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Abstract

Objectives

Although monotherapy (mART) effectiveness in maintaining viral suppression and CD4 cell

count has been extensively examined in HIV-1-infected patients, its impact on HIV-1 reser-

voir, immune activation, microbial translocation and co-infection with Epstein-Barr Virus

(EBV) is unclear.

Methods

This retrospective study involved 32 patients who switched to mART; patients were studied

at baseline, 48 and 96 weeks after mART initiation. Thirty-two patients who continued com-

bined antiretroviral therapy (cART) over the same period of time were included in the study.

Markers of HIV-1 reservoir (HIV-1 DNA and intracellular HIV-1 RNA) were quantified by

real-time PCR. Markers of T-(CD3+CD8+CD38+) and B-(CD19+CD80/86+ and

CD19+CD10-CD21lowCD27+) cell activation were evaluated by flow cytometry. Plasma lev-

els of microbial translocation markers were quantified by real-time PCR (16S ribosomal

DNA and mitochondrial [mt]DNA) or by ELISA (LPS and sCD14). EBV was typed and quan-

tified by multiplex real-time PCR.

Results

At baseline, no differences were found between mART and cART groups. Three (10%)

mART-treated patients had a virological failure vs none in the cART group. Levels of HIV-1

DNA, intracellular HIV-1 RNA and EBV-DNA remained stable in the mART group, while

decreased significantly in the cART group. Percentages of T- and B-activated cells signifi-

cantly increased in the mART-treated patients, while remained at low levels in the cART-

treated ones (p = 0.014 and p<0.001, respectively). Notably, levels of mtDNA remained sta-

ble in the cART group, but significantly rose in the mART one (p<0.001).
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Conclusions

Long-term mART is associated with higher levels of T- and B-cell activation and, conversely

to cART, does not reduce the size of HIV-1 reservoir and EBV co-infection.

Introduction

The standard recommended regimens for the treatment of HIV-1 infection consists in a combi-

nation of three antiretroviral agents; a boosted protease inhibitor (PI) or non-nucleoside reverse

transcriptase inhibitor (NNTRI) is, in fact, commonly prescribed in combination with two

reverse transcriptase inhibitors (NRTI). This combined antiretroviral therapy (cART) has dra-

matically changed the course of HIV-1 infection in a chronic disease, requiring lifetime HIV-1

therapy. The prolonged use of cART is nevertheless associated with side effects, including meta-

bolic effects, lipodystrophy, drug-drug interactions, and long-term adherence problems.

Aiming to reduce the risk of long-term toxicity, to enhance medication adherence, to

improve quality of life, and to contain treatment costs, several studies have been and are being

carried out to examine the effectiveness of simplified strategies based on a protease inhibitor

monotherapy (mART). The effect of mART on plasma viremia and CD4 cell count has been

extensively studied [1–7]. Several studies have reported a higher proportion of mART-treated

patients who have experienced viral rebound; however, the plasmaviremia was rapidly and eas-

ily suppressed by re-introduction of cART and without apparent long-term consequences [2,

4–7]. Conflicting results have nevertheless been reported regarding effectiveness of mART in

controlling HIV-1 reservoirs or in penetrating “sanctuaries” such as the central nervous sys-

tem, linked to a high risk of neurocognitive impairment [8,9]

The reduced control of HIV-1 replication in mART-treated patients may be due to smaller

reduction in the size of viral reservoirs and/or increased activation/inflammation status, a hall-

mark of HIV-1 infection [10]. However, only a few studies have investigated these aspects in

mART-treated patients. Two studies reported no significant differences in HIV-1 DNA levels

between mART and cART, despite a higher proportion of intermittent viremia in the first

group of patients [11,12]. An other study suggested that monotherapy per se does not impact

HIV-1 DNA load [13].

Little is known about the immune activation of T cells. No difference was found in

HLA-DR T-cell expression between mART- and cART-treated patients [14], while an

increased cellular expression of HLA-DR+CD38+ on CD8+ T-cell has been reported in patients

with virological failure [15]. Although immune activation may also result in chronic B-cell

stimulation and expansion of EBV-infected cells [16], no studies have simultaneously investi-

gated size of viral reservoirs, T- and B-cell activation and dynamics of EBV infection in

mART-treated patients.

The aim of the present study was to evaluate the impact of monotherapy on HIV-1 reser-

voir, immune activation, microbial translocation and EBV co-infection in HIV-1 infected

patients who were switched from cART to mART.

Materials and methods

Patient characteristics

In this retrospective study, a total of 64 (43 male and 21 female) HIV-1-infected patients

attending the Infectious Diseases Division of Rovigo Hospital were studied. Thirty-two
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patients >18 year old with documented history of HIV-1 infection, stable cART, undetectable

plasmaviremia (HIV-1 RNA <50 copies/ml) and good immunological status (CD4 >350 cell/

μl and nadir CD4 >100 cell/μl) for at least 6 months were switched from cART to mART with

one PI (Lopinavir/ritonavir). The main exclusion criteria from mART were previous virologi-

cal failure during PI-based treatment, pregnancy, no-adherence to outpatient appointments,

positivity to Hepatitis B antigens, and presence of mutations conferring resistance to PI (i.e

32I, 33F, 46 I/L, 47 A/V, 50V, 54A/L/M/S/T/V, 76V, 82A/F/S/T, 84V, 90M). All the patients

underwent standard clinical and laboratory monitoring. Samples collected at baseline (i.e.,

within one week pre-switch from cART to mART) and at 48 and 96 weeks after mART initia-

tion were studied. A control group of 32 patients, who had been receiving an unmodified PI-

based cART regimen over the same period of time, was included in the study. Samples from

these patients who continued cART were collected at baseline (i.e., at entry into the study) and

at 48 and 96 weeks follow-up. The study was performed in accordance with the Helsinki Decla-

ration and was approved by the Ethics Committee of the Istituto Oncologico Veneto, Prot.

12855, 2011/57.

Sample collection

Peripheral blood mononuclear cells (PBMC) were obtained using Ficoll Hypaque gradient

separation. PBMC and plasma samples were cryopreserved and respectively stored in liquid

nitrogen and at -80˚C until they were used.

Quantification of HIV-1 reservoir

Levels of HIV-1 DNA were quantified in PBMC by real-time PCR, as previously described

[17]. The results were expressed as HIV-1 DNA copies/106 PBMC.

To quantify intracellular HIV-1 RNA, RNA was extracted from 3x106 PBMC using Trizol

Reagent (Invitrogen, Carlsbad, CA, USA). Five hundred μl of Trizol and 7 μl of QS, an internal

control (Roche Diagnostic Systems, Branchburg, NJ), were added to the PBMC. The samples

were incubated with 200 μl of chloroform for 15 min on ice. After centrifugation, RNA was

recovered and stored at -20˚C overnight with cold isopropanol. The samples were then centri-

fuged and the supernatant was removed. Each RNA pellet was then resuspended with 75 μl of

elution buffer heated at 70˚C. HIV-1 RNA levels were determined using the Amplicor HIV-1

Monitor Test (Roche Diagnostic Systems, Branchburg, NJ) and the Cobas TaqMan48 (Roche

Diagnostic Systems, Branchburg, NJ) [18,19]. After the dilution factor was applied, the results

were expressed as HIV-1 RNA copies/106 cells.

Flow cytometry analysis

Approximately 250,000 PBMC were stained with monoclonal antibodies (Becton-Dickinson,

San Diego, CA, USA): anti-CD3 [fluorescein isothiocyanate (FITC)], anti-CD8 [peridinin

chlorophyll protein (PerCP)] and anti-CD38 [phycoerythrin (PE)]; and anti-CD19 [peridinin

chlorophyll protein (PerCP)], anti-CD10 [phycoerythrin (PE)-TexasRed], anti-CD21 [fluores-

cein isothiocyanate (FITC)], anti-CD27 [phycoerythrin (PE)-Cy7], anti-CD80 [allophycocya-

nin-H7 (APC-H7)] and anti-CD86 [allophycocyanin (APC)]. Appropriate isotype controls

(mouse IgG1-PE and mouse IgG2b-APC) were used to evaluate non-specific staining. All the

samples were analyzed by LSR II cytofluorimeter (Becton-Dickinson). A total of 50,000 events

was collected in the lymphocyte gate using morphological parameters (Forward and Side scat-

ter). Data were processed with FACSDiva™ Software (Becton-Dickinson) and analysed using

Kaluza1 Analyzing Software v.1.2 (Beckman Coulter, Fullerton, CA, USA).
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Quantification of microbial translocation markers

A quantitative method based on real-time PCR assay was performed to quantify 16S ribosomal

DNA (rDNA) with the primer pair and probe as previously described [18]. Results were

expressed as 16S rDNA copies/μl plasma. Plasma levels of mitochondrial DNA (mtDNA) were

quantified by real-time PCR using primer pair and probe as already described [20]; results

were expressed as mtDNA copies/μl plasma. Levels of human soluble CD14 (sCD14) were

determined by Quantikine Human sCD14 Immunoassay (R&D Systems Inc. Minneapolis,

MN, USA), and results were expressed as sCD14 pg/ml plasma. Lipopolysaccharide (LPS) was

determined in plasma samples diluted five-fold with endotoxin-free water and then heated to

70˚C for 10 min to inactivate plasma proteins; LPS was then quantified using a chromogenic

assay (Limolus Amebocyte Lysate QCL-1000), as previously reported [21], and results were

expressed as LPS pg/ml plasma.

EBV-DNA typing and quantification

A quantitative method, based on multiplex real-time PCR assay, was employed to quantify

EBV type 1 and EBV type 2 in PBMC, as described elsewhere [22]. The results were expressed

as EBV-DNA copies/106 cells.

Statistical analyses

Samples in which HIV-1 DNA and EBV-DNA were under the detection value (10 copies/106

cells), were assigned the value of 10 to include them in the statistical analysis. The non-

parametric Wilcoxon’s rank sum test was used to verify the difference between cART and

mART at baseline and during follow-up, whereas the paired comparisons within each therapy

group between baseline measures and repeated measurements during follow-up were per-

formed using the Wilcoxon’s signed rank test. The level of statistical significance was set at

p<0.05 and no correction for multiple comparisons were applied. All statistical tests were two-

sided. Data were analyzed using SAS version 9.2.

Results

Characteristics of study population

Patient characteristics are listed in Table 1. At baseline the demographic and clinical character-

istics of the two patients groups were similar. The majority of the patients had a long history of

HIV-1 infection and cART treatment; 22(69%) cART and 24(75%) mART patients were taking

emtricitabine/tenofovir, and 10(31%) cART and 8(25%) mART patients were taking abacavir/

lamividune. Patients were with undetectable HIV-RNA for a median time of 41 (cART group)

and 48 months (mART group). The patients were switched from cART to mART because of

adverse events (41%) or to simplify treatment approach (59%).

During follow-up, no cART patients had virological failure, while one mART-treated

patient had one HIV-1 RNA blip (defined as a transitory episode of HIV-1 RNA >50 copies/

ml preceded and followed by plasmaviremia <50 copies/ml), one mART-treated patient had

two HIV-1 RNA blips and 3 mART-treated patients had virological failure (defined as two

consecutive HIV-1 RNA >50 copies/ml), at week 12 (1 patient) and at week 36 (2 patients) of

follow-up. The patients regained virological control by adding the previous NRTI-backbone

and were excluded from the mART group when they were returned to cART. No significant

adverse effects and no deaths were observed in the two groups of patients during the study

period.
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HIV-1 reservoir

At baseline, the median (interquartile range-[IQR]) levels of HIV-1 DNA and intracellular

HIV-1 RNA were similar in the two groups (Fig 1A and 1B). Overall, beyond individual

patients’ variability, HIV-1 DNA levels remained stable in the mART group throughout the

study period (24 [10–112], 55 [16–169], and 33 [10–186] copies/106 PBMC at baseline (T0),

week 48 (T48), and week 96 (T96), respectively; p = 0.778), but slightly decreased in the cART

group (16 [10–137], 31 [10–59], and 10 [10–10] copies/106 PBMC at T0, T48, and T96, respec-

tively; p = 0.050) (Fig 1A). The intracellular HIV-1 RNA levels did not significantly vary in the

mART group (680 [161–1318], 441 [102–1374], and 1035 [552–1836] copies/106 PBMC at T0,

T48, and T96, respectively; p = 0.733), while they decreased in the cART group (835 [385–

1274], 595 [184–1261], and 358 [204–753] copies/106 PBMC at T0, T48, and T96, respectively;

p = 0.037) (Fig 1B). At the end of follow-up, the mART-treated patients had significantly

higher levels of HIV-1 DNA and intracellular HIV-1 RNA with respect to the cART–treated

patients (Fig 1A and 1B).

Table 1. Characteristics of patients at baseline.

mART (n = 32) cART (n = 32)

Age, years* 45 (39–50) 45 (37–52)

Gender, n (%)

Male 18 (56) 25 (78)

Female 14 (44) 7 (22)

Ethnicity/race, n (%)

Caucasian 28 (88) 31 (97)

African 2 (6) 1 (3)

Asian 2 (6) 0

Risk behavior for HIV-1 infection, n (%)

MSMa 10 (31) 18 (56)

ETb 19 (59) 11 (34)

TDc 3 (14) 3 (14)

Duration of HIV-1 infection-year* 7 (5–15) 6 (4–15)

CDC stage, n (%)

A 23 (72) 20 (63)

B 8 (25) 11 (34)

C 1 (3) 1 (3)

Duration of cART-year* 6 (5–13) 5 (3–13)

Tenofovir-based cART, n (%) 24 (75) 23 (72)

Zenit HIV-1 RNA (log10 copies/ml)* 4.95 (4.55–5.50) 4.88 (4.51–5.04)

HIV-1 RNA undetectable, n (%) 32 (100) 32 (100)

Virological suppression (months) 48 (36–54) 41 (24–60)

Nadir CD4+ (cells/μl)* 298 (215–410) 327 (267–450)

%CD4* 18 (14–23) 16 (13–23)

CD4 count (cells/μl)* 690 (625–952) 634 (455–1051)

*Data are expressed as median (interquartile range- IQR).
aMSM: men who have sex with men.
bET: heterosexual.
cTD: drug addicted.

https://doi.org/10.1371/journal.pone.0185128.t001
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Immune activation

At baseline, percentages of activated T cells (CD3+CD8+CD38+) [21,23] were similar in the

two groups (Fig 2A). The activated T cells significantly increased in the mART group during

the follow-up (3.58 [2.31–4.60], 3.73 [2.36–5.33], and 4.46 [3.23–6.79] %CD3+CD8+CD38+ at

T0, T48, and T96, respectively; p = 0.014), but they did not vary significantly in the cART-

Fig 1. HIV-1 reservoir levels in mART-treated and cART-treated patients. HIV-1 DNA (A) and intracellular HIV-1 RNA (B) levels in mART and cART

patients at baseline, at 48 and 96 weeks of follow-up. Each symbol represents one patient. The lines indicate the median and the 25–75th percentiles.

https://doi.org/10.1371/journal.pone.0185128.g001
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Fig 2. T- and B-cell immune activation levels in mART-treated and cART-treated patients. Percentages of activated T

cells (A), B cells (B), and memory B cells (C) in mART and cART patients at baseline, at 48 and 96 weeks of follow-up. Each

symbol represents one patient. The lines indicate the median and the 25–75th percentiles.

https://doi.org/10.1371/journal.pone.0185128.g002
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treated patients (3.72 [1.80–4.38], 2.81 [2.03–4.74], and 3.41 [1.54–4.85] %CD3+CD8+CD38+

at T0, T48, and T96, respectively; p = 0.870) (Fig 2A). At the end of follow-up, percentages of

activated T cells were significantly higher in the mART-treated than in cART-treated patients

(Fig 2A).

At baseline, activated B cells (CD19+CD80/86+) and activated memory B cells

(CD19+CD10-CD21lowCD27+) [24] were similar in the two groups (Fig 2B and 2C). During

follow-up, the percentage of activated B cells increased in the mART-treated patients (8.63

[6.67–10.75], 9.96 [8.08–14.06], and 12.79 [9.76–16.74] %CD19+80/86+ at T0, T48, and T96,

respectively; p<0.001), while they remained fairly stable within cART patients (8.38 [6.61–

11.11], 9.38 [7.61–13.19], and 10.68 [8.79–12.59] %CD19+80/86+ at T0, T48, and T96 respec-

tively; p = 0.409) (Fig 2B). A similar trend was observed for activated memory B cells. Indeed,

percentages of these cells significantly increased in the mART group (12.56 [7.15–19.78], 17.64

[10.52–22.53], and 20.65 [15.42–27.59] %CD19+CD10-CD21lowCD27+ at T0, T48, and T96,

respectively; p<0.001), while they remained fairly constant in the cART group (14.82 [9.33–

17.24], 14.46 [11.78–21.24], and 15.09 [12.40–17.94] %CD19+CD10-CD21lowCD27+ at T0,

T48, and T96, respectively; p = 0.394) (Fig 2C). At the end of follow-up, the percentages of acti-

vated and activated memory B cells tended to be higher in mART-treated than in cART-

treated patients (Fig 2B and 2C).

Microbial translocation

At baseline, there were no differences in any of the microbial translocation markers studied

(mtDNA, 16S rDNA, sCD14 and LPS) (Fig 3A, 3B, 3C and 3D). During follow-up, the levels of

mtDNA significantly increase in the mART-treated patients (1254 [271–2546], 1221 [425–

3153], and 4482 [2170–5213] copies/μl at T0, T48, and T96, respectively; p<0.001), while they

did not significantly vary in the cART-treated patients (2030 [377–4424], 2213 [637–8104],

and 2858 [983–4352] copies/μl at T0, T48, and T96, respectively; p = 0.940) (Fig 3A). No signif-

icant changes were observed in the other markers during the follow-up (Fig 3B, 3C and 3D).

At the end of follow-up, mART-treated patients had significantly higher levels of mtDNA than

cART-treated patients (Fig 3A).

Co-infection with EBV-DNA

At baseline, the levels of intracellular EBV-DNA were similar in the mART and cART groups

(Fig 4). During follow-up, the levels of EBV-DNA did not vary within the mART group (589

[285–1558], 433 [10–1190], and 550 [12–1459] copies/106 PBMC at T0, T48, and T96, respec-

tively; p = 0.725), while they decreased significantly in the cART-treated patients (398 [156–

1470], 200 [140–565], and 24 [10–270] copies/106 PBMC at T0, T48, and T96, respectively;

p = 0.006) (Fig 4). At the end of follow-up, levels of EBV-DNA was higher in the mART than

in cART group (Fig 4).

Discussion

A body of evidence indicate that mART in HIV-1-infected patients is associated to a higher

rate of intermittent viremia and viral rebound with respect to that observed in cART-treated

patients [2, 4–7]. Although this would suggest that mART has a lower impact on HIV-1 reser-

voir, the data produced using HIV-1 DNA load on PBMC as a marker of HIV-1 reservoir size

are controversial [11–13].

In the present study, the HIV-1 reservoir size was estimated by measuring both HIV-1

DNA and intracellular HIV-1 RNA, a marker of ongoing viral activation/replication that may

continuously refill the viral reservoir. During the study period, beyond individual patients’
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Fig 3. Circulating markers of immune activation levels in mART-treated and cART-treated patients. mtDNA (A), 16S rDNA (B), sCD14 (C) and LPS

(D) levels in mART and cART patients at baseline, at 48 and 96 weeks of follow-up. Each symbol represents one patient. The lines indicate the median

and the 25–75th percentiles.

https://doi.org/10.1371/journal.pone.0185128.g003

Fig 4. EBV-DNA levels in mART-treated and cART-treated patients. Levels of EBV-DNA in mART and cART patients at baseline, at 48 and 96 weeks

of follow-up. Each symbol represents one patient. The lines indicate the median and the 25–75th percentiles.

https://doi.org/10.1371/journal.pone.0185128.g004
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variability, we found an overall slight decline of both markers in the cART group, whereas they

remained fairly stable in the mART-patients. Thus, while cART treatment seemed to continu-

ously reduce the size of the HIV-1 reservoir, confirming previous findings [25], a subliminal

HIV-1 replication may contribute to refilling the HIV-1 reservoir in mART-treated patients.

Chronic immune activation/inflammation is a hallmark of HIV-1 pathogenesis [10]. The find-

ings that the percentage of both activated T and B cells rises in mART-treated patients, sup-

ports the hypothesis that mART has a lower impact on the HIV-1 reservoir. Since memory T

cells are the preferential target for HIV-1 their activation may contribute to maintaining the

viral reservoir by both activating HIV-1 replication and expanding latently infected cells [26].

A potential limitation of this study was the sole use of the CD38 marker on CD8 T cells to esti-

mate their activation, and, unfortunately, the limited number of cells did not allow us to ana-

lyse the status of CD4 T cell activation/proliferation, even with other markers.

The activation of T and B cells is mainly triggered by microbial products. Indeed, patho-

gen-associated molecular patterns (PAMPs) and damage-associated molecular patterns

(DAMPs) induce a potent innate immune response through the engagement of several Toll-

like receptors (TLRs), which lead to T and B activation [27]. Notably, we did not find signifi-

cant changes in PAMPs levels neither in the cART, as expected, nor in the mART-treated

patients. Thus, the control of HIV-1 replication induced by mART may be sufficient to prevent

the massive HIV-1-induced T-cell depletion that causes damage to the intestinal mucosa, pro-

moting translocation of microbial products into circulation [27,28]. Interestingly, we found

that in mART-treated patients there was an increase in levels of mtDNA. It has been suggested

that NRTI-based cART is associated to diminished mitochondrial functions [29], as these

drugs may interfere with mtDNA polymerase γ and interrupt mtDNA replication, leading to

its depletion [30]. The presence of NRTIs may thus explain why cART-treated patients have

lower mtDNA levels than patients treated only with PI. Once released from cells, mtDNA lev-

els, significantly higher in mART-treated than in cART-treated patients, may substantially

contribute to stimulating T and B cells.

To our knowledge, this is the first time that activation of B cells has been investigated in

mART-treated patients. Chronic B-cell stimulation and expansion of EBV-infected B-cells

[31–34] may increase the risk of EBV-related malignancies [16, 35, 36]. The hyperactivation

of B cells by HIV-1 is characterized by a higher expression of activation markers (CD80 and

CD86) [31] and of activated memory B cells (CD21lowCD27+ B cells) which have undergone

HIV-1-induced activation and differentiation to plasmablasts [24]. We found that levels of

activated B-cell significantly increased over time in the mART-treated patients, while no dif-

ferences were noted in the cART-treated ones. Moreover, while levels of EBV-DNA

decreased in the cART group, they remained stable in the mART group. Thus, the control of

immune activation status seems to play a role not only in reducing HIV-1 reservoir, but also

in lowering EBV-DNA levels. By contrast, the mART, which is not as efficient as cART in

controlling DAMPs levels and B-cell hyperactivation, may promote EBV reactivation and/or

polyclonal expansion of EBV-infected B cells, favoring the onset of EBV-related

malignancies.

In conclusion, the results of the study outlined here show that mART has a lower control

on HIV-1 reservoir and immune activation than cART. The higher risk of intermittent viremia

or virological failure episodes in mART strategy may be due to a persistent perturbation of the

immune system in response to a persistent replication of HIV-1 reservoir and vice versa. These

findings underline the fact that patients treated with mART should be studied not only for

classical parameters, i.e. HIV-1 plasmaviremia and CD4 cell count, but also for HIV-1 reser-

voirs and immune activation. Moreover, the long-term monitoring of B-cell activation is

important to avoid the risk of EBV-related malignancies. We are aware that limitation of this
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study is the low number of patients studied; a larger clinical studies are warranted to confirm

these results.
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