 orbifold quantum symmetry,

b1(0) = 0 and

a0(0) = −1

6
. (5.25)

As a check, we note that the sum of residues∑
c

wca0(c) =
11

6
+ 11 ·

(
−1

6

)
= 0 (5.26)

vanishes, as expected.

The techniques of appendix B.3 determine the twining genus, up to the addition of a

cusp form proportional to η[12112]:

Fe,g(τ) = −11

60
E11 + const× η[12112] . (5.27)

Writing the unknown constant as 11(α− 2/5) and S transforming yields

φg,e(τ, z) = 2 + α(−y − y−1 + 2)q1/11 + 2(α− 1)(y + y−1 − 2)q2/11 +O(q3/11) . (5.28)

(The coefficient of the cusp form was chosen so that the above q-expansion had integral

coefficients when α was integral. We know that φg,e has integral coefficients because it is an

untwined trace). Requiring all polar coefficients (that is, y±1qn coefficients with n < 1/4)

to be nonpositive gives

0 ≤ α ≤ 1 . (5.29)

Since α must be integral, this gives two twining genera. The α = 0 case yields the weak

Jacobi form associated with M24 moonshine, while the α = 1 case is associated with

2.M12 moonshine (cf. the Introduction and section 7) [24]. Amusingly, the 2.M12 function

was found in an explicit K3 NLSM (more precisely, a UV Landau-Ginzburg orbifold

description) in [64].

6 Determining the genera

We now explain how to use the constraints explained above on twining genera in order to

determine all possible twining genera of K3 NLSM symmetries. We begin with two simpler

cases; we then proceed to the general case, which uses many ideas from the first two cases.

We conclude this section with two tables: one outlines the calculation of all twining genera,

and the other presents the complete set of possible twining genera.

6.1 Pure K3 symmetries

Let g be a symmetry of a nonlinear sigma model on K3 and suppose that the orbifold of

the NLSM by any power of g is either inconsistent or a K3 model. We call such a g a

‘pure K3 symmetry’. A case by case analysis shows that this case occurs exactly when the

symmetry acts as a permutation on the 24 dimensional representation, i.e. when the Frame

shape
∏
a|N a

m(a) contains only non-negative powers m(a) ≥ 0.
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The reasoning exemplified in sections 4.3 and 5.4 suffices to compute the twining

genera of all pure K3 symmetries. Twisted twining genera φgi,gj with i 6≡ 0 (mod N) have

no q0y±1 terms, since states counted by the coefficient of q0y would spectral flow to states

that cannot exist in a gi-twisted sector. All other twisted-twining genera are related by

a multiplier to φe,gj , which we can easily deduce from the Frame shape of gj (see (3.9)).

This information suffices to deduce the leading terms, a0(c), in the q-expansions of Fe,g
about all cusps, c. There are either one or two sets of values {a0(c)}, corresponding to the

cases where there are one or two multipliers. If Γ̂g has genus 0, then the function(s) Fe,g is

(are) determined; otherwise, we are allowed to add a cusp form, the options for which are

determined as in section 5.4. However, we note one subtlety in the genus 1 case when there

are two distinct multipliers: we are only allowed to add the cusp form when its multiplier

agrees with the multiplier we have chosen. (We mention this issue here because it only

happens to arise for pure K3 symmetries — in particular, those with Frame shapes 4282

and 64. In fact, Γ̂g is only ever genus 1 when g is a pure K3 symmetry).

6.2 Quantum symmetries in toroidal orbifolds

If a K3 NLSM is the orbifold of a NLSM on T 4 by a cyclic group, then it has a quantum

symmetry Q (see section 3). Twining genera of quantum symmetries of toroidal orbifolds

can be computed using the following formula

φK3
e,Q(τ, z) =

1

N

N∑
j,k=1

e
2πij
N φT

4

gj ,gk(τ, z) , (6.1)

where, generically,

φT
4

gj ,gk(τ, z) = (ζnL+ζ−nL −2)(ζnR+ζ−nR −2)
ϑ1(τ, z + rL(jτ + k))ϑ1(τ, z − rL(jτ + k))

ϑ1(τ, rL(jτ + k))ϑ1(τ,−rL(jτ + k))
, (6.2)

are the twisted twining genera of the corresponding T 4 model [65]. Here, n = gcd(j, k,N),

ζL = e2πirL , ζR = e2πirR , (6.3)

and the possible values of rL, rR ∈ 1
NZ/Z are given in table 1. (Formula (6.2) needs to be

modified when nrL ∈ Z and nrR /∈ Z, see [65] and [25] for more details). More generally,

one has

φK3
Qa,Qb(τ, z) =

1

N

N∑
j,k=1

e
2πibj
N e−

2πiak
N φT

4

gj ,gk(τ, z) . (6.4)

For the q0 term, one has (even when nrL ∈ Z and nrR 6∈ Z)

φT
4

gj ,gk (τ, z)|q0 =



(ζnL + ζ−nL − 2)(ζnR + ζ−nR − 2) for jrL 6∈ Z ,

(ζnL + ζ−nL − 2)(ζnR + ζ−nR − 2)
ζkL+ζ−k

L
−(y+y−1)

ζk
L

+ζ−k
L
−2

for jrL ∈ Z, nrL 6∈ Z ,

− 1
2
(ζnR + ζ−nR − 2)(2− y − y−1) for (nrL, nrR) = (0, 1

2
) (mod Z), N - j ,

− 1
3
(ζnR + ζ−nR − 2)(2− y − y−1) for (nrL, nrR) = (0, 1

3
) (mod Z), N - j ,

(ζnR + ζ−nR − 2)(2− y − y−1) otherwise.

(6.5)
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rL rR πQ w-s parity

1/2 1/2 1−8216 ◦
1/3 1/3 1−339 ◦
1/4 1/4 1−42644 ◦
1/6 1/6 1−4253461 ◦
1/5 2/5

1−155 l
2/5 1/5

1/4 1/2
2−448 l

1/2 1/4

1/6 1/2
1−2243−264 l

1/2 1/6

1/6 1/3
1−12−13363 l

1/3 1/6

1/8 5/8
1−2234182 l

5/8 1/8

1/10 3/10
1−22352101 l

3/10 1/10

1/12 5/12
1−2223241121 l

5/12 1/12

Table 1. Frame shapes corresponding to quantum symmetries of torus orbifolds. The twining

genera can be obtained by applying formulae (6.1) and (6.2). The last column reports whether

world sheet parity fixes the twining genus for a quantum symmetry (symbol ◦) or if it relates two

of them (symbol l).

Plugging this into (6.4) then yields the leading behavior of Fe,g at each cusp; this allows us

to expand Fe,g in the M2(Γ̂g) basis described in appendix B.3. (Whenever g is the quantum

symmetry of a torus orbifold, Γ̂g has genus 0 and the multiplier is trivial).

6.3 General case

We now explain how to compute the q0 term of a general twisted-twining genus, φgi,gj .

We distinguish between three cases (the reasoning in the first two of which is copied from

sections 4.3 and 5.4):

• Suppose g has a non-trivial multiplier of order λ > 1 and that i is not a multiple of

λ. Then, the gi-twisted sector does not satisfy the level-matching condition, so that

φgi,gj has no term of order q0 and b1(c) = b2(c) = a0(c) = 0 (note that λ > 1 implies

Tr24(g) = 0).
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• Suppose i is a multiple of λ (but not of N), so that the orbifold by gi is consistent, and

suppose that this orbifold is a K3 sigma model. Then, the gi-twisted sector cannot

contain any R-R states with L0 = L̄0 = 1
4 and J0 = ±1/2, because spectral flow to

the NS-NS sector would lead either to an additional vacuum or to states with weights

(0, 1/2). The latter are not contained in the orbifold K3 model (and the former are

forbidden in the twisted sector of any orbifold). Since there are no such states, there

cannot be any contribution to the q0y term in φgi,gj , for any j. We conclude that

b1(c) = 0 and a0(c) = −Tr24(g)/12.

These first two bullet points may be summarized succinctly as follows: if the expansion of

φgi,gj about ∞ corresponds to the expansion of φe,g about the cusp c, and if gi is not the

quantum symmetry of a torus orbifold, then b1(c) = 0 and a0(c) = −Tr24(g)/12.

• The remaining case is when gi is the quantum symmetry of a torus orbifold, so the

orbifold by gi is a NLSM on T 4. (Consistency of this orbifold implies that i is a

multiple of λ). This is the most complicated case. It is convenient to first compute

φgi,e (using the formulae of the previous section) to learn how many right-moving

ground states with (L0, J0) = (1/4, 1/2) are contained in the gi-twisted R-R sector.

Then, one should try to deduce the action of g on these states.

The rest of this section is devoted to working through a few examples of the reasoning

described in the last case.

6.3.1 182−848

We first work out the example of the Frame shape 182−848, whose twining genus is unknown.

The fixing group is the genus 0 group Γg = Γ0(4), which has cusps at ∞, 0, and 1/2. The

expansion of φe,g at each of these cusps corresponds to the expansion at τ →∞ of

φe,g , φg,e , and φg2,g , (6.6)

respectively. From (3.9), we have

a0(∞) = 2− 8

12
=

4

3
. (6.7)

Since g is a K3 orbifold quantum symmetry, b1(0) = 0 and

a0(0) = −2

3
. (6.8)

This is sufficient to fix Fe,g(τ) and the twining genus. Explicitly,

φe,g =
8

12
φ0,1 −

4

3
φ−2,1E2 , (6.9)

where E2 is defined in appendix B.3. However, as an exercise, let us consider also the

expansion of φg2,g. In order to calculate b1(1/2), we need to know the action of g on the
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ground states of the g2-twisted sector. This requires a bit of effort because the orbifold by

g2 (Frame shape 1−8216) is an NLSM on T 4. The formulae of section 6.2 yield

φg2,e = −2y − 2y−1 − 4 +O(q1/2) . (6.10)

The q0y coefficient tells us that the g2-twisted sector has two R-R ground states that

spectral flow to NS-NS fields with weight (0, 1/2). (Note that there are exactly two such

states; that is, there are no states making positive contributions to the q0y coefficient, since

they would spectral flow to twisted sector NS-NS vacua). These R-R states are g2-invariant,

since in the g2-twisted sector the g2 eigenvalue is always the eigenvalue of e2πi(L0−L̄0). If

these states were also g-invariant, they would be present in the orbifold of the model by g;

since we know that this orbifold is a K3 model, this cannot happen. We conclude that g

acts non-trivially on these two fields, which means by a minus sign, since g2 acts trivially

on them. Therefore,

φg2,g(τ, z) = 2y + 2y−1 + 4 +O(q) , (6.11)

so that b1(1/2) = 2 and a0(1/2) = 2− 2
3 = 4

3 . As a check, notice that

∑
cusps c

wca0(c) = a0(∞) + 4a0(0) + a0(1/2) =
4

3
+ 4 ·

(
−2

3

)
+

4

3
= 0 , (6.12)

so that the sum over the residues vanishes, as expected. The fact that a0(∞) = a0(1/2)

implies that φe,g is actually modular under Γ0(2) rather than Γ0(4); this is an accident.

6.3.2 142−24−284

Next, we work out the example of the Frame shape 142−24−284; this Frame shape is

expected to have two twining genera which are related by worldsheet parity, but neither of

them is known. The fixing group is the genus 0 group Γg = Γ0(8), which has cusps at ∞,

0, 1/2, and 1/4. The expansion of φe,g at each of these cusps corresponds to the expansion

at τ →∞ of

φe,g , φg,e , φg2,g , and φg4,g , (6.13)

respectively. From (3.9), we have

a0(∞) = 2− 4

12
=

5

3
. (6.14)

Since g is not a torus orbifold quantum symmetry, b1(0) = 0 and

a0(0) = −1

3
. (6.15)

The other two genera require a bit more effort, as g2 (Frame shape 2−448) and g4 (Frame

shape 1−8216) are quantum symmetries of torus orbifolds. (As usual, we do not actually

need the last case to fix φe,g, but we use it to check our work). We begin with φg2,g. The

formulae of section 6.2 yield two possibilities

φg2,e = 0 +O(q1/4) or φg2,e = 2− 1/y − y +O(q1/4), (6.16)
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related by worldsheet parity. In the former case, there are no g2-twisted R-R ground states

with J0 = 1/2, so b1(1/2) = 0 and a0(1/2) = −1/3. In the latter case, we find such a state;

it is g2-invariant, but not g-invariant (since the orbifold by g gives a K3 sigma model).

Thus, g acts on this state as −1, yielding b1(1/2) = 1 and a0(1/2) = 2/3. We now proceed

to determine φg4,g. We begin with

φg4,e = −2y − 2/y − 4 +O(q1/2). (6.17)

This indicates the existence of two g4-invariant R-R ground states with J0 = 1/2 in the

g4-twisted sector that are g-variant. If these states are not g2-invariant, then their g

eigenvalues are ±i. A Γ0(8) transformation relates φg4,g to φg4,g3 , and so Trg4,q0y g =

Trg4,q0y g
3. This rules out the choices +i,+i and −i,−i, leaving us only with ±i,∓i. Thus,

φg4,g = 4 +O(q),

and a0(1/4) = −1/3. If these states are g2-invariant, then g acts on them with a minus

sign and

φg4,g = 2y + 2/y +O(q);

we then have a0(1/4) = 5/3. The sum

∑
c

wca0(c) =
5

3
+ 8 ·

(
−1

3

)
+ 2 ·

(
−1/3

2/3

)
+

(
5/3

−1/3

)
= 0 (6.18)

vanishes, as expected; in addition, it tells us how the two cases around the cusps 1/2 and

1/4 match up. The twining genera in these two cases are specified by

Fe,g(τ) =
1

3
E2 −

2

3
E4 , (6.19)

and

Fe,g(τ) = −5

6
E2 +

1

2
E4 −

1

3
E8 . (6.20)

6.3.3 244−484

Finally, we work out the example of the Frame shape 244−484; this Frame shape is expected

to have two twining genera which are not related by worldsheet parity. One is known (it is

the function denoted by φTHa in eq. (3.17) of [29]), while the other is not. The eigengroup

is the genus 0 group Γg = Γ0(8). However, there is a multiplier, λ = 2, so the fixing group

is Γ̂g = Γ0(16), which has cusps at∞, 0, 1/2, 1/4, 3/4, and 1/8. (This is the only non-pure

K3 case with a multiplier). The expansion of φe,g at each of these cusps corresponds to

the expansion at τ →∞ of

φe,g , φg,e , φg2,g , φg4,g , φg4,g11 , and φg8,g , (6.21)

respectively. If we remember to account for multipliers, Γ0(8) transformations let us replace

these by

φe,g , φg,e , φg2,g , φg4,g , −φg4,g , and − φe,g . (6.22)
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From (3.9), we have a0(∞) = 2. Since g is not a torus orbifold quantum symmetry,

a1(0) = b1(0) = 0. Similarly, g2 is not a torus orbifold quantum symmetry, so a0(1/2) = 0.

Finally, we determine φg4,g. g
4 has Frame shape 1−8216, which is a torus orbifold quantum

symmetry. This is the same Frame shape as that of g4 in the previous section; as a reminder,

we have

φg4,e = −2y − 2/y − 4 +O(q1/2). (6.23)

As in the previous section, the q0y coefficient indicates the existence of two g4-twisted R-R

ground states with J0 = 1/2 that are g4-invariant; however, unlike the previous section,

these cannot be g2-invariant, since the orbifold by g2 gives a consistent K3 sigma model.

g2 therefore acts with a minus sign on these states. The arguments that we employed in

the previous section to eliminate certain choices of g eigenvalues fail here: the multiplier

enables the cases which were forbidden in the previous section. Therefore, we seem to have

three options. If the eigenvalues are ±i,∓i (with opposite sign), then we find

φg4,g = 0 +O(q), (6.24)

and a0(1/4) = 0. If eigenvalues are ±i,±i (with the same sign), then

φg4,g = ∓2iy ∓ 2i/y ± 4i+O(q) , (6.25)

and a0(1/4) = ∓2i. We get the final a0 values for free: a0(3/4) = −a0(1/4) and a0(1/8) =

−a0(∞). As a check on our work, we note that the sum

∑
c

wca0(c) = 2 +

(
0

∓2i

)
+

(
0

±2i

)
− 2 = 0 (6.26)

vanishes.

The twining genera resulting from these options are as follows. If we choose a0(1/4) =

0, then

Fe,g(τ) = −(1/6)E4 + (1/2)E8 − (1/3)E16. (6.27)

We can rule out this case by considering the S-transform φg,e of φe,g. For, φg,e is an

untwined trace, so its q-expansion coefficients should be (real) integers; in this case, we get

fractions. If, instead, we choose a0(1/4) = ∓2i, then

Fe,g(τ) = (−1/6)E4 + (1/2)E8 − (1/3)E16 ± 8η[244−484] , (6.28)

and the S transforms φg,e are now perfectly consistent. Thus, eliminating the first case, we

find two twining genera, as expected.

6.4 Results

In this section we present the fruits of our labor in the form of two tables. Table 2 contains a

set of information for each fixing group Γ̂g, where g runs over all supersymmetry-preserving

symmetries that exist at any point in the moduli space of non-singular K3 NLSMs. For

each such Γ̂g, we provide the genus of Ĥ/Γ̂g, the set of cusps and the widths of these

cusps, and the twisted-twining genera whose expansions about ∞ are related by (3.23) to
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the expansions of the twining genus φe,g about these cusps. In addition, we present each

Frame shape whose fixing group is Γ̂g and give the residues a0(c) of the possible twining

genera for these Frame shapes. (Some Frame shapes have multiple entries, since there are

multiple possible twining genera with different sets of residues for these Frame shapes).

We emphasize the non-zero residues which differ only by a multiplier by writing only one

such residue explicitly and expressing the remainder in terms of this residue. When doing

so, we use the shorthand rc in place of a0(c). We also define ζn = e2πi/n.

Table 3 presents the full set of twining genera which meet the criteria we have laid

out in earlier sections. (In particular, we note that we computed the S transform of each

of these functions to make sure that its coefficients were (real) integers that satisfied the

constraints of Corollary 2). In general, we have not shown that these functions are in fact

the twining genera of symmetries of K3 NLSMs, and we merely claim that the set of all K3

NLSM twining genera is contained within our set. However, in most cases, we find only

one possible function for each Frame shape with a given multiplier, so that the twining

genus is uniquely identified. In the remaining cases, we are left with two possibilities

and we cannot determine which case is actually realized. As we discuss in more detail

below, the functions that we find are precisely those which arise in Conway and Umbral

moonshine. That our physical constraints identify the same functions that arise in a

completely different context can be taken as evidence that each of these functions is, in

fact, the twining genus of a K3 NLSM symmetry.

Table 3 is organized as follows. The first column lists the Frame shapes of all K3 NLSM

symmetries. The second column provides the associated eigengroups Γg and — in the cases

where there are non-trivial multipliers — the orders λ of the multipliers. The third column

summarizes the classification of O+(Γ4,20) classes determined by [25], where a ◦ indicates

an O+(Γ4,20) class that is also an O(Γ4,20) class, while a l represents two O+(Γ4,20) classes

that merge into a single class in O(Γ4,20). (To the Frame shape 1−4253461 there may

correspond either one or two O+(Γ4,20) classes; we denote this by writing ◦, ◦∗. Even if

there are two classes, they are inverses of each other, so they have the same twining genera).

The fourth column lists the (candidate) twining genera that we have found. Assuming the

conjectures of [25] upon which we expound further below, we are able in many cases to

match our functions with O+(Γ4,20) classes; when this is possible, we place corresponding

classes and twining genera in the same line. We indicate those cases in which we can not

provide such a correspondence by surrounding the O+(Γ4,20) classes with brackets. The

fifth column indicates whether or not the twining genus has been found in an explicit K3

model: X indicates that the genus has been realized in a K3 CFT, LG indicates that the

genus was found in a Landau-Ginzburg orbifold model which flows to a K3 CFT in the IR,

and × indicates that the genus has not yet been found. See [25] for a description of the

methods that have been employed to obtain these K3 NLSMs. (Our results provide strong

evidence that the twining genera computed in Landau-Ginzburg orbifolds in the UV do,

in fact, yield K3 NLSM twining genera). The sixth column relates the twining genera to

various moonshines, as is explained in section 7.19 Finally, we note that when there are

19The + and − subscripts on Λ correspond to the signs that appear in table 3 of [36].
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multiple entries in table 2 for a given Frame shape, we generally order the functions in

table 3 in order for these results to correspond. The only Frame shapes for which this is

not possible is 4282 and 64, as the corresponding fixing groups in these cases are genus 1,

so for some sets of residues there are multiple twining genera which differ by a cusp form.

In these cases, the first and second twining genera in table 3 correspond, respectively, to

the first and second entries in table 2.

SL(2,Z) Genus 0

Cusp ∞
Width 1

φgi,gj φe,g

πg a0(c)

124 0

Γ0(p), p = 2, 3, 5, 7 Genus 0

Cusp ∞ 0

Width 1 p

φgi,gj φe,g φg,e

πg a0(c)

1828 4/3 −2/3

1−8216 8/3 −4/3

1636 3/2 −1/2

1−339 9/4 −3/4

1454 5/3 −1/3

1373 7/4 −1/4

Γ0(4) Genus 0

Cusp ∞ 0 1/2

Width 1 4 1

φgi,gj φe,g φg,e φg2,g

πg a0(c)

212 2 0 −r∞
142244 5/3 −1/3 −1/3

182−848 4/3 −2/3 4/3

1−42644 7/3 −2/3 1/3

2−448 2 0 −2

2 −1 2

Γ〈−1〉(5) Genus 0

Cusp ∞ 0 1/2 2/5

Width 1 5 5 1

φgi,gj φe,g φg,e φg2,g φe,g3

πg a0(c)

1−155 25/12 1/12 −11/12 25/12

25/12 −11/12 1/12 25/12

Γ0(6) Genus 0

Cusp ∞ 0 1/2 1/3

Width 1 6 3 2

φgi,gj φe,g φg,e φg2,g φg3,g

πg a0(c)

12223262 11/6 −1/6 −1/6 −1/6

14213−465 5/3 −1/3 −1/3 2/3

152−43164 19/12 −5/12 7/12 −5/12

1−2243−264 13/6 1/6 1/6 −11/6

13/6 −5/6 1/6 7/6

1−12−13363 25/12 1/12 −11/12 1/12

25/12 −11/12 13/12 1/12

1−4253461 7/3 −2/3 1/3 1/3

Γ0(8) Genus 0

Cusp ∞ 0 1/2 1/4

Width 1 8 2 1

φgi,gj φe,g φg,e φg2,g φg4,g

πg a0(c)

2444 2 0 0 −r∞
12214182 11/6 −1/6 −1/6 −1/6

142−24−284 5/3 −1/3 −1/3 5/3

5/3 −1/3 2/3 −1/3

Γ〈−1〉(8) Genus 0

Cusp ∞ 0 1/2 3/8 1/3 1/4

Width 1 8 4 1 8 2

φgi,gj φe,g φg,e φg2,g φe,g3 φg3,g φg4,g

πg a0(c)

1−2234182 13/6 1/6 1/6 13/6 −5/6 1/6

13/6 −5/6 1/6 13/6 1/6 1/6
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Γ0(9) Genus 0

Cusp ∞ 0 2/3 1/3

Width 1 9 1 1

φgi,gj φe,g φg,e φg3,g8 φg3,g

πg a0(c)

38 2 0 ζ±13 r∞ ζ∓13 r∞

133−293 7/4 −1/4 −ζ∓13 − 1/4 −ζ±13 − 1/4

Γ〈−1〉(10) Genus 0

Cusp ∞ 0 1/2 2/5 1/3 3/10 1/4 1/5

Width 1 10 5 2 10 1 5 2

φgi,gj φe,g φg,e φg2,g φg5,g8 φg3,g φe,g7 φg4,g φg5,g

πg a0(c)

12215−2103 11/6 −1/6 −1/6 (2 + 3
√

5)/6 −1/6 11/6 −1/6 (2− 3
√

5)/6

11/6 −1/6 −1/6 (2− 3
√

5)/6 −1/6 11/6 −1/6 (2 + 3
√

5)/6

132−251102 7/4 −1/4 −1/4 −1/4 −1/4 7/4 3/4 −1/4

7/4 −1/4 3/4 −1/4 −1/4 7/4 −1/4 −1/4

1−22352101 13/6 1/6 1/6 1/6 −5/6 13/6 1/6 1/6

13/6 −5/6 1/6 1/6 1/6 13/6 1/6 1/6

Γ0(11) Genus 1

Cusp ∞ 0

Width 1 11

φgi,gj φe,g φg,e

πg a0(c)

12112 11/6 −1/6

Γ0(12) Genus 0

Cusp ∞ 0 1/2 1/3 1/4 1/6

Width 1 12 3 4 3 1

φgi,gj φe,g φg,e φg2,g φg3,g φg4,g φg6,g

πg a0(c)

2363 2 0 0 0 0 −r∞
122−232426−2122 11/6 −1/6 −1/6 −1/6 −1/6 11/6

11/6 −1/6 5/6 −1/6 −1/6 −7/6

Γ〈−1〉(12) Genus 0

Cusp ∞ 0 3/4 2/3 1/2 5/12 1/3 1/4 1/5 1/6

Width 1 12 3 4 6 1 4 3 12 2

φgi,gj φe,g φg,e φg4,g11 φg3,g11 φg2,g φe,g5 φg3,g φg4,g φg5,g φg6,g

πg a0(c)

1122314−2122 23/12 −1/12 −1+12i
12 −1/12 −1/12 23/12 −1/12 −1−12i

12 −1/12 −1/12

23/12 −1/12 −1−12i
12 −1/12 −1/12 23/12 −1/12 −1+12i

12 −1/12 −1/12

123−24162121 11/6 −1/6 −1/6
−6ζ∓1

3 −1
6 −1/6 11/6

−6ζ±1
3 −1
6 −1/6 −1/6 −1/6

1−2223241121 13/6 1/6 1/6 1/6 1/6 13/6 1/6 1/6 −5/6 1/6

13/6 −5/6 1/6 1/6 1/6 13/6 1/6 1/6 1/6 1/6
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Γ0(14) Genus 1

Cusp ∞ 0 1/2 1/7

Width 1 14 7 2

φgi,gj φe,g φg,e φg2,g φg7,g

πg a0(c)

112171141 23/12 −1/12 −1/12 −1/12

Γ0(15) Genus 1

Cusp ∞ 0 1/3 1/5

Width 1 15 5 3

φgi,gj φe,g φg,e φg3,g φg5,g

πg a0(c)

113151151 23/12 −1/12 −1/12 −1/12

Γ0(16) Genus 0

Cusp ∞ 0 3/4 1/2 1/4 1/8

Width 1 16 1 4 1 1

φgi,gj φe,g φg,e φg4,g15 φg2,g φg4,g φg8,g

πg a0(c)

46 2 0 ±ir∞ 0 ∓ir∞ −r∞
244−484 2 0 ±2i 0 −r3/4 −r∞

Γ0(20) Genus 1

Cusp ∞ 0 1/2 1/4 1/5 1/10

Width 1 20 5 5 4 1

φgi,gj φe,g φg,e φg2,g φg4,g φg5,g φg10,g

πg a0(c)

22102 2 0 0 0 0 −r∞

Γ0(24) Genus 1

Cusp ∞ 0 1/2 1/3 1/4 1/6 1/8 1/12

Width 1 24 6 8 3 2 3 1

φgi,gj φe,g φg,e φg2,g φg3,g φg4,g φg6,g φg8,g φg12,g

πg a0(c)

214161121 2 0 0 0 0 0 0 −r∞

Γ0(32) Genus 1

Cusp ∞ 0 3/4 1/2 3/8 1/4 1/8 1/16

Width 1 32 2 8 1 2 1 1

φgi,gj φe,g φg,e φg4,g31 φg2,g φg8,g3 φg4,g φg8,g φg16,g

πg a0(c)

4282 2 0 0 0 ±ir∞ 0 ∓ir∞ −r∞

Γ0(36) Genus 1

Cusp ∞ 0 1/2 1/3 2/3 1/4 1/6 5/6 1/9 1/12 5/12 1/18

Width 1 36 9 4 4 9 1 1 4 1 1 1

φgi,gj φe,g φg,e φg2,g φg3,g φg3,g35 φg4,g φg6,g φg6,g35 φg9,g φg12,g φg12,g5 φg18,g

πg a0(c)

64 2 0 0 0 0 0 ζ±1
6 r∞ ζ∓1

6 r∞ 0 ζ±2
6 r∞ ζ∓2

6 r∞ −r∞

Table 2. Residues of the twining genera at all inequivalent cusps.
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7 Implications for moonshine

As discussed briefly in the introduction, Umbral and Conway moonshines associate — via

formal constructions that a priori have nothing to do with string theory on K3 — weight

0, index 1 weak Jacobi forms to conjugacy classes of the appropriate Umbral or Conway

groups, the construction of which we now explain [24, 36]. First, we define the Niemeier

lattices20 to be the 24 even unimodular 24-dimensional lattices of (in our conventions)

negative definite signature, which are uniquely identified by their root systems. Each

instance of Umbral moonshine is associated to one of the 23 such lattices with roots. The

Umbral group GL associated to the lattice L is defined by

GL := O(L)/WL , (7.1)

where O(L) and WL are, respectively, the automorphism group of L and the Weyl group

of the root system of L. Although the weak Jacobi forms derived from the Conway (Co0)

moonshine module [36] are constructed in an entirely different manner from those of Umbral

moonshine [24], we may use similar notation if we define Λ to be the Leech lattice — the

unique Niemeier lattice with no roots — and define WΛ to be the trivial group. The

corresponding GΛ is then Co0, the automorphism group of the Leech lattice, and we call

this case ‘Conway moonshine’ for the purposes of this paper. We will sometimes collectively

refer to the Umbral groups and Co0 as the Niemeier groups.

There are two important differences between the Umbral and Conway constructions of

Jacobi forms that we wish to highlight. First, unlike Umbral moonshine, Conway moon-

shine does not associate a weak Jacobi form to an arbitrary conjugacy class of GΛ. Instead,

the construction only works for conjugacy classes of elements g ∈ O(Λ) that pointwise fix

a 4-plane in Λ ⊗ R. Second, Umbral moonshine associates a unique weak Jacobi form to

each conjugacy class. In contrast, this is only the case for Conway moonshine for conjugacy

classes that fix at least a 5-plane. When the subspace fixed by [g] is precisely 4-dimensional,

Conway moonshine associates two distinct weak Jacobi forms to [g].

The work [25] has shown that the Niemeier lattices indeed play a role in the study of

K3 nonlinear sigma models (NLSMs), building off of work associating the Niemeier lattices

to K3 geometry advocated in [66]. Consider a symmetry g of perturbative type II string

theory on K3, possibly at a singular point in the K3 CFT moduli space, that fixes a positive

4-plane in Γ4,20⊗R.21 Denote by Ξg the sublattice of Γ4,20 that is pointwise fixed by g, and

let Ξg denote the orthogonal complement of Ξg. Then, there exists a (generally non-unique)

Niemeier lattice L such that Ξg may be primitively embedded into L; if Ξg has no roots (so

that g is a symmetry of a non-singular K3 NLSM), then we can always choose L to be the

Leech lattice [29]. Denote this embedding by i and the image of Ξg under i by Lg. Then,

the group 〈g〉 generated by g acts naturally on Lg; more precisely, g̃ = igi−1 generates

a group that extends uniquely to a subgroup of O(L) that fixes pointwise the orthogonal

20As we will stress momentarily, we use terminology such that ‘Niemeier lattices’ includes the Leech

lattice, whose root system is empty.
21The following results have natural generalizations from sublattices fixed by cyclic groups of the form

〈g〉 to sublattices fixed by more general groups of symmetries. We restrict to the former for simplicity.
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complement Lg of Lg. When Ξg contains no roots, 〈g̃〉 is isomorphic to a subgroup of GL.

Since Lg is always at least 4-dimensional, we find that the Umbral symmetries that arise

naturally in this setting are those that fix a 4-plane.

The correspondence between groups of (supersymmetry-preserving) symmetries of

non-singular K3 NLSMs and subgroups of the Niemeier groups GL is made particularly

sharp by the following observation: for all such symmetries g of non-singular K3 NLSMs

for which the twining genus φe,g has been computed explicitly in the CFT, one of the

Umbral or Conway weak Jacobi forms associated to [g̃] has always been the same as the

twining genus φe,g. This observation, among others, led the authors of [25] to conjecture

that every twining genus corresponding to a symmetry of a non-singular K3 NLSM

equals a weak Jacobi form that Conway or Umbral moonshine associates to a 4-plane

preserving conjugacy class, and conversely. Our results provide substantial further support

for this conjecture, as physical considerations pertaining to string theory on K3 (and

compactifications thereof) pick out exactly the set of weak Jacobi forms that Umbral and

Conway moonshine associate to 4-plane fixing conjugacy classes, even when these weak

Jacobi forms have yet to arise as the twining genera of K3 NLSMs.

In fact, we obtain interesting results by proceeding formally and applying the method

described in the preceding sections (as we describe in more detail below) to the Frame

shapes of Umbral symmetries that do not fix a 4-plane. In particular, our findings suggest

a possible broadening of the Conway moonshine construction; they also provide further

evidence that the Niemeier groups capture symmetries of K3 string theory and their asso-

ciated Jacobi forms determine spacetime BPS state counts. Of course, in these cases the

physical motivation for employing our method does not apply, since these Frame shapes

do not correspond to supersymmetry-preserving symmetries of non-singular K3 NLSMs.

Nevertheless, as table 4 indicates, we obtain a small list of functions, which contains —

for each Frame shape — the Umbral moonshine weak Jacobi form(s) [24]. It is remarkable

that our constraints are able to identify such a limited set of functions, given that the

relevant fixing groups have genera greater than 1 — in some cases, much greater than

1. For instance, Γ0(144) has genus 13. We find our results for the Frame shape 21221

particularly surprising: we identify a unique weak Jacobi form (that of L = A12
2 Umbral

moonshine), even though the fixing group Γ0(44) has genus 4. Since, in the case of Frame

shapes corresponding to 4-plane fixing symmetries, our constraints identified precisely the

Umbral and Conway moonshine weak Jacobi forms, one might hope that the extra (i.e.

non-Umbral) functions we have obtained play a role in an expanded version of Conway

moonshine that encompasses all Co0 conjugacy classes, and not only those that fix a 4-

plane. Unfortunately, we have reason to believe this may not be the case for some of

the functions we have found. The argument is the following. Suppose g is a bona fide

symmetry of order N in a K3 NLSM, and that the multiplier of φe,g is determined by its

order λ and by E ′ ∈ Z/λZ, as described in section 3.3. Then, by standard CFT arguments,

the multiplier of its higher powers gn, n|N , is given by λgn = λ
gcd(λ,n) and E ′ ∈ Z/λgnZ.

The same property holds also for all twining genera of Umbral moonshine, including the

ones that have no interpretation as physical symmetries in a NLSM. It is natural to expect

a similar behaviour for the putative Conway twining genera associated to Frame shapes
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not fixing a 4-plane. Some of the functions reported in table 4 are incompatible with the

multipliers of known Conway twining genera; one cannot expect such functions to arise in

any reasonable extension of Conway moonshine.

Even after imposing these constraints on the multiplier, it would not be too surprising

if multiple Conway moonshine weak Jacobi forms were to exist for these new Frame shapes.

In fact, we have already seen that, as the rank of the fixed lattice decreases from 5 (or

higher) to exactly 4, the number of Conway moonshine weak Jacobi forms increases from

1 to 2. If there is indeed an extension of Conway moonshine into which we can incorporate

these new Jacobi forms, we further speculate that applying our constraints to the other

Conway Frame shapes — that is, those that neither fix a 4-plane nor appear in the context

of Umbral moonshine — will yield additional weak Jacobi forms that will appear in this

extended Conway moonshine.

Before proceeding, we wish to quickly detail precisely the method we employed in order

to obtain the results of the last paragraph and of table 4. We assume that residues are

still associated via (4.20) to the coefficients of q0y±1 of appropriate twisted-twining genera,

which are associated to cusps in the same way as above. Each of the Frame shapes under

consideration essentially meets our criteria for being of pure K3 type, in the sense that

all powers of these Frame shapes that are associated to symmetries of K3 NLSMs are the

Frame shapes of genuine pure K3 symmetries. We therefore assume that twisted-twining

genera φgi,gj with i 6≡ 0 (mod N) have no q0y±1 terms. The q0y±1 terms of the remaining

twisted-twining genera are related by a multiplier to those of φe,gj , which we assume are

still determined by (3.9).22 These rules suffice to determine the twining genera, up to the

addition of cusp forms, which we constrain with the results of Corollary 2.

7.1 Twining genera for the frame shapes of Umbral moonshine that do not

fix a 4-plane

Table 4 lists the functions that meet our criteria which are associated to Frame shapes of

Umbral symmetries that do not fix a 4-plane. The first three columns are analogous to

columns of table 3. The fourth column states which functions appear in Umbral moonshine;

in addition, it includes our speculations on which functions may appear in an extended Con-

way moonshine. (The rows without a Λ correspond to those functions that are eliminated

by the above multiplier considerations, if they are correct). The final column specifies the

multipliers of these functions (which are easily determined from (4.8)). We note that our

speculations yield at least one function for each multiplier. In particular, whenever a func-

tion has a complex multiplier, there is a function with the complex conjugate multiplier;

this is not the case with only the Umbral functions. In the 4-plane fixing case, this is

due to the fact that worldsheet parity takes each twining genus to a twining genus with

the conjugate multiplier. Thus, this observation may be further evidence that our new

functions play some role in string theory.

22We note that this last assumption, as well as the assumption that the twining genera must be weak

Jacobi forms, were equivalent to the preservation of the supersymmetry and spectral flow generators in the 4-

plane preserving case. In the cases where we do not preserve a 4-plane, it seems likely that these criteria hint

that the appropriate physical setting to understand the forms is supersymmetry-preserving in some sense.
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In order to make this table readable, we define the following (non-cusp) forms for

Γ0(44), Γ0(63), Γ0(80), and Γ0(144):

E(44) = − 1

60
E2 +

1

90
E4 −

11

180
E11 +

11

60
E22 −

11

90
E44

E(63) = − 1

48
E3 −

7

192
E7 +

1

64
E9 +

7

48
E21 −

7

64
E63 −

7

3
η[133−17321−1] +

1

3
η[163−2]

E(80) =
1

72
E4 −

1

24
E8 +

1

36
E16 −

5

72
E20 +

5

24
E40 −

5

36
E80 − 2η[1−1274−25110−1]

E(144) =
1

6
E12 −

1

4
E144 −

1

12
E16 −

1

2
E24 −

1

8
E36 −

1

24
E4 +

1

3
E48 +

3

8
E72 +

1

8
E8

− 2η[142−1416112−1]− 2η[1125314−26−1]− 2η[12223−26412−2] .

We also define the following cusp forms for Γ0(144):

f (144a) =6f24(q2) + 54f24(q6) + 3f48(q)− 27f48(q3)− 18f72(q2) + 9f144,a + 18f144,b

f (144b) =−12f24(q2)− 108f24(q6) + 120f36(q4)− 36f72(q2)− 36f144,b

f (144c) =−6f24(q2)−54f24(q6)+48f36(q4)−3f48(q)+27f48(q3)−18f72(q2)−9f144,a−18f144,b

f (144d) =6f24(q2) + 54f24(q6) + 3f48(q)− 27f48(q3) + 18f72(q2)− 9f144,a − 18f144,b

f (144e) =108f24(q6) + 12f24(q2) + 6f48(q)− 54f48(q3) + 36f72(q2)− 18f144,a − 36f144,b .

As usual, all of the special modular forms appearing in these definitions, and in table 4,

are defined in appendix B.2.

πg (Γg)|λ Fe,g(τ) Niemeier E ′ (mod λ)

122 Γ0(12)|12

2η[142−1416112−1] + f (144a)

2η[142−1416112−1]

E(144) + f (144b)

E(144) + f (144c)

E(144) − 24f36(q4)− 6f48(q) + 54f48(q3)− 18f144,a

2η[1125314−26−1]

2η[1125314−26−1]− 72f36(q4) + 18f144,a

2η[1125314−26−1] + f (144d)

2η[1125314−26−1] + f (144e)

2η[12223−26412−2]

A24
1

Λ

Λ

Λ

A12
2

A6
4

11

11

1

1

1

7

7

7

7

5

41201 Γ0(20)|4

2η[1−1274−25110−1]

2η[1−1274−25110−1]− 80f20(q4)− 75
16
f40 + 395

16
f80,a + 40f80,b

2η[1−1274−25110−1]− 75
16
f40 + 20f40(q2)− 85

16
f80,a

E(80) + 80
3
f20(q4)− 20f40(q2)

A12
2

Λ

3

3

3

1

31211 Γ0(21)|3

E(63) − 63
8
f21(q) + 567

8
f21(q3) + 63

4
f63,a + 21f63,b

E(63) − 21
8
f21(q) + 189

8
f21(q3)− 21

2
f63,b

7
3
η[133−17321−1]− 1

3
η[163−2]

Λ

Λ

A24
1

1

1

2

21221 Γ0(22)|2 E(44) + 11
5
η[12112] + 44

5
η[22222] + 88

5
η[42442]− 22

3
f44 Λ, A12

2 1

11231 Γ0(23)
− 23

264
E23 − 69

11
η[12232]− 23

11
f23

− 23
264
E23 − 69

11
η[12232] + 230

11
f23

Λ, A24
1

Λ

Table 4. Result of formally applying our method for obtaining potential twining genera to Umbral

symmetries that do not fix a 4-plane.
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8 Discussion

In this paper we have computed a set of candidate twining genera, or g-equivariant elliptic

genera, φe,g in K3 SCFTs for all possible symmetries of K3 NSLMs that preserve the N =

(4, 4) superconformal algebra and spectral flow generators. For most of the 81 conjugacy

classes of the duality group O+(Γ4,20) we were able to determine the twining genus uniquely.

For the remaining classes, we have found two possible candidates. K3 NLSM twining

genera are closely related, via the so-called multiplicative lift, to the generating functions

of 1/4 BPS dyons in the CHL model labeled by g. Our computations have therefore

provided an interesting set of data to explore several outstanding questions in the study

of supersymmetric vacua and properties of both worldsheet and spacetime BPS states in

string theory. We briefly comment on several natural avenues for follow-up exploration.

• The twining genera we find in this work are exactly the Jacobi forms occurring in

Umbral moonshine and Conway moonshine (in the 4-plane fixing cases), as explained

in the introduction and in section 7. This is a surprising and highly nontrivial

finding which demands an explanation. Is there a deeper connection between the

way string theory singles out these Jacobi forms and the way independent number

theoretic considerations from moonshine (e.g. genus zero properties — cf. e.g. [67],

Rademacher summability [68], etc.) privilege these forms? In fact, a host of

worldsheet-based evidence led the authors of [25] to put forth several conjectures

concerning the role of the Niemeier groups and twining genera in K3 NSLMs.

Loosely speaking, they conjectured that for any symmetry of a K3 NLSM, the

corresponding twining genus would coincide with one of the Umbral or Conway

moonshine functions and, conversely, that each of the Umbral/Conway functions

appears as the twining genus of some symmetry of a K3 NSLM. In our work, using

very general spacetime considerations, we have essentially proved the first of these

conjectures and provided strong evidence in favor of the second one. It is conceivable

that our methods shed light on the physical role of the Jacobi forms (and even more

speculatively, the mock modular forms) appearing in moonshine.

• There has been interesting work connecting Borcherds-Kac-Moody (BKM) algebras

to BPS states in the K3 × T 2 compactification and in some of the simplest CHL

models [2, 32, 41, 45–48]. The generating functions themselves are essentially

denominators of certain Borcherds-Kac-Moody algebras in favorable cases, and the

Weyl group plays the role of a discrete analogue of the attractor flow, providing an

algebraic interpretation of wall-crossing. However, for N ≥ 4, it appears that there

is no simple BKM interpretation: the connected components of the moduli space

appear to be bounded by an infinite number of walls, which stymies the beautiful

algebraic picture advocated in [32]. On the other hand, the poles of 1/Φg,e should

correspond to bosonic real roots, while the zeroes should correspond to fermionic

real roots. Do fermionic real roots give additional generators of the Weyl group that

ameliorate this problem? More generally, can we complete the dictionary between

BKM data and BPS dyons established in [32, 41]?
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• As indicated by the brackets in table 3, we were unable to complete the association

of twining genera to symmetries (or, more precisely, to O+(Γ4,20) classes). Perhaps

considerations of the Borcherds-Kac-Moody symmetry enjoyed by the BPS states in

many CHL compactifications will eliminate these persistent ambiguities.

• Throughout our paper, we employ the classification of CHL models completed by [42],

which focuses on models that have a perturbative frame in which they are well-

described by an orbifold of K3 × T 2; this results in the Narain lattice splitting

Γ6,22 = Γ4,20 ⊕ Γ2,2. One could of course consider orbifolds of string theory with 16

supercharges by symmetries that are not symmetries of the perturbative K3. Can we

still define the appropriate Siegel forms (either by a multiplicative lift or an alternative

construction) and, if so, are they determined by our constraints? Such compactifica-

tions seem to be a natural place to look for symmetries that fix less than a four plane

and, optimistically, to recover all Umbral twining functions in a physical setting.

• One possible explanation of the relationship between Umbral/Conway moonshines

and string theory on K3 × T d for various d has begun to emerge, in the setting of

low-dimensional string compactifications [69, 70]. In the 3d setting of type II string

theory on K3×T 3, the Niemeier lattices appear at points in the moduli space where

the lattice parameterizing (nonperturbative) points in the string moduli space, Γ8,24,

decomposes as E8 ⊕ L [69]. If we compactify even further to two dimensions, then

there even exists a perturbative description of each of these points in moduli space,

as the Narain lattice associated to the heterotic string on T 8 (which is dual to type

II on K3 × T 4) is Γ8,24 [70]. Referring back to the 3d picture, only 4-plane fixing

symmetries will survive the decompactification to 6 dimensions (concomitantly

taking the type II string coupling to zero so that the K3 sigma model description

is good). Can we use this picture to identify which (Umbral or Conway) twining

genera appear at a specified point in moduli space which allows for multiple Niemeier

embeddings of Ξg (in the notation of section 7)?

• Building on the previous point — and as an alternative approach to the fourth item

on our list — we may also hope to identify the non-4-plane preserving twining genera

of Umbral and (proposed extended) Conway moonshine in the 2d or 3d pictures.

In these theories, we evade the 4-plane preserving condition imposed upon us in the

study of K3 NSLMs. For instance, although the 3d moduli space is nonperturbative,

it is conceivable that the twining genera might appear in an appropriate physical

quantity — e.g. a contribution to a term in the low-energy effective action — if

we judiciously choose an appropriate duality frame with a familiar perturbative

(heterotic or type II) description.

• Temporarily eschewing CHL constructions, we applied our general constraints to the

2-plane preserving O(Λ) conjugacy classes which are labeled by Frame shapes that

also appear in Umbral moonshine. As before, the procedure yielded a limited set

of functions, which we delineated in table 4. Some of these functions coincide with
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the twining genera of Umbral moonshine, while the other functions do not appear

in any existing moonshine-based recipe for generating twining genera. However,

the Conway moonshine of [36] was limited to 4-plane preserving conjugacy classes,

which directly correspond to SUSY-preserving symmetries of K3 NLSMs. The

functions in table 4 might suggest an extension of the Conway moonshine recipe for

producing Jacobi forms. If so, what is the physical meaning of these Jacobi forms

and their relation to (string theory on) K3? It is clearly desirable to have a better

understanding of these functions. As a first step, one might try to apply the full

constraints summarized in section 5 rather than the slightly weakened Corollary 2

we employed in computations. Would this eliminate any functions in table 4?

• Throughout this paper, we have focused on ‘torsion-free’ dyons, i.e. dyons with

the discrete T-duality invariant I ≡ gcd(Q ∧ P ) = 1. In several cases, dyons with

more general I have been counted [18, 49, 50], including analyses for all I in the

unorbifolded case. It would be interesting to find the counting functions for all I

for our CHL models, which already have a more elaborate structure of (continuous)

T-duality orbits that remains to be fully understood. Furthermore, for general I it

would be interesting to deduce the properties of the dyon counting functions, explore

BKM interpretations thereof, and so on.

• The growth rate of the coefficients of ordinary modular and Jacobi forms have

been explored extensively in both mathematics and physics, including with recent

applications to holography in e.g. [71–76]. It would be similarly fruitful to derive

constraints on Siegel modular forms to obtain growth rates that would guarantee,

e.g. an extended regime of validity for Cardy-like growth. Are the constraints in

this paper a (perhaps roundabout) way to guarantee ‘slow growth’? There has been

interesting recent work studying Siegel forms obtained via multiplicative lifts and

studying putative (subleading) contributions to macroscopic black hole entropy [77].

It would be educational to extend the analysis of this paper to our generating

functions. More modestly, since we have a large new class of CHL dyon counting

functions, it would be instructive to check if we reproduce the Bekenstein-Hawking

entropy in the limit of large charges, as expected.

• We have discovered that our spacetime counting functions are determined from

minimal data, namely 1/2 BPS degeneracies on the worldsheet, plus information

about the location of the walls. Firstly, it would be satisfying to have a deeper

explanation for why these intricate functions, which contain much dynamical data,

are fixed by such paltry information. Is there a more natural way to constrain

the functions than the methods we employ here? For the unorbifolded case, it

is known that the 1/4 BPS counting function is completely determined by Siegel

automorphy plus the 1/2 BPS counting functions, which are manifest as one studies

the degeneration limit z → 0. Is such a phenomenon general? If not, what additional

information is required to fix the CHL counting functions for larger N and/or

nontrivial λ? Note also that the constraint of Corollary 2 was sufficient in practice to
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fix our Jacobi forms (in the 4-plane fixing cases), though it was strictly weaker than

the general constraints to eliminate unphysical walls that we derived in section 5.

One first step towards understanding the power of the various constraints discussed

might be to understand why this weaker condition is nonetheless so effective.
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A Basics on modular forms and Jacobi forms

The classical theta functions are Jacobi forms of weight 1/2 and index 1 and can be written

as follows, using q := e2πiτ , y := e2πiz:

θ1(τ, z) = −iq
1
8 y

1
2

∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn−1) (A.1)

= i

∞∑
n=−∞

(−1)nq
(n− 1

2 )2

2 yn−
1
2

θ2(τ, z) = q
1
8 y

1
2

∞∏
n=1

(1− qn)(1 + yqn)(1 + y−1qn−1) (A.2)

=

∞∑
n=−∞

q
(n− 1

2 )2

2 yn−
1
2

θ3(τ, z) =

∞∏
n=1

(1− qn)(1 + yqn−
1
2 )(1 + y−1qn−

1
2 ) (A.3)

=
∞∑

n=−∞
q
n2

2 yn

θ4(τ, z) =
∞∏
n=1

(1− qn)(1− yqn−
1
2 )(1− y−1qn−

1
2 ) (A.4)

=

∞∑
n=−∞

(−1)nq
n2

2 yn.

The usual Dedekind eta function of weight 1
2 is defined to be

η(τ) = q
1
24

∞∏
n=1

(1− qn) = q
1
24

∞∑
n=−∞

(−1)nq
3n2−n

2 = q1/24(1− q − q2 +O(q3)). (A.5)
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This is modular for SL(2,Z) with a multiplier system, vη: if γ =

(
a b

c d

)
, then

η(γτ) = vη(γ)(cτ + d)1/2η(τ) , (A.6)

where vη(γ) is a phase. We determine the phase via the following rules:

vη(γ) =

{
e
biπ
12 : c = 0, d = 1

eiπ[
a+d
12c
−s(d,c)− 1

4 ] : c > 0
(A.7)

s(h, k) =
k−1∑
n=1

n

k

(
hn

k
−
⌊
hn

k

⌋
− 1

2

)
. (A.8)

Thinking of γ as being valued in PSL(2,Z), we can always multiply γ by ±1 and end up

in one of the cases (c = 0, d = 1) or c > 0.

We also write the standard Jacobi forms χ0,1(τ, z) of weight 0 and index 1 and

χ−2,1(τ, z) of weight −2 and index 1 [58]:

χ0,1(τ, z) = 4

(
4∑
i=2

θi(τ, z)2

θi(τ, 0)2

)
= (y−1 + 10 + y) +O(q)

χ−2,1(τ, z) = −θ1(τ, z)2

η(τ)6
= (y−1 − 2 + y) +O(q).

B Modular forms for congruence subgroups

B.1 Introduction

In this section we describe some properties of the spaces of weight 2 modular forms for

congruence subgroups [78]. Such modular forms are defined to transform in the usual way,

except only under a subgroup of SL(2,Z) which is defined via congruence relations. In

order to specify this transformation more explicitly, we introduce the following actions of

GL+(2,R) (the + indicates restriction to matrices with positive determinant) on the upper

half plane, H = {x+ iy ∈ C|y > 0}, and the set F of functions f : H→ C:

ατ =
aτ + b

cτ + d
, τ ∈ H, (B.1)

(f |α)(τ) = (detα)(cτ + d)−2f(ατ), α =

(
a b

c d

)
∈ GL+(2,R) . (B.2)

Modular forms of weight two for the congruence subgroup Γ ⊂ SL(2,Z) are functions f ∈ F
that satisfy

f |α = f, α ∈ Γ , (B.3)

as well as certain growth conditions at the cusps QP1 = Q∪{∞}. Defining Ĥ = H∪QP1, we

can restate this definition as the requirement that f(τ)dτ be a meromorphic 1-differential

on Ĥ/Γ with at most single poles at the cusps and which is holomorphic elsewhere. We

– 57 –



J
H
E
P
0
5
(
2
0
1
7
)
0
4
7

will frequently have cause to modify this definition slightly, by allowing for a multiplier,

that is, a phase ξ(α) on the right side of this equation which is independent of τ .

Examples of popular congruence subgroups are the principal congruence subgroup of

level N > 0,

Γ(N) =

{(
a b

c d

)
∈ SL(2,Z) : a, d ≡ 1 (mod N), b, c ≡ 0 (mod N)

}
, (B.4)

and the Hecke congruence subgroup of level N ,

Γ0(N) =

{(
a b

c d

)
∈ SL(2,Z) : c ≡ 0 (mod N)

}
. (B.5)

We can define subgroups of Γ0(N) corresponding to any subgroup G of (Z/NZ)× as follows:

ΓG(N) =

{(
a b

c d

)
∈ SL(2,Z) : a, d (mod N) ∈ G, c ≡ 0 (mod N)

}
. (B.6)

We need the cases G = (Z/NZ)× (corresponding to ΓG(N) = Γ0(N)), G = 〈−1 (mod N)〉
(in which case we write ΓG(N) = Γ〈−1〉(N)), and the case where G is the trivial group (in

which case we use the standard notation ΓG(N) = Γ1(N)) in the main text. A congruence

subgroup is said to be of level N if it contains Γ(N) and does not contain Γ(M) for any

M < N . Modular forms for a level N congruence subgroup are themselves also said to be

of level N .

One important difference between congruence subgroups, Γ, and the full group SL(2,Z)

is that the quotient of the upper half plane Ĥ by the former will not, in general, identify

all cusps c. Thus, while modular forms for SL(2,Z) have a single q-expansion (say, about

∞), modular forms for Γ may have inequivalent q-expansions about cusps that are not

identified by Γ. Such an expansion about a cusp c is a power series in qc = e2πiτc/wc , where

τc = γτ is the image of τ under a transformation γ ∈ PSL(2,Z) that maps c to i∞, and

where wc, the width of the cusp c relative to Γ, is the smallest positive integer H such that

γ−1

(
1 H

0 1

)
γ ∈ Γ. Note that we can replace τc by τ ′c = τc + n in the last sentence, where

n is an arbitrary integer; this means that when wc 6= 1 there is a certain arbitrariness in

the definition of the phase of qc, as we may replace qc by e2πin/wcqc. Thus, implicit in the

notation τc is our choice of γ. However, wc is clearly independent of this choice.

We now describe the complex vector space M2(Γ) of weight 2 modular forms for Γ.

First, we introduce the subspace S2(Γ) of cusp forms whose q-expansions about all cusps

vanish at order q0. We then define N2(Γ) = M2(Γ)/S2(Γ), so that

M2(Γ) = N2(Γ)⊕ S2(Γ) . (B.7)

When Γ1(N) ⊂ Γ (and so, in particular, when Γ is of the form ΓG(N)), N2(Γ) is spanned

by generalized Eisenstein series, as described in appendix B.2, and is therefore called the

Eisenstein subspace. This subspace has dimension n − 1, where n is the number of cusps
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that are not identified by Γ. The cuspidal subspace has a basis that may be described

in terms of certain special cusp forms, called newforms; its dimension equals the genus of

Ĥ/Γ, which we simply call the genus of Γ. This follows easily from Hodge theory if we note

that weight 2 cusp forms correspond to holomorphic one-forms on Ĥ/Γ. The dimension of

M2(Γ), and thus of N2(Γ), follows from the Riemann-Roch theorem.

B.2 A basis for M2(Γ)

In this section, we introduce the weight 2 modular forms in terms of which we will express

the functions Fe,g.

B.2.1 Eisenstein series

We begin with Eisenstein series; the interested reader can refer to [78, 79] for more on the

subject. These are defined by the following q-expansion about infinity:

Ek,χ,ψ(τ) = c0 +
∑
m≥1

∑
n|m

ψ(n)χ(m/n)nk−1

 qm, c0 =

{
0 : kχ > 1

−Bk,ψ
2k : kχ = 1

. (B.8)

Here, k is the weight of the Eisenstein series, χ and ψ are primitive Dirichlet characters

with conductors kχ and kψ, respectively, and Bk,ψ is a Bernoulli number. (A Dirichlet

character mod M induces, in a natural way, a Dirichlet character mod N , where N is any

multiple of M ; a primitive character is a character which is not induced in such a way. The

modulus of a primitive character is called its conductor. Of particular importance is the

primitive principal character, which we denote by ε0: ε0(n) = 1 for all n. This is the unique

primitive character with conductor 1. For simplicity, we define Ek = Ek,ε0,ε0 ; we emphasize

that our choice of normalization is such that E2 has q-expansion E2(q) = − 1
24 +q+O(q2)).

We henceforth specialize to the case of weight k = 2. A basis for the space N2(Γ1(N))

of Eisenstein forms at level N is given by the functions Ek,χ,ψ(qt) where t is a posi-

tive integer such that kχkψt|N , χ(−1) = ψ(−1), and at least one of kχ and kψ dif-

fers from 1 (that is, at least one of the characters is non-principal), plus the functions

Et(q) = −24
[
E2(q)− tE2(qt)

]
for all divisors t > 1 of N . (The fact that Eisenstein series

associated to primitive characters span the space of Eisenstein forms is why we restricted

our attention to such characters, even though generalizations of Eisenstein series exist for

other characters. The restriction χ(−1) = ψ(−1) simply eliminates trivial functions that

vanish identically. We introduced the factor −24 in the definition of Et so that the q0 term

in its q-expansion is 1− t).

B.2.2 Eta products

Eta products [80] are functions of the following form:

η

[∏
t>0

tmt

]
(τ) =

∏
t>0

ηmt(tτ),

where mt ∈ Z are non-vanishing only for a finitely many t. The formal product on the left

hand side is not supposed to be evaluated — it is to be regarded as a symbol that specifies
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the eta product under consideration. (Nonzero values of mt may be either positive or

negative; mathematicians sometimes refer to such functions as eta quotients to differentiate

from the case where all mt’s are non-negative). We will be interested in a special class of

eta products, called holomorphic eta products. These are eta products whose q-expansions

at all cusps c contain no negative powers of qc; they are modular forms for Γ0(N) of weight∑
tmt/2 (generally with a multiplier system — see [81] for conditions for the multiplier to

be trivial), where N is the least common multiple of the integers in the set {t : mt 6= 0}.
See [80] for necessary and sufficient conditions for an eta product to be holomorphic. A

sufficient, but not necessary, such condition is mt ≥ 0 for all t; in particular, η(tτ) is a

modular form for Γ0(t) with weight 1/2. Since we are interested in modular forms of weight

2, we will always have
∑

tmt = 4.

Eta products will find two uses in the main text. First, we will frequently be able

to express the cusp forms that arise in terms of holomorphic eta products. In addition,

because eta products can be easily expanded about an arbitrary cusp, while Eisenstein

series with non-trivial characters cannot (as we explain in appendix B.3), we will replace

the latter functions with holomorphic eta products. Holomorphic eta products plus the

functions Et generally do not span the spaces N2(Γ̂g), but nevertheless these functions

suffice for us. This is not an accident: the spaces of relevance are not really N2(Γ̂g), but

rather the smaller spaces N ξe,g
2 (Γg) of modular forms for Γg with the correct multiplier.

Although we have not proven this, it seems likely that holomorphic eta products plus the

functions Et span N ξe,g
2 (Γg) for all g.

B.2.3 Newforms

Finally, we define certain newforms for various groups of the form Γ0(N). Strictly speaking,

we do not need most of these definitions, since as we show below most of these functions

may be (non-canonically) expanded in terms of holomorphic eta products. (We provide

these expansions in order to allow one to easily determine the behavior of these functions

at arbitrary cusps, using the methods of appendix B.3. These expansions were determined

by slightly modifying the MAGMA code of [81] in order to output a basis of weight 2

holomorphic eta products at level N). We nonetheless introduce these functions, first

because they provide a convenient shorthand notation, and second because their use enables

easy comparison of our results with those of [24, 59].

f20(q)=q − 2q3 − q5 + 2q7 + q9 + 2q13 + 2q15 − 6q17 + . . .

=
3

2
η[1−62134−55610−5201]− 15η[2−448] + 15η[10−4208] +

1

16
η[182−4]

− 15

2
η[112−4435−5101620−7] +

95

16
η[5810−4]

f21(q)=q − q2 + q3 − q4 − 2q5 − q6 − q7 + 3q8 + q9 + . . .

=
2

9
η[133−17321−1] + 18η[3−19321−1633] + 2η[133−121−1633]− 1

18
η[1−33109−3]

+ 2η[3−1739321−1]− 7

18
η[7−3211063−3] +

1

36
η[163−2] +

7

36
η[7621−2]− 3

4
η[3−296]

− 21

4
η[21−2636]
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f23(q)=q − q3 − q4 − 2q6 + 2q7 − q8 + 2q9 + 2q10 + . . . ,

f24(q)=q − q3 − 2q5 + q9 + 4q11 − 2q13 + 2q15 + 2q17 + . . .

=−41

9
η[2−448]+

5

18
η[488−4]− 13

36
η[182−4]+

80

9
η[8−4168]+25η[6−4128]+

3

2
η[12824−4]

+
5

4
η[386−4] + 48η[24−4488] + 6η[122−43−6612]− 8

3
η[11314−56−28812524−4]

f36(q)=q − 4q7 + 2q13 + 8q19 − 5q25 − 4q31 − 10q37 + . . .

=−6η[1−141679112−518−5366]+
4

3
η[2−448]+6η[18−4368]+

1

24
η[182−4]− 21

8
η[9818−4]

+
58

3
η[6−4128] +

11

12
η[386−4] +

2

3
η[266−2] + 3η[122−43−6612]− 5

3
η[3−66129218−4]

+
8

3
η[4612−2]

f40(q)=q + q5 − 4q7 − 3q9 + 4q11 − 2q13 + 2q17 + . . .

=−560

3
η[40−4808]+

3

2
η[1−62134−55610−5201]− 29

3
η[2−448]−3η[2−64138−510620−5401]

+
65

3
η[10−4208]− 1

6
η[488−4]− 35

6
η[20840−4] + 2η[1−12242518−1401]− 5

24
η[182−4]

+
185

24
η[5810−4]− 16

3
η[8−4168]

f44(q)=q + q3 − 3q5 + 2q7 − 2q9 − q11 − 4q13 + . . .

=−44

5
η[2−448]− 11

20
η[182−4]+

44

5
η[22−4448]+

11

20
η[11822−4]+

27

5
η[12112]+

12

5
η[42442]

+ 24η[22222] + 24η[1−22411−2224]− 6η[134−111−1443]

f48(q)=q + q3 − 2q5 + q9 − 4q11 − 2q13 − 2q15 + 2q17 + 4q19 + . . .

=
26

9
η[2−448]− 25

36
η[488−4] +

4

3
η[112−33−145648212−316−124−1481] +

4

9
η[182−4]

− 32

9
η[8−4168]− 14η[6−4128]− 1

4
η[12824−4] +

1

2
η[386−4]− 32η[24−4488]

− 6η[122−43−6612]+
1

3
η[162−38−1162]+3η[366−324−1482]− 4

3
η[284−56−412516124−2481]

f63,a(q)=q + q2 − q4 + 2q5 − q7 − 3q8 + 2q10 − 4q11 − 2q13 + . . .

=
4

3
η[133−121−1633]− 1

27
η[1−33109−3]+

4

3
η[3−1739321−1]− 7

27
η[7−3211063−3]+

1

27
η[163−2]

+
7

27
η[7621−2] + η[3−296] + 7η[21−2636]

f63,b(q)=q + q4 + q7 − 6q10 + 2q13 − 5q16 − 4q19 + . . .

=−η[133−121−1633] + η[3−1739321−1]

f72(q)=q + 2q5 − 4q11 − 2q13 − 2q17 − 4q19 + 8q23 − q25 + . . .

=4η[1−141679112−518−5366]− 44

9
η[2−448]+4η[18−4368]−4η[2−18112718124−536−5726]

+
1

3
η[488−4]− 3

2
η[36872−4]− 29

72
η[182−4] +

25

8
η[9818−4] +

32

3
η[8−4168]

− 8η[112−1318212−118−1361722]− 48η[72−41448] +
8

9
η[6−4128] +

7

6
η[12824−4]

+
5

18
η[386−4] +

112

3
η[24−4488]− 2

3
η[266−2] +

8

9
η[8624−2] + 3η[122−43−6612]

+
17

9
η[3−66129218−4]− 22

9
η[4612−2]− 8

3
η[11314−56−28812524−4]
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f80,a(q)=q + q5 + 4q7 − 3q9 − 4q11 − 2q13 + 2q17 + . . .

=
4160

9
η[40−4808]− 128

3
η[4−581316−620140−5806] +

1

6
η[1−62134−55610−5201]

+
8

3
η[112−346518−3161801]− 2η[2−448]− 1

3
η[2−64138−510620−5401]− 290

9
η[10−4208]

− 5

3
η[12234−28−1162]− 83

12
η[488−4] +

5

3
η[5210320−240−1802] + 2η[1−1264−351201]

− 95

36
η[20840−4]− 2

3
η[1−12242518−1401]− 15

8
η[182−4] +

40

3
η[112−4435−5101620−7]

− 125

72
η[5810−4]− 8

3
η[2−1428210116−1801]− 256

3
η[8−4168]

f80,b(q)=q3 − q5 − 3q7 + 2q9 + 2q11 + 2q13 − q15 + . . .

=−730

9
η[40−4808] +

58

3
η[4−581316−620140−5806] +

1

24
η[1−62134−55610−5201]

+
2

3
η[112−346518−3161801]− 11

3
η[2−448]+

13

6
η[2−64138−510620−5401]+

100

9
η[10−4208]

+
5

6
η[12234−28−1162] +

79

24
η[488−4]− 5

6
η[5210320−240−1802]− η[1−1264−351201]

+
365

72
η[20840−4]− 1

6
η[1−12242518−1401] +

97

96
η[182−4]− 35

3
η[112−4435−5101620−7]

+
25

288
η[5810−4] +

7

3
η[2−1428210116−1801] +

118

3
η[8−4168]

f144,a(q)=q + 4q7 + 2q13 − 8q19 − 5q25 + 4q31 − 10q37 − 8q43 + . . .

=9η[6−412518824−236−54811441] + 9η[3−1649112−318−324−1365481722144−1]

+ 6η[1−141679112−518−5366] +
2

3
η[2−448]− 12η[4112−516−124736672−51441]

+ 18η[18−4368] +
5

6
η[488−4]− η[112−33−145648212−316−124−1481] +

15

2
η[36872−4]

+
1

12
η[182−4] +

9

2
η[9818−4] +

32

3
η[8−4168]− 48η[72−41448]− 194

3
η[6−4128]

− 9

2
η[12824−4]− 61

12
η[386−4]− 80η[24−4488]− 2

3
η[266−2]− 8

3
η[8624−2]

− 6η[122−43−6612] +
10

3
η[3−66129218−4]− 16

3
η[4612−2]− 4η[366−324−1482]

+ 2η[11314−56−28812524−4]+18η[316−29112524−436−5728]+η[284−56−412516124−2481]

+ 4η[326−18−116−124348472−1144−1]

f144,b(q)=q5 − 2q7 + 2q11 − 2q13 − q17 + 6q19 − 4q23 + 2q25 + . . .

=
21

2
η[6−412518824−236−54811441] +

3

2
η[3−1649112−318−324−1365481722144−1]

− 6η[1−141679112−518−5366]− 35

6
η[2−448] + 12η[4112−516−124736672−51441]

− 191

2
η[18−4368] +

1

9
η[488−4]− 1

6
η[112−33−145648212−316−124−1481] +

23

4
η[36872−4]

− 11

16
η[182−4]− 197

16
η[9818−4]− 28

9
η[8−4168] + 2η[112−1318212−118−1361722]

+ 172η[72−41448]− η[228−112−116118236148172−1]− 1

18
η[163−2] +

403

3
η[6−4128]

− 8

9
η[16648−2] +

13

3
η[12824−4] +

71

12
η[386−4] +

512

3
η[24−4488] +

13

18
η[266−2]

+
26

9
η[8624−2]+16η[122−43−6612]−8η[3−66129218−4]+

59

9
η[4612−2]− 1

6
η[162−38−1162]
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− 3

2
η[9618−372−11442]− η[366−324−1482]− 7

3
η[11314−56−28812524−4]

− 27η[316−29112524−436−5728] +
5

6
η[284−56−412516124−2481]

− 2η[326−18−116−124348472−1144−1]−2η[213−1649112−316118−424−1365481722144−2]

− 2η[11316−1819−212−318224436548−172−41441]

B.3 Fourier expanding our basis at various cusps

In this section, we explain how to expand the modular forms defined in appendix B.2

about various cusps. In the main text, we have used physical arguments to determine the

behavior of modular forms at arbitrary cusps. In order to use this data to expand these

modular forms in terms of the basis described in appendix B.2, we need to know how to

expand the elements of this basis that are not cusp forms about all cusps. In addition, the

constraints from wall crossing require us to be able to expand our cusp forms about τ = 0.

B.3.1 Eisenstein series

Our strategy for determining the values of Eisenstein series at arbitrary cusps will be to

determine the transformation properties of these forms under SL(2,Z) transformations,

which allow us to map any cusp to infinity, where we know the function’s q-expansion.

The Eisenstein series transform trivially under the T operation that maps τ to τ + 1,

as is obvious from q = e2πiτ . Therefore, we only need to determine the series’ behavior

under S : τ 7→ −1/τ .23 (Actually, while this reasoning does end up working for the

functions Et, we will find that knowing the S and T transformations of the other Eisenstein

series is not sufficient to determine their general SL(2,Z) transformations. Hence, in the

main text we use holomorphic eta products instead of the Eisenstein series other than

Et. Nevertheless, since it requires little extra work and illustrates why we are modifying

our basis — and because the result for non-principal characters is, to the extent of our

knowledge, unpublished — we will determine the S transformation of all of the Eisenstein

series E2,χ,ψ). We specify the value of a character χ at −1 via the notation χ(−1) = (−1)aχ ,

where aχ ∈ {0, 1}; recall that for each Eisenstein series E2,χ,ψ we have aχ = aψ.

Our method, due to Hecke, is described in the proof of Theorem 4.3.5 in [79]. Define

coefficients cm(χ, ψ) as follows:

E2,χ,ψ =
∑
m≥0

cm(χ, ψ)qm.

We have cm(ε0, ε0) = σ1(m) for all m ≥ 1, where σ1(m) =
∑

d|m d = O(m2). Since (for

m ≥ 1) |cm(χ, ψ)| ≤ cm(ε0, ε0) for all χ, ψ, this shows that cm(χ, ψ) = O(m2) in this case

as well. Using these coefficients, we introduce two new functions:

g(s;χ, ψ) =
Γ(s)

(2π)s

∑
m≥1

cm(χ, ψ)

ms
,

23Readers may safely skip to the conclusion of this argument, equation (B.12).
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and

h(y;χ, ψ) =
∑
n≥1

cn(χ, ψ)e−2πny = E2,χ,ψ(iy)− c0(χ, ψ). (B.9)

The former converges absolutely for Re(s) > 3, while the latter converges for all positive

real y. The integral representation of the Γ function lets us relate these (when Re(s) > 3):

g(s;χ, ψ) =

∫ ∞
0

dt h(t;χ, ψ)ts−1.

Substituting t = ex shows that g(c + 2πiz;χ, ψ) is the Fourier transform of h(ex;χ, ψ)ecx

when c > 3. An inverse Fourier transform then yields

h(y;χ, ψ) =
1

2πi

∫ c+i∞

c−i∞
ds y−sg(s;χ, ψ) (c > 3, y > 0).

To make use of this equation, we find another expression for g. Note that∑
m≥1

cm(χ, ψ)

ms
=

∑
m≥1,n|m

ψ(n)χ(m/n)n

ms
=
∑
r,n≥1

ψ(n)

ns−1
· χ(r)

rs
= L(s− 1, ψ)L(s, χ).

The last equation introduced the L-function L(s, χ) associated to a Dirichlet character

χ, which may be analytically continued to an entire function, unless χ is principal, in

which case the L-function is the Riemann zeta function, which has a single pole at s = 1.

L(s, χ) has a simple zero at all negative even/odd integers if aχ is even/odd, so g(s;χ, ψ) =
Γ(s)
(2π)sL(s, χ)L(s − 1, ψ) has no poles at the negative integers, even though such poles are

present in Γ(s). These facts allow us to determine the residues we pick up as we move the

integration contour:

h(y;χ, ψ) =
1

2πi

∫ 4+i∞

4−i∞
ds y−sg(s;χ, ψ)

= Residues at a subset of s = 0, 1, 2 +
1

2πi

∫ −2+i∞

−2−i∞
ds y−sg(s;χ, ψ)

= Residues +
1

2πi

∫ 4+i∞

4−i∞
ds′y−2+s′g(2− s′, χ, ψ).

We now reap another benefit of our having expressed g in terms of L-functions: we may

take advantage of the functional equation (valid when χ is primitive)

Λ(s, χ) =

(
kχ
π

)s/2
Γ

(
s+ aχ

2

)
L(s, χ)⇒ Λ(1− s, χ̄) =

iaχk
1/2
χ

τ(χ)
Λ(s, χ).

In this equation, τ(χ) =
∑k

m=1 χ(m)e2πim/kχ is the Gauss sum associated to χ, which

satisfies kχ = |τ(χ)|2. This identity relates g(2− s, χ, ψ) to g(s; ψ̄, χ̄), yielding

h(y;χ, ψ) = Residues− 1

2πiy2kχ

√
τ(χ)τ(ψ)

τ(χ̄)τ(ψ̄)kχkψ

∫ 4+i∞

4−i∞
ds′ (ykχkψ)s

′
g(s′; ψ̄, χ̄)

= Residues−
h(1/(ykχkψ); ψ̄, χ̄)

y2kχ

√
τ(χ)τ(ψ)

τ(χ̄)τ(ψ̄)kχkψ
.
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There are four different cases that we need to analyze, as they have different residues: χ =

ψ = ε0, χ = ε0 6= ψ, χ 6= ε0 = ψ, and χ 6= ε0 and ψ 6= ε0. Plugging in these residues and

using (B.9) to replace h with an Eisenstein series yields the following transformation rules:

E2(iy) = − 1

4πy
− E2(i/y)

y2
,

E2,χ,ψ(iy) = −
E2,ψ̄,χ(i/(ykχkψ))

y2kχ

√
τ(χ)τ(ψ)

τ(χ̄)τ(ψ̄)kχkψ
(χ 6= ε0 or ψ 6= ε0).

Since both sides of these equations are holomorphic functions of τ = iy on the upper half

plane (away from cusps), these equations may be extended from the positive imaginary

axis to the whole upper half plane:

E2(τ) =
1

4πiτ
+
E2(−1/τ)

τ2
(B.10)

E2,χ,ψ(τ) =
E2,ψ̄,χ(−1/(τkχkψ))

τ2kχ

√
τ(χ)τ(ψ)

τ(χ̄)τ(ψ̄)kχkψ
(χ 6= ε0 or ψ 6= ε0). (B.11)

With the S and T transformations of E2 in hand, a simple inductive argument proves

that

E2(γτ) = (cτ + d)2E2(τ)− c

4πi
(cτ + d), (B.12)

for any γ =

(
a b

c d

)
∈ SL(2,Z). (We assume that this result holds for some γ and then

prove that it holds for Sγ, Tγ, S−1γ, and T−1γ. Since (B.12) obviously holds for the base

case where γ is the identity matrix, it follows that it holds for an arbitrary γ ∈ SL(2,Z).

Note that S = S−1 within the group PSL(2,Z) that acts on τ , so we do not need to do

extra work to determine the S−1 transformation of E2). Note that this reasoning does not

work in the case kχkψ 6= 1 — the extra 1/kχkψ in the argument of the Eisenstein series is

problematic.24

We now use (B.12) to determine the behavior of the functions Et near an arbitrary

cusp, c ∈ QP1. Our reasoning is similar to that used in the proof of Proposition 2.1 in [80].

If c = i∞, then we already know the answer: (B.8). In particular, Et(i∞) = 1 − t. Now,

we assume c ∈ Q. Write c = m/n, where m,n ∈ Z, n > 0, and gcd(m,n) = 1, so that

there exist r, s ∈ Z such that sn − rm = 1. Then, γ =

(
r −s
n −m

)
maps c to ∞. Define

c′ = tc = m′/n′ with m′, n′ ∈ Z, n′ > 0, and gcd(m′, n′) = 1, and find r′, s′ ∈ Z such that

24There is another method, called Hecke’s trick, that is more commonly employed to determine the

SL(2,Z) transformation of E2. This method involves relating E2 to the analytic continuation to s = 0 of

a non-holomorphic function that almost transforms under SL(2,Z) as a modular form of weight 2. Unfor-

tunately, this method also does not seem well-suited to more general characters, since the functions that

we analytically continue in these cases transform nicely only under a smaller group, Γ0(kχ, kψ) ⊂ SL(2,Z).
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s′n′ − r′m′ = 1. Define τ ′ = tτ and γ′ =

(
r′ −s′

n′ −m′

)
. We then have:

E2(γτ) = (nτ −m)2E2(τ)− n

4πi
(nτ −m)

E2(γ′τ ′) = (n′τ ′ −m′)2E2(τ ′)− n′

4πi
(n′τ ′ −m′)

= (n′2t/n2)
[
(nτ −m)2tE2(tτ)− n

4πi
(nτ −m)

]
E2(γτ)− n2

n′2t
E2(γ′τ ′) = (nτ −m)2 [E2(τ)− tE2(tτ)] = − 1

24
(nτ −m)2Et(τ)

Et(τ) =
−24

(nτ −m)2

[
E2(γτ)− n2

n′2t
E2(γ′τ ′)

]
. (B.13)

To get the q-expansion about c, we multiply by (nτ −m)2. The constant term can be read

off easily, since E2(i∞) = −1/24: a0(c; t) = 1− n2

n′2t . That is,

a0(c; t) = 1− g2

t
,

where we have defined

g = gcd(t, denominator(c)) =
n

n′
.

Higher-order terms in the q-series are only a bit harder to obtain. The case c = 0 enjoys a

nice simplification, as γ = γ′ =

(
0 −1

1 0

)
and γ(tτ) = (γτ)/t. Recalling that the expansion

parameter q0 about the cusp c = 0 is q0 = e2πiτ0/w0 , where w0 is the width of the cusp

c = 0 and τ0 = γτ , we find

Et;0(τ0) = −24

[
E2(qw0

0 )− 1

t
E2(q

w0/t
0 )

]
;

the 0 subscript labels the cusp about which we are expanding, as in (4.11):

Et(τ)dτ = Et;c(τc)dτc . (B.14)

More generally, define

α = γ′

(
t 0

0 1

)
γ−1 =

(
µ ν

ρ σ

)
.

This maps γτ to γ′τ ′; in particular, it fixes i∞. Therefore, ρ = 0. Multiplying these

matrices out, we also find that µ = g. Using µσ = detα = t 6= 0, we find that µ/σ = µ2/t

and ν/σ = µν/t, so that

Et;c(τc) = −24

[
E2(qwc

c )− g2

t
E2(e2πigν/tq

g2wc/t
c )

]
. (B.15)
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B.3.2 Eta products

In order to determine the q-expansion of an eta product at an arbitrary cusp, we employ a

technique similar to the one we employed in deriving (B.15). Fix some positive integer t.

Definine m,n, r, s, γ, and their primed counterparts as above (B.13). Also, as above, define

τ ′ = tτ and g = gcd(t, denominator(c)) = n/n′. We then have

η(γ′τ ′) = vη(γ
′)(n′τ ′ −m′)1/2η(τ ′) = vη(γ

′)

(
n′t

n

)1/2

(nτ −m)1/2η(tτ)

= vη(γ
′)

(
n′t

n

)1/2

(nτ −m)1/2η(tτ) (B.16)

⇒ η(tτ) = vη(γ
′)−1

( n

n′t

)1/2
(nτ −m)−1/2η(γ′τ ′). (B.17)

As in the derivation of (B.15), we can now find ν ∈ Z such that γ′τ ′ = (g2/t)γτ + gν/t =

(g2/t)τc + gν/t. Via a slight abuse of notation (since η[t1](τ) is not a weight 2 modular

form) we define

η[t1]c(τc) = vη(γ
′)−1

(g
t

)1/2
η

(
gν

t
+
g2τc
t

)
. (B.18)

The q-expansion of the eta product η[
∏
t t
mt ] about the cusp c is then obtained by raising

the functions (B.18) to the powers mt and multiplying them together; note that there will

be a γ′, g, and ν for each t. Since we are interested in holomorphic eta products, the q0
c co-

efficient in such a q-expansion comes from the leading terms in each of the functions (B.18):

a0(c; {mt}) =


∏
t>0

[
vη(γ

′
t)
−1
(gt
t

)1/2
eπigtνt/12t

]mt
:
∑

t
g2
tmt
t = 0

0 : else
. (B.19)

Here, γ′t is the γ′ matrix corresponding to t — that is, γ′t maps tc to i∞. We also denote

the g and ν values corresponding to a given t by gt and νt, respectively.

B.3.3 Arbitrary cusp forms

We now explain how to determine the expansions of arbitrary cusp forms for Γ0(N) about

0. (In most cases of interest to us, this is easily done using the techniques of the previous

subsection, since we can write most of our cusp forms in terms of eta products. However,

we present a method that works for all of our cusp forms). The tool that enables this

is the Fricke involution W =

(
0 −1

N 0

)
, which has three nice properties: it maps ∞ to

0 (when acting on Ĥ), it linearly maps the cuspidal subspace of Γ0(N) into itself (when

acting on F), and it squares to Nγ for some γ ∈ Γ0(N). In terms of its action on cusp

forms for Γ0(N), this last property means that W 2 = 1. We may therefore decompose

an arbitrary cusp form f into a sum of cusp forms f+ + f−, where the W eigenforms f±
reside in the eigenspaces with eigenvalues ±1. (Software packages such as MAGMA enable

one to determine bases of Fricke eigenforms. In particular, we note that a holomorphic eta
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product η[
∏
t t
mt ] where t|N whenever mt 6= 0 is a Fricke eigenform iff mN/t = mt for all

t|N , and in this case the Fricke eigenvalue is always −1 [80]). More explicitly, we have

f±(τ) = ± N

(Nτ)2
f±(−1/Nτ) = ± 1

Nτ2
f±(τ0/N) ,

where τ0 = −1/τ approaches ∞ as τ → 0. As usual, in order to determine the q-expansion

of these forms about 0, we strip off the factor of 1/τ2:

f±;0(τ0) = ± 1

N
f±(τ0/N) = ± 1

N
f±(q

w0/N
0 ) = ± 1

N
f±(q0) , (B.20)

where the last equality follows from the fact that we always have w0 = N .

We can similarly expand about cusps of the form e/N where e|N and gcd(e,N/e) =

1 by replacing Fricke involutions in this argument with Atkin-Lehner involutions We =(
e b

N de

)
with integers b, d such that de − bNe = 1, but in general this reasoning does

not allow us to expand about arbitrary cusps. (Since 1 is always Γ0(N) equivalent to

0, the argument with the Fricke involution is really the case e = N). More explicitly,

combining the logic of the previous paragraph with that of the previous sections, we define

the SL(2,Z) matrix γe =

(
de −b
−N/e 1

)
that maps e/N to ∞ and the GL+(2,R) matrix

α = W−1
e γ−1

e =

(
1/e 0

0 1

)
that fixes ∞ in order to obtain

fe,±;e/N (τe/N ) = ±1

e
fe,±(ατe/N ) = ±1

e
fe,±(τe/N/e) = ±1

e
fe,±(q

we/N/e

e/N ) = ±1

e
fe,±(qe/N ) ,

(B.21)

where fe,± are eigenforms for We, which satisfy

fe,±(τ) = ±e(Nτ + de)−2fe,±(Weτ) ,

and τe/N = γeτ .

As a useful aside, we note that although the functions Et are not cusp forms, they are

nonetheless eigenforms with eigenvalue −1 for the Fricke operator defined with N = t [80].

Thus, the same arguments as above imply that

Et;0(τ0) = −1

t
Et(qw0/t

0 ) . (B.22)

(We leave w0 arbitrary, as it depends on the SL(2,Z) subgroup for which we are viewing

Et as being a modular form).

C Charges in the case λ > 1

In this section, we describe the quantization of the electric-magnetic charges of a CHL

model associated to a symmetry (δ, g), where g is a symmetry of an NLSM on K3 that
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does not satisfy the level-matching condition (see section 3.3 and [42]). Furthermore, we

derive, for this class of models, the possible channels of decay of a 1/4 BPS dyon into

a pair of 1/2 BPS states and compare the expected domain walls with the poles of the

corresponding function 1/Φg,e.

The lattice of electric-magnetic charges (m̂ m′ ŵ w′|Ŵ W ′ M̂ M ′)t was derived in [42]

and is given by the Z-span of the following 8 vectors

1

0

0

0

0

0

0

0

0

1/N

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

E/Nλ
0

1

0

0

0

0

0

−E ′/Nλ
0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

EE ′/Nλ
0

0

0

0

1

0

EE ′/λ
y

−E ′/λ
0

0

−E/λ
0

N

(C.1)

(we adapted the results of [42] to the conventions of this paper). Here, E ′ and λ determine

the failure of the level matching condition for the g-twisted sector of the K3 NLSM (see

eq. (3.21)), while E plays the same role for the level matching condition of the g-twisted

sector in the heterotic frame

(L0 − L̄0)|Hg ∈
E
Nλ

+
1

N
Z (heterotic) . (C.2)

As described in section 5, the ground level of the heterotic g-twisted sector is given by the

constant −A/(24Nλ). Observing that for all g with λ > 1 one has A = 24, we find

E ≡ −1 (mod λ) for λ > 1 . (C.3)

For these CHL models, a D1-D5 system analogous to the one considered in section 2.2

has charges 
m̂

m′

ŵ

w′

 =


0

−nλ+1−mE ′+E ′
Nλ

0

−1

 ,


Ŵ

W ′

M̂

M ′

 =


m

−l
1

0

 , (C.4)

l,m, n ∈ Z, so that

Q2 = 2
nλ− 1− E ′(m− 1)

Nλ
, P 2 = 2m, P ·Q = l . (C.5)

Comparing with the λ = 1 case, the only difference is the complicated quantization of the

momentum m′ along S1. This quantization is necessary in order to get a non-zero multi-

plicity d(Q2/2, P 2/2, P ·Q), as follows from the condition that the exponents ĉgm,n(mnNλ , l) in
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the infinite product (5.10) vanish unless n− E ′m ≡ 0 (mod λ). In practice, we can simply

consider the set of charges
m̂

m′

ŵ

w′

 =


0

−n′/Nλ
0

−1

 ,


Ŵ

W ′

M̂

M ′

 =


m

−l
1

0

 (C.6)

for all l,m, n′ ∈ Z; the corresponding multiplicity will be zero unless n′ is of the form

nλ− 1− E ′(m− 1) for some n ∈ Z.

Let us now determine the possible decay channels of 1/4 BPS dyon of charges

(
Q

P

)

into a pair of 1/2 BPS states of charges

(
Q1

P1

)
and

(
Q2

P2

)
. Following the same reasoning

as in section 2, we obtain

(
Q1

P1

)
=

(
adQ+ dbP

−caQ− cbP

)
=



dbm

−adn′/Nλ− dbl
db

−ad
−cbm

can′/Nλ+ cbl

−cb
ac


(C.7)

(
Q2

P2

)
=

(
−bcQ− bdP
acQ+ adP

)
=



−dbm
bcn′/Nλ+ dbl

−bd
bc

adm

−acn′/Nλ− adl
ad

−ac


. (C.8)

The condition that
(
Q1

P1

)
and

(
Q2

P2

)
are contained in the lattice of electric-magnetic charges

gives

ad ∈ Z bc ∈ Z ac ∈ NZ bd ∈ 1

λ
Z ,

acE ′

Nλ
+ bd ∈ Z . (C.9)

We can use the rescaling (
a b

c d

)
→

(
xa xb

c/x d/x

)
(C.10)
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to make a and b integral and coprime (or equal to 0 and ±1, in case one of the two vanishes).

This implies that also c and λd are integral.

For each given decomposition labeled by a, b, c, d as above, the location of the corre-

sponding wall can be found as described in section 2.3.25 As a final result, the walls of

marginal stability are given by the equation (α,Z) = 0, where α is still given by (2.40)

and a, b, c, d satisfy

a, b, c ∈ Z, d ∈ 1

λ
Z ad− bc = 1 ac ∈ NZ

acE ′

Nλ
+ bd ∈ Z . (C.11)

These conditions are not what one would naively expect just from replacing N by Nλ in

the λ = 1 case.

The zeroes and poles of 1/Φg,e are located at

mσ + n
τ

Nλ
+ lz = k (C.12)

for m,n, l, k ∈ Z with 4mnNλ − l
2 < 0 and have multiplicity ĉgm,n,l(4

mn
Nλ − l

2). Noting that for

m ≡ 0 (mod Nλ) the only pole is given by ĉ0,0,1(−1) = 2 and using the isomorphisms (3.28),

we find that there is a special set of poles

Nrσ +
s

λ
τ + lz = k (C.13)

where r, s, l, k ∈ Z with 4Nr sλ − l2 = −1 and s ≡ −E ′r (mod λ) with multiplicity

ĉgNr,−NrE ′,1(−1) = 2. These poles occur for all g of order N and multiplier λ and cor-

respond to walls of equation(
Z,

(
2 sλ −l
−l 2Nr

))
= 0 r, s, l ∈ Z, 4Nr

s

λ
− l2 = −1, s ≡ −E ′r (mod λ) . (C.14)

Let us show that the walls (C.14) are in one to one correspondence with the expected

physical walls. Given a ‘physical’ wall labeled by a, b, c, d satisfying (C.11), it is easy to see

that one obtains a wall of the form (C.14) by setting

r :=
ac

N
l := ad+ bc s := λbd . (C.15)

Vice versa, consider a wall of the form (C.14). Let us first assume that s 6= 0, and set

t :=
l − 1

2
, b := gcd

(
s

gcd(λ, s)
, t

)
, d :=

gcd(λ, s)

λ
gcd

(
s

gcd(λ, s)
, t+ 1

)
, (C.16)

as well as

a :=
t+ 1

d
, c :=

t

b
. (C.17)

Then, it is clear that a, b, c, λd ∈ Z and ad− bc = 1. Furthermore,

bd =
gcd(λ, s)

λ
gcd

(
s

gcd(λ, s)
, t(t+ 1)

)
=

gcd(λ, s)

λ
gcd

(
s

gcd(λ, s)
,
Nrs

λ

)
=
s

λ
, (C.18)

25For this derivation to hold in the case λ > 1, it is crucial that the covariance or invariance properties

of the scalar product, the central charge vector and the BPS mass hold for the whole real group SL(2,R)

and not just for SL(2,Z).
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where the first equality follows because t and t+1 are coprime, the second from the relation
Nrs
λ = l2−1

4 and the last because s
gcd(λ,s) is a divisor of Nrs

λ . Finally,

ac =
abcd

bd
=
t(t+ 1)

s/λ
= Nr , (C.19)

which shows that a, b, c, d satisfy all congruences in (C.11) and therefore label a ‘physical’

wall equivalent to (C.14). When s = 0, the relations (C.14) imply l = ±1. For l = 1, we set

a = d = 1, b = 0 c = Nr, (C.20)

while for l = −1 we set

a = Nr, b = −1, c = 1, d = 0, (C.21)

and in both cases a, b, c, d label a physical wall equivalent to (C.14).

Open Access. This article is distributed under the terms of the Creative Commons
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