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Chapter 1

Introduction

The impact of waves against marine structures is a common phenomenon in many
engineering problems and its consequences must be carefully taken into account for a safe
and reliable design of the structure. Offshore structures, as wind farms and oil/gas platforms,
or advancing ship, in rough sea are the typical exterior hydrodynamic problems where the
structure is exposed to violent interaction with incident wave; other practical examples are
coastal structures used to protect the coastline and port when they are reached by steep
waves. However, impact phenomena are of concerns also for some interior hydrodynamic
problems as the sloshing flows in on-board tanks of the ship carriers for liquefied natural
gas (LNG) transportation. This application is expected to expand in the near future, as a
consequence of the growing request of green energy and for the greater demand of natural
gas from the emerging nations, e.g. the People’s Republic of China.

According to the latest estimation of the International Energy Agency, a gas consumption
growth of 1.6% per year will lead the natural gas to become the second largest source of
energy by 2040, after oil and before coal. The increasing number of importing and exporting
nation along with the fact that the former are often far from the production area, makes the
transportation a crucial point.

The possible ways to distribute natural gas all around the world are through pipelines
and carrier ships. Although pipelines will remain the more diffused modality, and with the
lowest capital investment, to supply large volume of gas over short to medium distance
the LNG ship transportation is the most promising for the future. The trading flexibility,
the ability to reach countries far from the extraction area and the reduced risk connected
with geopolitical tensions (the recent crisis between Ukraine and Russia is an example of
scenario which may undermine the pipeline supply option) are only some motivations to
prefer the LNG ship transportation over pipelines.

The ship carriage had a quick development in the last decades, and this brought to modify
the volume and the shape of the tank installed on the ship. The Moss type, characterized by a
spherical shape, was largely employed up to the end of 1990s. Currently, the Membrane-type
tank, with a prismatic shape and larger volume, is the most used. At the end of 2014 the
existing fleet of containment system was composed for a 75% of Membrane-type and a
25% of Moss-type tank. The main advantage of a spherical tank is the easier assembly
procedure between hull and tank as well as the minimization of the sloshing loads. However,
the wastefulness of hull space usage, which implies higher tonnage canal fee, and the ship
height, which may cause some restrictions in the route of the ship (e.g. to pass under a
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bridge) are only some motivations to prefer prismatic tanks.
The shape of the tank is an important parameter which influences the fluid motion in

sloshing phenomena and the related local and global loads on the structure. The resonant
nature of sloshing flows implies violent response of the fluid when the tank motion is forced
with a period close to the highest sloshing natural period of the tank. In such a condition,
violent interface flow phenomena, as overturning waves, slamming, gas cushioning and
turbulent wake may occur inside the tank, possibly causing large local and global loads. A
spherical tank is the most suitable to reduce sloshing loads on the structure. Because of the
tank geometry, the energy associated to the external acceleration is converted in a rotational
motion of the fluid. Conversely, in a wall sided rectangular prismatic tank, the risk for large
hydrodynamic loads strongly increases.

To prevent as much as possible extreme impact loads on the tank vertical walls, filling
depths between the 10% and 70% of tank height are barred during transit. At these two
limits, shallow and deep water sloshing phenomena characterize the fluid flow inside the
Membrane-type LNG tank. The tank breath Bt is an important parameter in the excitation of
the sloshing flow by the sway, roll and yaw motions of the ship, and a qualitative evaluation
of the possible scenarios which may occur can be done considering a model scaled sloshing
problem in a rectangular tank where Bt is replaced by the tank length L.

In case of intermediate and high filling depth (h/L > 0.25), the sloshing phenomena
are mainly characterized by a more or less non linear standing wave system, where the
maximum wave height is recorded at the tank wall and the resulting wave impacts occur
at the roof. As described in [11], for a rectangular tank, three are the different scenarios
which may happen in these conditions. When the free-surface is characterized by an elevated
curvature near the wall, a thin fast jet arises close to the vertical wall hitting the roof, with
the result of a hydrodynamic load extremely concentrated in time and space. When the
free-surface curvature is small, a flat impact occurs and an high local pressure is recorded
always on the roof. The last case, which produces an impact with the entrainment of a gas
cavity and an oscillatory pressure load, is when the free-surface curves down towards the
side wall just before hitting the tank roof.

In case of low filling depth (h/L < 0.15), the scenario which characterizes the sloshing
flow is more complex and marked out by a strong non-linear behaviour. A typical
phenomenon which appears inside a tank when excited by a load close to its natural
frequency is the hydraulic jump or travelling bore. The jump on the free surface travels
inside the tank with a high speed and the impact against the structure is characterized by
high pressure load. Verhagen and van Wijngaarden [35] studied the presence of a hydraulic
jump when the tank is subjected to roll motion in shallow water condition. They modified
the “shallow-water theory”, which fails when the excitation frequency approaches to a
resonance frequency (ω→ ωr), to capture the appearance of the hydraulic jump as observed
experimentally when ω ≈ ωr. They conclude that a jump exists only for frequencies in the
parabolic range of (ω − ωr)2 < 24gδ/B where δ is the oscillation amplitude and B the tank
breadth. When the forcing frequency is far from the resonance frequency different scenarios
may happen. Olsen & Johnsen in their technical report [28] studied the validity of nonlinear
sloshing theories for both shallow and nonshallow water conditions under sway and roll
motions. The behaviour of wave elevation, hydrodynamic lateral forces and moments were
investigated as function of amplitude and frequencies of the excitation signals. For a given
roll motion they highlighted five possible wave scenarios which can be found in a sloshing
tank for shallow water condition, classified following an increasing excitation frequency.
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Starting from a standing wave system, which occurs for a frequency lower and far from the
first natural frequency, the scenario moves towards a set of travelling waves, continuing to a
bore which travels, initially, from the tank mid section and subsequently, from one side of
the tank to the opposite. Increasing further the frequency, the bore becomes a solitary wave
as also in [35]. Bouscasse et al. [5] performed a similar study where only the sway motion
has been considered. The results of their experimental and numerical activities retrace the
classification proposed by Olsen with the addition of a newer wave system (ω/ωr = 2.31)
characterized by two wave system, which develop inside the tank with a strong nonlinear
mutual interaction, which makes the resulting wave system asymmetric. With the exception
of the first wave system, characterized by standing wave, in the other ones, breaking waves
in the middle of the tank, moving towards the lateral walls with the possible entrainment of
gas cavities or even incipient breaking waves hitting the side walls, may occur. All incipient
breaking waves hitting the side walls, can be source of stresses for the tank structures as the
pumping tower or the single corrugated panels of which is made up. The most dangerous
impacts loads are those characterized by a high pressure with a short duration on a limited
structural area.

A first issue related to sloshing is a global effect: large hydrodynamic loads may
compromise the stability of the vessel and increase the bending moment and shear forces
acting on the hull as well as the fatigue loads as described by Zhao et al. in [36], which
report an increase of the bending moment between 30% and 150% for large LNG carriers.
Moreover, the bow slamming is found to be the most important in head seas at high speed,
while the stern slamming becomes more significant in following seas at low speed. Graczyk
in his PhD thesis [13] investigates the loads and the resulting effects due to sloshing in
LNG membrane tanks. He focuses on ship motion in waves, demonstrating that the sea
environment influences the long-term sloshing response increasing its severity (harshness).
The fluid motion and pressure induced in a tank as well as the structural response and
the assessment of the structural capacity have been also investigated, highlighting as a
three-parameter Wiebull model is adequate method to describe the magnitude of sloshing
pressure. With regard to the structural response, both modal analysis and time-domain direct
integration scheme have been employed, concluding that the complexity of the structure,
which will be detailed in Chap. 2, as the hydrodynamic forcing term makes a simplified
method of analysis not suitable for an accurate description of the problem. In the static
case, the structural response is composed mainly by a form governed by the steel plate
deflection together with the insulation and by a vertical compression of the foam. In
the dynamic case, the response is characterized by a multi-modal composition, including
the modes representing the both form. The difference in the oscillation frequency and in
the phase between the modes of steel plate and plywood increases the complexity of the
structural analysis. The influence of hull elasticity and nonlinear effects is crucial for the
real assessment of structural stresses. Such effects may increase the bending moment up to
60%, the hogging moment up to a 20% and the vertical acceleration of a 20%.

Kim and Lee [17] reported a strong influence of the service route on the fatigue life of
structural elements. Lindemark et al. in [20] highlighted the inner knuckles as the most
critical areas with respect to fatigue stress, as consequence of high loads concentration.

Additional issues are the local effects concerning the component of the membrane tank.
In [7] experiments on drop test in cryogenic conditions and “low cycle” fatigue tests are
conducted. In [18] a numerical and experimental study on the strength of a containment
system is presented. In [29] a wide range of tests is presented: ultimate static capacity
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and “low cycle” fatigue for Mark III, while shear, bending, buckling and indentation for
the No.96 plywood plates. The aim of all the tests is the identification of possible failure
mechanisms, whose knowledge is fundamental, for assessing the strength of a structure and
formulate failure criteria. In [19] the ultimate strength under static and dynamic loading is
studied experimentally by dry drop test, measuring the local acceleration of the structure and
the impact forces. Fatigue cracks above the bottom plywood near the mastic support strips
have been highlighted, together with mastic failures by the mastic softening, separations
between the bottom plywood and the PUF and also the separations between the PUF on the
triplex.

An additional aspect, in the context of the local effects, which is associated to pressure
loads confined both in space and time on small scales, is the possible hydroelastic interaction,
which can further increase the structural stresses [22]. These effects may be triggered when
the characteristic time scales of the pressure load, as the rise time (for the first pressure
peak) or the typical oscillation frequency when a gas cavity is involved in the impact, are
comparable with the a natural period of the structure (tipically the highest one).

1.1 Objective and outline of the thesis

A complete and accurate analysis of the structural response of a LNG membrane tank, for
the assessment of the structural stresses, is a challenge both from the experimental and
numerical point of view. The huge dimensions of the tank and the cryogenic liquid contained
make a full scale experiment impossible to be realized. At the same time, the installation of
measuring instruments in the tank during its operative service is still complicated and not all
of the desired measurements can be done. Also the scaling of the prototype model is not free
from difficulties. Satisfying simultaneously the fluid dynamics and structural similarities,
especially when gas cavities are present, leads to solutions which are hard to realize or
manage. The numerical approach does not present minor difficulties. A complete analysis,
that takes into account also the hydroelastic effects requires coupling of the hydrodynamic
and the structural problems. The computational cost can be extremely high and the goodness
of the results has not to be taken for granted. The study of an idealized problem, including
only few aspects of the real probelm, can be a useful step forward to understand the physical
behaviour and for identifying a suitable simplified model.

The main objective of this work is to analyze the effects of wave impact on a deformable
structure, emphasizing the possible role of the hydroelastic interaction, with consequence
on the structural stresses. Experiments, (semi)analytical and numerical models are used
to get a deeper knowledge of the physical effects governing the hydroelasticity induced by
slamming events. The additional knowledges will give new insights for the design of both
LNG tanks and of similar structures exposed to such phenomena.

Chapter 2 reports the experimental set-up and the results of the physical investigation.
Chapter 3 describes the global mathematical problem, composed by sloshing and
hydroelastic stages. In particular, for the hydroelastic stage, two analytical models have
been developed for the two wave impact typologies considered (i.e. with and without air-
cavity entrainment) considered, and compared with the experimental results. In chapter 4, a
hydroelastic numerical model is described: a numerical potential flow solver and a multi-grid
approach for the free-surface treatment is proposed for the sloshing stage, validated and
coupled with a simplified beam model for the structure. Conclusions and suggestions for
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future activities are given in Chapter 5.
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Chapter 2

Experimental Investigation

The experimental activity, performed at the CNR-INSEAN Sloshing laboratory, is the last of
a series of physical investigations [23], [24], [25] about the kinematic and dynamic evolution
of several modalities of wave impact in a rectangular sloshing tank with a filling depth (h/L ≈
0.12) corresponding to the upper limit of shallow water condition. The dimensions of the tank
were chosen so to reproduce two-dimensional (2D) flow conditions. In the previous activities,
wave impacts against rigid wall were considered; hydrodynamic pressure distribution along
it has been measured as indicator of the local load during impact phenomena. Because of
the random behavior which characterizes the local flow of a blunt wave impact, any attempt
to identify a limiting maximum pressure correlated with the inflow wave condition was
unsuccessful. With the aim to identify a critical load to be used at the design stage, here
the focus is given on the hydroelastic response of the structure during the interaction with a
breaking wave. It is still used a rectangular tank with 2D flow conditions.

This paves the way to new research goals aiming at reaching the physical comprehension
of the main phenomena involved during the wave-wall hydroelastic interaction as well as on
the identification of possible scaling laws governing the maximum local hydroelastic load.

The chapter is divided as follow: the experimental set-up is, first, accurately described,
showing the sloshing tank characteristics, the scaling procedure applied and the dynamic
features of the elastic structure. Next, the physical discussion of the different typologies
of wave impacts follows: their kinematic and dynamic evolution for impact against rigid
wall, and against deformable wall is investigated highlighting the main differences observed
between the rigid and elastic case. For the impact with the entrainment of a gas cavity, the
influence of the ullage pressure (i.e. ambient pressure inside the tank) is also systematically
examined.
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2.1 Experimental Set-Up

In order to reproduce a two-dimensional flow, a narrow tank is employed. It is almost
the same tank used in [24] [25] for the experiments on the wave impact against rigid
wall. The main dimensions, length, height and width are respectively, L = 1 m, H = 1 m
and W = 0.1 m. It is made of thick plexiglass plates (thickness = 50 mm), reinforced
with aluminium and steel structure, which prevents the deformation of the tank during the
depressurized tests (fig. 2.1).

Compared to the experimental tests with rigid side walls [24] [25], the plexiglass left
lateral wall has been replaced with a stainless steel plate, with a thickness of 40 mm to
ensure a rigid structure, suitably milled to hold a deformable aluminium plate. The last one
is constrained to the rigid steel wall with an ad-hoc mechanical system, designed to ensure
clamped conditions at the top and bottom ends of the plate (hereafter indicated as vertical
ends), and keeping free to move the lateral boundaries. In this way, the plate per unit width
behaves as a vertical beam. The total length of the plate is 110 mm but two bulges, each one
10 mm long located at the vertical ends, are used for the clamping system. So the real length
l of the structure is 90 mm. Along the vertical centre line of the flexible plate, five strain
gauges HBM XY11 - 3/350 have been installed. They are located at 12, 28, 45, 62, 78 mm
from the lowest end of the plate. Only the bending displacement of the plate along its
vertical centre line is measured, as a consequence of the assumption that the plate behaves
as a beam. This is consistent with the hydrodynamic assumption of a 2D sloshing flow and
with the constraint system considered in the present study.

Figure 2.1. View of the sloshing tank. The red ellipse highlights the stainless steel wall holding the
deformable plate, indicated by the white arrow.



2.1 Experimental Set-Up 9

The previous experiments on rigid wall [24] [25] showed that the impact phenomena
occur at a height of 170-180 mm from the bottom of the tank. Then the instrumented plate is
placed with the lower end at 130 mm from the tank bottom, in order to reproduce the same
impact event realized in [24] [25] at the middle of the plate. The filling depth h is such that
h/L = 0.125.

With the aim of evaluating either the hydroelastic loads induced by different impact
scenarios and the difference with respect to the rigid wall case, a thicker plate with the same
dimensions of the deformable one has been designed. Its thickness of 20 mm ensures a rigid
behavior. In this case, five pressure transducers have been installed in the same position of
the strain gauges.

Two additional pressure transducers have been placed on the steel wall respectively at
35 and 50 mm from the bottom of the tank. These were useful for the comparison of the
hydrodynamic pressure between the deformable and the rigid case. An absolute pressure
transducer located on the roof of the tank measured the ullage pressure.

The sloshing tank is mounted above an hexapod which provides the motion. The high
accuracy of the system ensures a good repeatability of the forced motion. However, an
accelerometer and a wired-potentiometer were used to cross-check the motion parameters.
For all the wave impact scenarios considered, a pure sinusoidal sway motion was used:
amplitude and period of the motion define the impact modality.

To observe the local kinematic evolution of the wave impact, a high speed camera with
a frame rate of 5000 fps and a resolution of 1024 × 1024 pixels was employed. It provides
an accurate description of the flow features both in time and space (7.8 pixels/mm). The
global view of the sloshing flow was recorded by two digital cameras, with a frame rate of
100 fps. A trigger signal was used to synchronize the measurements of the transducers with
the images of the flow.

2.1.1 Scaling of the problem

A typical approach for scaling sloshing flows is based on the Froude similarity (Fr =

U/
√

gL), with U and L, respectively the characteristic speed and length of the problem and
g the gravity acceleration, which implies a geometrical scaling between the model and the
prototype. In this work, the Froude similarity has been applied also for the scaling of the
elastic properties of the structure:

σm = σp(ΛL)1/2 (2.1)

where σ is the frequency, the subscripts m and p indicate, respectively, the model and
the prototype scale and ΛL = Lp/Lm is the geometrical scale factor.

The top right image of fig. 2.2 shows the interior volume of a Mark III containment
system, whose typical dimensions are L = 43 m, a breadth of 37 m and a height of 27
m. The top left sketch illustrates the composition of the tank. A single panel, with typical
dimensions of 3300 x 840 x 270 mm (L x W x H) (bottom sketch) is composed by several
layers in order to guarantee the adequate mechanical and thermal insulation properties. The
inner layer is a corrugated stainless steel membrane which is fixed to a primary polyurethane
membrane through a thin plywood sheet, while a secondary one is setted between the hull
and the inner layer. Between the two polyurethane membranes is inserted a layer, called
Triplex, composed by a membrane of fiberglass fabric and aluminium foil. The containment
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Figure 2.2. Top right: Snapshot of the Mark III tank. Top left: Schematic drawing representing the
tank components. Bottom: View in vertical section of a single panel.

system is anchored to the hull with mastic ropes. Between the hull and the containment
system, an insulation space is kept inert with nitrogen to permit monitoring the presence of
natural gas or water as well as the hull deformation.

According to Faltinsen and Timokha [11], the most relevant natural frequencies of the
structure must be scaled. In his numerical study, Graczyk [13] showed as in a single panel
of a Mark III several natural modes, with natural frequencies varying in a range between
100-500 Hz, have an important role for the dynamic response of the structure and then for
the correct estimation of the maximum structural stresses. He shows that the lower modes,
with natural frequencies around 100 Hz, are dominated by the steel response while for the
higher ones, starting from 350 Hz, the plywood and foam contributions at the structural
response are more apparent. In this work, the prototype structural panel is replaced by a
single aluminium plate and only the first natural frequency is properly Froude scaled. For a
LNG tank, with a typical length of about 30-40 m and a dimension of the single structural
panel of 3 m, the first natural frequency, in fully wet condition, is around 110 Hz. Because
the length of the sloshing tank model is 1 m, a geometrical scale factor ΛL = 30 is assumed.
Then, the length of the panel model is 90 mm and using eq. (2.1), the fully wet natural
frequency is about σm = 610 Hz. The length and the natural frequency obtained can be
associated to an aluminium beam with the thickness of 2.5 mm by considering the simplified
analytical model (eq. 3.32), which will be detailed in the section (3.4).

The Froude scaling of the natural frequencies here used is definitely the simplest way to
scale the structural problem. A more accurate procedure should consider also the scaling
of the elastic properties associated with the stiffness of the structure. The non-dimensional
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natural frequency has to be the same atn the model and the prototype scale. For a beam in a
liquid with density ρl this non-dimensional frequency associated with the elastic vibration
due to bending stiffness EI is σn

√
ρlL5/EI and then:

σm = σp

√
ρp(EI)m

ρm(EI)p
Λ5

L (2.2)

To satisfy both eqs. (2.1) and (2.2), it is required that (EI)mρp = (EI)pρm and MB/(ρlL)
must be the same in model and prototype scale. Here ρ is the liquid density, E is the Young
modulus of the material, I the bending moment of inertia and L, MB the length and the mass
of the structure, respectively. The simultaneous fulfillment of the above conditions brings to
solutions which are difficult to realize with the typical model scale used in a small lab, such
as unrealistic small cross-sectional dimension of the beam or liquid and material difficult
to manage. We can state that a correct scaling of a hydroelastic problem is still an open
problem.

Additional considerations on the model scaling procedure must be taken in account
when wave impact with entrainment of gas cavity are reproduced in experimental test. In
particular, the hydrodynamic pressure loads in model scale will be larger in the prototype
scale if only the Froude scaling is employed. To reproduce the same effects between
different scales, also the Euler number must be considered, Eu =

patm−p0
2ρU2 , where patm is the

atmospheric pressure, p0 the ullage pressure, ρ is the liquid density and U is a characteristic
velocity of the phenomenon, which, in this case, is the horizontal velocity of the wave front
approaching the wall. In Faltinsen [11], from a linear analysis of the gas cavity problem the
full scale pressure results (Lp/Lm)1/2 times the pressure in model scale if both Froude and
Euler number are satisfied, while if only the Froude number is considered the pressure ratio
between full and model scale pressures is Lp/Lm. This is consistent with the conclusion
assessed in Greco et al., 2003, where the authors showed as the nonlinear effects in full
scale are overestimated when only the Froude scaling is assumed. On the other hand, the
simultaneous fulfillment of both Euler and Froude similarity implies, in model scale, a lower
ullage pressure in the tank with respect to the atmospheric one.

While the Euler number is important whenever a gas cavity is present during the impact,
the Cavitation number (Cv =

p0−pv(T )
2ρU2 , where pv is the vapour pressure of water at temperature

T) matters only when the difference between ullage pressure and liquid vapour pressure is
small, inducing cavitation phenomena during the bubble expansion cycles as consequence of
the decrease of the inner bubble pressure below the vapour pressure of the surroundig liquid.

In the experimental test the ullage pressure p0 is changed from the atmospheric value to
25 mmbar which is very close to the water vapour pressure at a temperature of 20 °C.

2.1.2 Dynamic characterization of the structure

Impulsive tests with a calibrated hammer have been performed to check the dynamic
characteristics of the elastic structure as well as the strain gauges dynamics. The hammer
test consists in hitting the structure with an impulsive load which excites a wide frequency
spectrum. To validate the correct behaviour of the strain gauges, especially in terms of
dynamic response, an accelerometer has been mounted as close as possible to the central
strain gauge (installed in the centre of the plate). The results of the hammer test have been
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compared both in terms of signals time history and spectrum amplitude. They confirm the
reliability of the strain gauges measurement, at least until 2.0 kHz (fig. 2.3).

Because of the upper limit in the dynamic response, each observation about the effects
of the higher modes with a frequency larger than 2.0 kHz should be regarded as purely
qualitative.

Natural frequencies
Concerning the dynamic characterization of the structure, in terms of lowest natural

frequency and damping, several hammer tests have been performed by using different filling
depths of the tank. In first instance, the dry vibration frequencies have been measured and
compared with the corresponding values predicted by the beam theory and by a FEM model
applied to the plate. The first two bending frequencies have been compared in table (2.1)
showing a good agreement between the experimental results and the theoretical predictions.

Bending mode Beam theory FEM analysis Experiment Beam theory mass correction
1 1575 Hz 1653 Hz 1486 Hz 1499 Hz
2 4343 Hz 4564 Hz 4318 Hz xxxx Hz

Table 2.1. Comparison of the first two natural bending frequencies from experiments and from
analytical and numerical analyses.

However, the experimental results show a lower values of natural frequencies, especially
for the first mode, than those predicted with analytical and numerical tools. The differences
can be ascripted to the additional mass induced by either the wire and the strain gauges.
This quantity, estimated in 5-7 g is compatible with the difference of the first bending
frequency measured and predicted through the beam theory. If in the beam model the mass
is increased by 7 g the relative natural frequency decreases to 1499 Hz, which is very close
to the measured value (last column of tab. (2.1)). In figure (2.4) is shown the comparison
between the calculated wet natural frequency associated to the first mode of the beam and
the corresponding value measured during the hammer test as function of the tank filling
depth. The comparison highlights the good approximation given by the beam theory (in
partially/fully wet condition, eq. (3.32) in section (3.4)).

Damping
If we look at the possible damping terms which characterize the phenomenon, two are

the contributions which can play an active role: the hydrodynamic damping due to the
boundary layer flow and the structural one. The first one is considered negligible in sloshing
flows. Studying the oscillations of an air pocket entrapped by a standing wave at the roof of
a sloshing tank, Abrahamsen [1] found that the boundary layer effects in the water domain
influence the decay of the pressure signal when the natural frequency of the gas cavity is
much larger than the lowest sloshing flow natural frequency. In spite of the high oscillation
frequency of the elastic plate, in the damping analysis the structural contribution has been
considered as the main term which governs the decay of the measured strain. As for the
natural frequency, the hammer tests with different filling depths have been used to estimate
the structural damping. In particular, the decay of the stress free-vibration response has been
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Figure 2.3. Top panel: comparison of the temporal evolution of acceleration during hammer test.
The blue line and the dashed red line represent the acceleration measured by strain gauges and
accelerometer respectively. Bottom panel: Comparison of acceleration FFT in term of amplitude
and phase.
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Figure 2.4. Comparison of the beam lowest natural frequency in wet hammer test as function of the
filling depth. The green markers show the behaviour of the first natural bending frequency of the
structure while the continuous line correspond to the values predicted by the hydroelastic model.

evaluated by assuming as solution of the problem of a damped mass-spring linear system:

q(t) = Q0 exp ((−ξωn + iωn)t) (2.3)

where ξ is dimensionless damping term, ωn the natural frequency and Q0 a constant which
depends on the initial conditions. Note that only the first mode has been considered for
each filling depth and a suitable constant damping coefficient has been identified. In figure
2.5 the behaviour of the structural damping coefficient for several filling depths in calm
water condition is reported. The values of the coefficient ξ (blue dots in figure) have been
estimated through the hammer test. Their behaviour, as function of the wetted length of the
structure, is well fitted by a cubic function (red line). The dashed black line represents the
pure structural damping in a fully dry condition. The figure highlights how the presence of
calm water increases the damping of the structure when stressed with an impulsive load.
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Figure 2.5. Behaviour of the dimensionless values of the structural experimental damping coefficient
relative to the lowest structural mode (symbols). The solid line represents the cubic functions
which fits the symbols. The dashed line reports the values of the structural damping in dry
conditions.
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2.2 Wave scenarios

Depending on the wave typology, its impact against a wall can be more or less characterized
by high hydrodynamic loads. Its shape, at the moment of the collision, is influenced by
several parameters as the seabed topography, the water depth at the wall, three dimensional
effects and also the structure of the wall. For a non steep wave, the linear theory is
sufficient for a good description of the wave impact evolution and for the estimation of the
hydrodynamic loads, which are of the order of ρg(h + H), if the shallow-water framework is
considered, where ρ is the liquid density, g the gravity, H the crest wave elevation and h the
water depth [30].

The most relevant cases of wave impacts are those concerning nearly breaking or
breaking waves. In this case, the interaction of the wall with the wave (fig. 2.6) can lead to
different scenarios but for all of them the occurrence of extremely localized impulsive loads
is concrete.

For a nearly breaking wave, the interaction with the wall can lead to water velocities
many times greater than [g(h + H)]1/2. Otherwise, when a forward jet is developed from
the wave crest the entrapment of a gas cavity may happen, or if the wave is fully broken, a
turbulent front composed by a mixture of air and water hits the wall.

A classification of the different scenarios which may occur is the following:

1. “Flip-through”, the wave impacts without air entrapment.

2. Plunging breaker with small amounts of air entrapped.

3. Plunging breaker with a large air pocket.

4. Turbulent bore.

Bagnold [3], in his experimental activities, observed that the maximum pressure is
associated to the impact for which a small amount of air is entrapped. Recent study asserts
that the maximum pressure is due to a plunging breaker with large air pocket and occurs at
the still water level (SWL) [16]. Also Chan and Melville [6] in their study, observed that the
maximum pressure is reached when a wave plunging is developed before the impact and the

Figure 2.6. Interaction of a nearly breaking wave with a vertical wall. The dash lines show the wave
temporal evolution in the absence of the wall, while the continuous lines represent the evolution
of the same wave interacting with the wall.
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Figure 2.7. Numerical temporal evolution of the wave profile in case of flip-through impact (see [30]).

direction of crest incidence is approximately horizontal. In this case a significant amount of
air is entrapped during the impact.

The poor repeatability of the maximum pressure, measured during the impact, is a
constant in several experimental studies [3], [23], [6], this is due to the high sensitivity of the
wave front to small changes of the environmental conditions, such as small surface waves or
the roughness of the vertical wall.

In the case of wave impact against deformable walls, such as those of a tank, the
estimation of the maximum pressure, as an indicator of the real stress acting on it, is not
a suitable choice. Because of the impulsive and localized behaviour of the hydrodynamic
load, also hydroelastic effects may appear during the impact evolution, increasing the loads
on the structure. The direct measurement of the structure deformation is a better indicator
for the structural stress particularly in the presence of hydroelasticity.

In the present hydroelastic study, two classes of wave impacts have been examined. They
are presented in the next sub-sections and will be detailed both of them from the kinematic
and the dynamic point of view, considering the impacts occurring against a rigid wall.

2.2.1 Case A) Flip-through

When a steep wave approaches a vertical wall a flip-through impact may happen, (producing
elevated local hydrodynamics loads). As described in [24], three different stages are
identified during the final evolution of this impact scenario: (i) wave advancement where
the wave front, moving towards the vertical wall, forces the wave trough to rise up along it;
(ii) wave focusing, during this stage the wave trough and the front approach each other on a
point at the wall triggering the (iii) flip-through stage. During the latter, a sudden turning
of the flow is generated, close to the focusing point, producing an energetic vertical jet. A
detailed description of the time evolution of the wave profile is shown in fig. (2.7) where it
is possible to recognise the three different stages, which characterize the impact evolution.

Figure (2.8) shows the pressure time evolution recorded by the pressure transducers
during the flip-through impact against the rigid panel. The red line refers to the mean value
of the pressure on five repeated tests, while the black one refers to a single test where the
kinematic evolution is shown in fig. 2.9. For the latter, in each panel is plotted the vertical
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distribution of the pressure along the wall (red marker). The dashed red line shows the
interpolation of the pressure signals, whose positions, along the wall, are marked with the
green diamonds.

In the wave advancement stage (t≤ −10 ms), from fig. 2.8 it is observed an almost linear
trend of the pressure signals for the transducers below the instantaneous free surface. The
trend of hydrodynamic load is due to the slow rise up of the wave trough the wall. The
small vertical velocity is such that, during this stage, the hydrostatic pressure prevails over
the dynamic one, Dv

Dt << −g and the problem is dominated by the quasi-static term. A
consequence is that the spatial pressure distribution is quite uniform and decreases with
the distance from the bottom of the tank to reach the ullage pressure on the free-surface.
In figure 2.8, this behaviour is highlighted by a black dashed line in the panel of probes
P1, P2. For each probe, the lines represents the hydrostatic pressure ρgh(t), where the
vertical distance of the probe from the instantaneous free-surface h(t) has been measured
from the fast-cam images recorded during the experiment. The slope represents the wave
trough vertical velocity which is almost constant.

Moving forward in time, the vertical acceleration of the wave trough increases pushed
by the approaching of the wave front to the wall, (from panel A to B in fig. 2.9) this is
highlighted by the nonlinear variation of the pressure in time. The effect on the spatial
pressure distribution is an increase of its value near the free surface for the action of the fluid
acceleration.

Around t = 0 ms, we have the focusing stage, where the rapid increase of the
vertical velocity makes the inertial term Dv

Dt dominant with respect to the gravitational one,
characterizing both the spatial and temporal evolution of the hydrodynamic load. In figure
(2.9) it is possible to note, at the instant labeled C in special way for the pressure transducer
5, the sudden increase of the pressure, which reaches a maximum value (approximately
equal to 10 times the undisturbed hydrostatic pressure). To show the real predominance of
inertial effects over the gravitational one, a rough estimation of the vertical pressure gradient
can be calculated by taking the derivative between two subsequent pressure transducers,
1
ρ
∂p
∂y ≈

1
ρ

∆p
∆y ≈ 520 m/s2, this means that the inertial acceleration is approximately 54 times

g.
It is possible to observe how all the pressure transducers located below the probe 5

record the local maximum value of the pressure at the same time and how such values
decrease with the distance from the focusing area. This highlights the localized behavior
in space of the hydrodynamic load for this kind of wave impact (see also vertical pressure
distribution on panels C-D in figure 2.9). For the probes located above the free surface during
the focusing stage, the maximum values are reached with a small time delay, consequence
of the steadiness of the phenomenon in a reference system moving with the maximum
pressure peak, which moves, approximately, with the same vertical velocity of the wave
trough. A large scattering of the pressure signals is observed during the focusing stage, as a
consequence of the highly local behaviour of the pressure distribution at the impact time.
Conversely, a good repeatability is observed during the other stages of the evolution. The
spatial pressure distribution shows the location of the focusing area around the probe 5.

In the last stage, flip-through, as consequence of the large pressure gradient just below
the free surface, a vertical jet flow is triggered at the wall (panels C, D and E in fig. 2.9).
Because the probes P6 and P7 are dry during the previous stages, the pressure signals,
recorded by these two probes, grow nearly instantaneously up to their maximum value
when wetted by the vertical jet. The recorded values are lower than the maximum pressure
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recorded in the focusing area. For the other probes a sudden decrease of the pressure signals
is observed.

Subsequently, the vertical flow, developed during the flip-through stage, continues until
all its kinetic energy is converted in potential energy. Later, the gravitational effects will
drive the problem, accelerating downward the flow.
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Figure 2.8. Each panel shows the time history of the pressure transducer along the rigid vertical
wall. Their vertical position (y=0 corresponds to the tank bottom) is indicated on the panel. The
red line represents the mean value calculated with 5 repetitions of the same run, the error bar
identifies the relative standard deviation. The black line shows the pressure value measured
during a single test, fig. (2.9), where the frames shown refer to time instants labelled A, B, C, D,
and E.
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Figure 2.9. Evolution of the flip-through impact at five different times. The green diamonds indicate
the pressure transducers position. The red line represents the interpolation of the pressure data
recorded (red circles).

2.2.2 Case B) Gas cavity

The entrainment of a single gas cavity, during an impact phenomenon, occurs when a
breaking wave approaches a vertical wall. As for the flip-through, also for this impact
typology it is possible to characterize its kinematic evolution in different stages [24]

In figure (2.10) the fast cam snapshots of the wave configuration in different stages are
reported, the green markers show the pressure transducers position, the dashed red line
shows the hydrodynamic pressure distribution along the vertical wall. As for the flip-trough
it has been obtained with the interpolation of the transducer signals. In the plot the pressure
time histories for two pressure transducers respectively located at 175 mm and 50 mm from
the bottom of the tank are reported. The vertical black lines indicate the position of the 5
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snapshots. The first stage is the closure of the cavity against the wall (first snapshot). It is
mainly characterized by the gas leakage from the forming cavity caused by the surrounding
water flow, which compresses and forces the gas to escape from the cavity. The leakage
phenomena are crucial for the definition of the initial conditions of the subsequent stage in
terms of pressure and density of the gas.

After the cavity is closed there is a phase of isotropic compression/expansion due to the
compressibility of the gas. From the second to the fourth snapshots the first compression
of the cavity, characterized by the maximum value of the pressure and the two following
expansions are shown. The term isotropic refers to an almost equal deformation of the cavity
boundary in all the directions. During this stage the cavity maintains the same position and
it is not raised up by the vertical water flow. This is due to the gas compressibility which
counteracts the flow acceleration. Similar to the flip-through impact, the vertical distribution
of the hydrodynamic load, at the impact instant, is quite localized in space and the area
where the maximum load is exerted is around the gas cavity.

Subsequently (fifth snapshot), the isotropic behaviour changes toward an anisotropic
one. The compression/expansion of the cavity is characterized by a vertical stretching due
to the surrounding vertical water flow. In particular, while in the lower part of the cavity, the
high pressure gradients are still able to counteract the water flow, in the upper part the fluid
flow prevails inducing a local compression against the wall and consequently its vertical
deformation. The last stage displays the rise of the cavity along the wall pushed up by the
water flow and its subsequent fragmentation in smaller bubbles.

From the dynamic point of view, the analysis of the pressure recorded in the impact
against a rigid wall shows a well-defined oscillation of this quantity. In particular, while
the first pressure peak is dominated by inertial effects, i.e. the strong acceleration of the
fluid flow on the wetted part of the wall and the initial compression of the cavity due the
water mass approaching the wall, the isotropic and anisotropic compression/expansion
stages are mainly governed by the compressibility of the gas and this is confirmed by the
oscillatory behavior of the pressure. After the oscillatory stage, the remaining part of the
evolution is mostly governed by gravity, which acts on the mass of water accelerated upward
during the previous stages, forcing it to a free fall along the vertical wall. Several are the
parameters which influence the dynamic behaviour of the cavity; from the theoretical point
of view in [34] Topliss gives the estimation of the cavity natural frequency ( fr) considering
a potential two-dimensional problem of a semicircular bubble under the hypothesis of small
oscillations, the following expression is valid when the cavity is close to the free-surface:

f r2 = −
2γp

4πρr2 log (r/2h)
(2.4)

where p is the atmospheric (ullage) pressure, ρ is the water density, γ is the ratio of specific
heat, r the initial bubble radius and h the distance of the bubble from the free surface.
Equation (2.4) shows a proportional dependence of the natural frequency on the ullage
pressure and an inverse dependence on the bubble radius.
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2.3 Discussion of the results

2.3.1 Flip-through impact

In the previous section, the kinematic and dynamic characteristics of the flip-through impact
against a rigid wall have been discussed, here, it is presented the case of impact against an
elastic structure. While the kinematic evolution of the flow shows the same characteristics
between the two cases: evolution divided in the stages, advancement, focusing and flip-
through, the dynamic behaviour appears totally different especially after the focusing stage.

Figure 2.11 shows the temporal dynamic evolution of the elastic case. In particular,
the three upper plots show the dimensionless stresses with respect to the yield stress of
aluminium (σy = 15 MPa), recorded by the strain gauges installed at y = 192, 175 and 158
mm respectively. In the lower plot is shown the hydrodynamic pressure measured on the
rigid part of the vertical wall, at y = 35 mm from the bottom of the tank. The pressure is
made dimensionless with respect to the hydrostatic pressure in undisturbed condition. In
the plots are reported the mean value signals and the associated error bar of stresses and
pressure, calculated through 5 repetitions of the same run.

During the first part of the evolution, named wave advancement stage, the behavior of
the structural stresses, as well as of the pressure, reflects the quasi-static behaviour observed
in the rigid case: a slow deflection of the structure due to the slow rise up of the wave trough
along the vertical wall. Moving toward the focusing instant (t close to 0 ms), the structural
deflection velocity increases non-linearly due to the growing of the fluid vertical acceleration
at the wall, until, when a time instant between thpse labelled B and C (in figure) is reached,
the rise time of the hydrodynamic pressure is comparable to the highest natural period of the
structure and then it is able to excite the corresponding natural modes of vibration. From
this instant the second stage starts, called fully hydroelastic which governs the dynamic
evolution of the phenomenon up to t ≈ 5 ms. At time t = 0 ms, the structure reaches its
maximum displacement. The maximum value is recorded by the strain gauges installed
in the middle of the structure (y = 175 mm) and this indicates that the first natural mode
is the predominant one. The asymmetric behaviour of the maximum values recorded by
the other two strain gauges highlights the presence of the higher modes too. From the fully
hydroelastic stage and for the subsequently instants, the stresses behaviour is characterized
by an evident oscillation with the frequency equal to the lower wetted natural frequency
of the structure. Also the hydrodynamic pressure recorded by the probe shows the same
oscillatory behaviour and this emphasizes the role of the hydroelasticity if compared with
the signal recorded by the same probe in the rigid test (probe P1 in figure 2.8). Looking at
the maximum value recorded by the pressure probe, this, in the elastic case, is about twice
than that in the rigid wall case. The increase of the hydrodynamic load can be ascribed to the
structural reaction, in particular, after the structure reaches its maximum deflection, it moves
against the incoming wave, opposing to the hydrodynamic load (which is increased up to
its maximum value at time D). The hydroelastic (coupling/behaviour), which is identified
with the opposite phase of oscillation between the pressure and structure deflection, goes on
for the three next oscillations of the signals (t = 6 - 7 ms). Later it is possible to identify
a further stage called free-vibration where the beam behaves like a free oscillating system.
As for the previous stage, there is an opposition of phase between deflection and pressure
signals.
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As said before, both stress and pressure signals are characterized by a frequency which
is ascribed to structural wetted natural frequency. Such frequency is not constant in time
because depends on the instantaneous wetted length of the structure. The more the structure
is wet, the more the added mass effects will reduce the natural frequencies. To investigate the
strong nonlinear and transient signal which characterize the flip-through event, the Fourier
Transform is not the best tools, since the stationarity and periodicity of the signal is required
for a proper employ. For such kind of signal, the Empirical Mode Decomposition (EMD) is
a more suitable mathematical tool since is based on the Hilbert Transform, which allows
the definition of the instantaneous frequency and the relative amplitude of the signals. An
additional step of the EMD is the identification of the Intrinsic Mode Functions (IMF) of the
signal: i.e. the original signal is decomposed in several signals with zero mean value and
each one characterized by a well defined frequency. In the upper plot of figure (2.12) are
shown both the temporal evolution of the dimensionless stress signal (blue line) and the first
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Figure 2.11. Dynamic temporal evolution of the flip-through impact against an elastic structure. The
three upper panels show the dimensionless stresses recorded by the three central gauges. In the
lower panel the hydrodynamic pressure measured close the tank bottom is shown. The black
arrows in the upper panel identify the stages of hydroelastic impact.
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show the theoretical variation of the first two wet natural frequencies of the beam, respectively.

three IMF obtained with the decomposition. With the exception of the (quasi-static trend)
the second and the third IMF are sufficient to describe the whole oscillatory behaviour up to
20 ms. In the lower plot the instantaneous frequencies of the IMF are shown (scatter plot,
where the color represents the IMF signal amplitude) compared with the theoretical ones
estimated through an analytical model with the help of fast-cam images, which had allowed
to evaluate the beam wetted length (dashed and continuous black line). The variation of the
principal instantaneous frequency is in a quite good agreement with the theoretical variation
of the first natural wet frequency. The first IMF amplitude, which reproduces the effect
of the higher modes, is almost zero because the central point of the beam is a stationary
point for the second mode and the third one is not so influent. The second IMF contains
the first six oscillation cycles characterized by the dominant frequency which changes its
value from about 1 kHz to 600 Hz, which is the expected value for a fully wet condition for
the structure. For t > 10 ms, the third IMF is the one which contains the most part of the
original signal and the frequency is almost constant in time. This means that the variation of
the added mass effects in the last hydroelastic stage is quite null oppositely to the previous
one, where a quick variation occurs.
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Similarly as done in the previous section, also in the flip-through impact, for the
estimation of the dimensionless damping coefficient ξ the same approach has been used, i.e.
the signals have been considered as a free-vibration response of a linear system. The mean
value obtained is about .0315 ± .0039. Such value, collocated on figure 2.5 corresponds to
the damping for a filling depth of about 0.125 L, which means, for the beam, a fully dry
condition. Differently from the results obtained in the static test, where the value of the
damping coefficient increases with the wetted length of the structure, here during the wave
impact, although the water is rising up along the structure, the damping coefficient does not
change with respect to the dry condition.
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2.3.2 Impact with gas cavity

The breaking waves which are studied during the experimental activities have been generated
by imposing a pure sinusoidal motion to the sloshing tank with a fixed period of oscillation
equal to T = 1.6sec. By changing the motion amplitude A, it has been possible to investigate
three cavities with different size respectively named large (A = 65mm), medium (A =

63 mm) and small (A = 61.5mm), each one characterized by an oscillation frequency
inversely proportional to the initial cavity size. The ullage pressure, and hence the Euler and
Cavitation numbers, has been varied from the atmospheric value down to values close to
the vapour pressure of the water in order to study the influences of the cavity frequencies
and to reproduce as much as possible the phenomena present in the full scale problem. The
differences observed between the impacts against rigid and elastic wall are highlighted in
the following, paying particular attention to the characteristics of the dynamic system in
terms of natural frequencies and damping.

Figures 2.13-2.15 show the wave configuration just before the impact against the vertical
wall for the three cases considered. In each figure the impacts at the different ullage pressures
and the related structural stresses measured by the strain gauge installed in the middle of the
plate (y = 175 mm) are reported. The stresses in the plots are normalized with respect to the
yield stress σy. The red circle in the plots shows the time instant of the image.
The kinematic evolution in the elastic case is the same as in the rigid case for all the cavities
studied and for all the ullage pressure considered.

The repeatability of each run is shown in figures 2.16-2.18, where the mean value of
the structural stress has been calculated with 5 repeated tests. To avoid the spreading of the
signal due to small changes in the frequency of oscillation, for each run, i.e. same cavity
size and ullage pressure, the mean value has been calculated by considering the signals in
the non dimensional time scales t/Tn, where Tn is the first natural period of the cavity.

All the signals show an oscillatory behaviour characterized mostly by the first natural
frequency of the cavity. As much as the ullage pressure decreases, the influence of the non-
linear effects, due to gas compressibility, becomes more evident, characterizing the signal
with sharper peaks and flatter troughs. For the medium and small cavity, the time scales
which characterize the first peaks of compression are such to excite the natural frequencies
of the structure (rise time ≈ 1 ms). As consequence of that, it is possible to observe a higher
oscillation frequency, just after that peak. It starts to be particularly evident for the cases
with an ullage pressure lower than 200 mbar. In this condition, the longer expansion phase
as well as the low hydrodynamic loads allow the structure to oscillate with its natural wetted
period. In the other cases, the structural natural modes are mostly hidden by the oscillation
due the cavity dynamics.

A quantification of the error due to the different cavity oscillation frequency is shown
in figure 2.19. Here the mean values of the natural frequencies for each cases are plotted
with their error bars as function of the ullage pressure. The frequency fluctuations about the
mean value decrease with the ullage pressure. In the plot, the natural frequencies calculated
in the elastic case (blue lines) are compared with those obtained for the same cavity in the
rigid case (red lines). For both cases the values decrease with the ullage pressure. While for
the large cavity (dots in the plot), the value of the frequencies is almost the same for both
the rigid and elastic case, with the exception of the test at atmospheric pressure, a different
behaviour is observed for the other two cases, medium and small cavity. Especially for the
medium cavity, the natural frequencies are lower for the elastic than for the rigid case, and
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the differences fall down with the ullage pressure.
Similar to what already done for the estimation of the damping for the structure in

case of impulsive test, also for the impact cases the linear non-forced damped mass-spring
response is used. The temporal behaviour of the signal peaks is expressed as a simple
exponential law y = y0e−ξωnt, where y0 depends on the initial condition and the exponential
decay ξωn is the product of the damping coefficient ξ and the angular frequency ωn. In
figure 2.20 the damping coefficient (top plot) and the exponential decay (bottom plot) are
plotted for the three cavity sizes as function of the ullage pressure, both for the elastic and
rigid case, line and dashed line, respectively. The damping estimation for the elastic case
has been calculated on the structure deflection signal, while for the rigid case the pressure
signal has been used. Because both deflection and pressure signals are characterized by a
nonzero mean value the mean trend was removed from the original signal. Such mean trend
has been calculated as the mean value of its maxima and minima envelopes (fig. 2.21). For
the large cavity (blue line) the exponential decay decreases with the ullage pressure up to
600 mbar and then it is quite constant and the differences between the rigid and elastic case
are small (continuous and dashed line). For the other two cavities (red and green line), their
values decrease for all the ullage pressures and the values in the elastic case are smaller
with respect to the rigid case. These differences are reduced for the lower pressure. For the
damping coefficients, in terms of differences between rigid and elastic cases, it is possible to
observe an analogue behavior of both the exponential coefficient and the natural frequencies:
large differences for the small and medium cavity, which decrease with the pressure and
smaller differences for the large cavity. In terms of the damping coefficients, for small
and medium cavity in the rigid case, they are quite constant with the pressure, around 0.15
and 0.12 respectively, while all the other cases show an initial drop, up to 600/800 mbar
with a successive increase up to 100 mbar where they reach their maximum value. Figure
2.22, shows how the exponential law, assumed for the decay, fits the peaks of the signal
for the elastic and rigid case, blue and red line, respectively. While for the rigid case the
approximation is quite good for the whole time evolution, in the elastic case a different
behaviour has been observed for the different cavities. In the elastic case, the approximation
used shows a good agreement for the large cavity and for the first oscillation periods of
the medium and small cavity, for these latter a decrease of the exponential decay in the
subsequent time evolution has been observed, as shown in figure 2.22. Such behaviour of
the exponential decay is present for the medium cavity for all the ullage pressures and for the
small cavity only for pressure between 1000 and 600 mbar, with a mean value respectively
of 54 ± 26 and 58 ± 20 (1/sec) for the exponential decay.

Particularly in low ullage pressure condition, during the first expansion of the cavity,
the hydrodynamic pressure of the liquid in contact with the cavity, can reach values close
or lower to the vapour pressure of the water and trigger cavitation phenomena. In figure
(2.23, left column) the minimum values of hydrodynamic pressure recorded by the pressure
sensors are plotted. The continuous and the dashed line show the values obtained from the
sensors installed at 5 cm from the bottom of the tank, respectively, in the rigid and elastic
test, while the dot-dashed line is the measurement in the impact area in the rigid test (≈
17 cm above the bottom of the tank). The black dashed line shows the vapour pressure of
water at T = 20°C. The log-scale representation shows clearly the asymptotic behaviour of
the pressure. For the small and medium cavity the differences between the value recorded
on the bottom and in the impact area are reduced with the pressure, while for the large
cavity the maximum difference is observed for an ullage pressure of 400 - 200 mbar. Small
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differences between elastic and rigid cases can be observed for the small and medium cavity
for almost all the ullage pressures, while for the large cavity they appear only at atmospheric
pressure. Also such differences, whose behaviour is similar to the one observed also for the
cavity natural frequency and damping, could be ascribed to a hydroelastic interaction. No
cases of cavitation have been highlighted by the pressure transducer signals, but this does
not exclude that local cavitation phenomena could occur, specially in the test at 50 mbar
where the mean minimum value reached is 39 ± 11 mbar. In the right column of figure 2.23
the maximum values of structural stress and hydrodynamic pressure recorded respectively
in elastic (top) and rigid (bottom) test are plotted. In the elastic test, the behaviour of the
stresses shows an increase for the structural loads specially for the medium and small cavity
as the Cavitation number tends to zero. For the rigid test, the hydrodynamic pressure is
almost constant for the large cavity, while shows a small increase for the medium cavity and
a pronounced increase for the smallest cavity specially for Cv lower than 5. It is worth to
note that the maximum values of hydrodynamic pressure recorded are strongly influenced
by the position of the pressure transducer with respect to the “real” location of maximum
pressure and this could justify the large increase observed for the small cavity.

The differences observed between the rigid and elastic cases, both in terms of natural
frequencies and exponential decay coefficient, can be ascribed to a hydroelastic interaction
between the structural and gas cavity dynamics. In particular, the most clear signal of
such interaction is the elongation of the “life time” of the gas cavity oscillations and this
is reflected in a prolongation of the structural stresses too. The fact that for large cavity or
impacts in low Cavitation number condition (Cv < 0.9) the hydroelastic effects are missing
or strongly reduced can be ascribed to a larger difference between the cavity and structural
natural frequencies of oscillation and the whole system behaves like a forced mass-spring
system. In terms of the scaling problem between model and full scales, the importance of the
Cavitation and Euler numbers, concerns not only the correct scaling of the hydrodynamic
pressure but also the effects of a hydroelastic interaction.
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Figure 2.19. Lowest natural frequency of the gas cavity as function of the ullage pressure for rigid
(blue line) and elastic test (red line) for the three different cavity sizes.
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Figure 2.20. Damping ratio (top plot) and exponential decay (bottom plot) for the different cavity
size impact as function of the ullage pressure.
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Figure 2.21. Comparison between the original signal (blue dashed line) and the de-trended one (red
continuous line), which has been used for the estimation of the exponential decay.
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Figure 2.22. Exponential fitting and damping stages for the elastic case.
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Figure 2.23. (Left column): Values of the minimum pressure recorded during the experimental test
for the three cavities as function of the cavitation number (log scale),ullage pressure from 50 to
1000 mbar. (Right column): Maximum values of the structural stress (top) and hydrodynamic
pressure (bottom) as function of the cavitation number.
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Chapter 3

Mathematical Model

In this section the mathematical approach for studying the hydroelastic problem will be
discussed. The development of a mathematical tool is required for a better understanding
of the main physical features which are actively involved in the overall event. These were
highlighted during the experimental activities but due to the phenomenon complexity and to
the difficulties to quantify them with laboratory apparatus it was not possible to investigate
them in depth.

With the aim to study a problem characterized only by the relevant physical features, a
simplified model will be proposed, based on observations done during the experiments as
well as from the literature.

The global problem will be split in three sub-problem:

1a) Single-phase sloshing problem

1b) Two-phase sloshing problem - Gas cavity problem

2) Structural problem

and each of them will be discussed separately. Moreover, two semi-analytical hydroelastic
models will be presented, concerning the flip-through and the impact with gas cavity. Both
of them do not consider the full coupling of the identified sub-problems, in particular, the
sloshing problem has been treated in a very simplified way. While for the flip-through impact
the hydrodynamic loads are obtained from the experimental activities concerning the rigid
test, for the gas cavity wave impact the sloshing stage has been completely neglected and the
impact problem as been treated in a similar way as for a water entry problem. The solution
of the complete hydroelastic problem, with the coupling of the different sub-problems, will
be presented in the next section from the numerical point of view.
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3.1 Physical assumptions for the hydroelastic problem

The experimental findings highlighted that the wave impact event which may occur during
the evolution of sloshing flows in a tank is a complex problem because it may involve
multiphase flows with violent fluid-structure interaction. It is characterized by physical
phenomena extremely localized in time and space; they may excite hydroelastic effects
when the typical time duration of the local hydrodynamic load is shorter or comparable
with the typical natural period of the structure. A suitable mathematical model must take
into account all these features. Navier-Stokes equations for the hydrodynamic flow field,
(possibly) coupled with a proper model for the structural part is definitely, the more complete
mathematical method to be used at the purpose. However, it could be extremely challenging
and expensive to be solved numerically, in particular when multiphase flows are involved.

Some simplified assumptions are necessary for modeling the phenomenon; they must
be done looking at the physics of the event as it will be detailed in the following. A first
simplification arises from the modality used to originate the wave-impact events considered
in the present investigation. Indeed, the experimental motion of the tank has been properly
designed in order to realize an ad hoc impact phenomenon during the first two or three
oscillations of the tank and such that the desired impact is the first one which occurs. Because
of this assumption, we can distinguish two stages in the overall flow evolution: i) Single
phase hydrodynamic problem, which characterizes the evolution of the sloshing flow until
the beginning of the impact event. This is identified hereinafter as sloshing stage; ii) Single
or two-phase hydroelastic problem, which characterizes the flow evolution during the impact
event. In this case the local hydrodynamic problem, single or two-phase depending on the
modality of the wave impact, i.e. without or with air-cavity entrapped, is coupled with the
structural problem. This is identified hereinafter as hydroelastic stage.

More in detail, two different scenarios have been considered in the present experimental
investigation during the hydroelastic stage: a) flip-through case; b) an almost breaking wave
that impacts against the wall entrapping a single and well defined gas cavity and producing
a two-phase flow.

Note that this simplification is not valid as it is for a general motion of the tank;
more precisely, a robust procedure must be found in order to recognize automatically the
occurrence of an impact event. However, the aim of the present work is the understanding
of the hydroelastic behavior of a structure when a wave impact occurs; the capability of the
numerical model to be generalized will be left to future studies.

A second strong simplification is directly related to the two-dimensional assumption
done in building the experimental set-up. This motivated the geometry of the tank, with a
dimension along the transversal direction which is one tenth of the in-plane one, and the
motion of the tank, which is prescribed along the longitudinal direction only.

Because of the experimental simplification, the mathematical and numerical models
considered in this work will be 2D.

Although the accuracy used in the preparation of the set-up and in the execution of the
experiments, some of the flow phenomena experimentally observed were intrinsically three
dimensional. This is the case, for example, of the breaking wave entrapping air; the almost
breaking wave crest approaching the wall was characterized by transversal instability on the
wave front, inducing not negligible 3D effects on the closure of the cavity and on the related
air-leakage flow [24], [25]. This is expected to strongly influence the damping of the local
loads. Although the 3D effects are not directly modeled in the numerical approach proposed,
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they will be considered as possible bias in the comparison of the numerical results with the
experimental data.
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3.2 Mathematical Model for the sloshing stage

For the sloshing problem, which concerns the fluid motion up to the starting point of
the impact phenomena, the hypothesis of incompressible and irrotational fluid have been
adopted, then the fluid behaviour can be modelled with the potential flow theory. The effects
of viscosity have been neglected mainly for two reasons, the first one is the short time
evolution of the fluid flow (2-3 sloshing cycles), which does not give enough time for their
development and the second one is the greater contribution of the inertial force term with
respect to the viscous one in the momentum equations. During this stage, the presence of
gas does not affect the evolution of the sloshing flow and it can be neglected for the entire
evolution. Also the characteristic time scales of the hydrodynamic pressure are completely
different from the structural one and no significant interactions between fluid and structure
are expected. For this reason a fully rigid tank is assumed for the sloshing stage. On the
physical assumptions presented, the equations system which describe the sloshing problem
is:

4φ̄(x, t) = 0 in Ω (3.1)

∂φ̄(x, t)
∂n

= u∗(x, t) on Ωsolid (3.2)

FreeS ur f B.C. on Ω f s

The Laplace equation (3.1) for the velocity potential derives from the continuity equation
for incompressible flow and from the hypothesis of irrotational flow (u(x, t) = ∇φ(x, t),
where u(x, t) is the fluid velocity). The boundary conditions associated are, respectively, the
impermeability condition (3.2) on the solid walls of the tank (Ωsolid), where u∗(x, t) is the
solid boundary normal velocity, and the kinematic and dynamic boundary conditions on the
free-surface (Ω f s) that will be detailed in the following section.

Free surface boundary condition

The fully-nonlinear equations for the free surface have been adopted. The kinematic and
dynamic equations state, respectively, that the fluid particles on to the free surface always
remain on it and the pressure must be continuous at the free surface. In the case that the
free surface is considered as a singled-valued function yp = yp(x, t), the kinematic boundary
condition is obtained as:

D(yp − y)
Dt

= 0

∂yp

∂t
=
∂φ̄

∂y
−
∂φ̄

∂x
∂yp

∂x
(3.3)

while the dynamic one, which comes from Bernoulli equation, reads:

p̄ + ρ
∂φ̄

∂t
+
ρ

2
∇φ̄ · ∇φ̄ + ρgy = p0, with p̄ = p0 (3.4)

The equations system (3.1), (3.2), (3.3) and (3.4) is valid in an Earth-fixed (inertial)
reference frame. Otherwise, when the governing equations are expressed in a moving
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coordinate system fixed to the tank, i.e. with the origin on the still water level in the
middle of the tank (see fig.(3.1)), the motion of the tank must be taken in account. While
the Laplace equation is invariant with respect to a change of reference, this is not for the
Bernoulli equation, and how the time derivative of the velocity potential changes under the
reference transform must be studied [11]. The time derivative of the velocity potential in a
“fixed” point (x, y, z) in a non-inertial reference frame can be written in terms of the same
time derivative in an inertial one, as follow:

∂φ̄

∂t noninertial Oxyz
= lim

∆t→0

φ̄(x, y, z, t + ∆t) − φ̄(x, y, z, t)
∆t

(3.5)

∂φ̄

∂t

∣∣∣∣∣
noninertial Oxyz

= lim
∆t→0

φ̄(x′, y′, z′, t + ∆t) + vp · ∇φ̄∆t − φ̄(x, y, z, t)
∆t

=
∂φ̄

∂t

∣∣∣∣∣
inertial Oxyz

+vp · ∇φ̄ (3.6)

where vp is the velocity of the moving reference frame (i.e. considering the only sway
motion of the tank vp = [ux, 0]). The velocity potential for the relative velocity, observed
when moving with the tank and always taking in account the only sway motion, can be
expressed as:

φ = φ̄ − uxx (3.7)

where φ̄ is the absolute velocity potential, i.e. ∇ ¯phi is the velocities in the inertial
reference system. The Bernoulli equation in a non-inertial reference system, with
acceleration ax, considering the relative velocities reads:
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ρ
∂φ

∂t
+ xρax −

ρ

2
u2

x +
ρ

2
∇φ · ∇φ + ρgy = 0 (3.8)

Also the conditions on the solid boundary will be different, in particular along the vertical
walls, the gradient of the velocity potential, in the normal direction, has to be set equal to
zero as the tank speed in the moving reference frame is zero. The kinematic free-surface
boundary condition, as well as the Laplace equation, will not change. For most of the
time evolution of the sloshing stage, the free-surface can be considered as a single-value
function yp(x, t) and the time evolution of the particles can be tracked in a semi Lagrangian
way, following their motion only along the vertical direction. When the wave is close to
the impact, in the case of both flip-through and air cavity entrainment, the single value
approach for the description of the free surface evolution is not suitable anymore and a fully
Lagrangian model is required. The kinematic and dynamic conditions can be written in the
following formulation, which can be used both for the semi Lagrangian and the Lagrangian
descriptions [32]:

δxp

δt
=
∂φ

∂x
+ (v − ∇φ)T · ∇xp on Ω f s (3.9)

δyp

δt
=
∂φ

∂y
+ (v − ∇φ)T · ∇yp on Ω f s (3.10)

δφ

δt
= −gyp −

1
2
∇φ · ∇φ + v · ∇φ − xax +

1
2

u2
x on Ω f s (3.11)

where δ(·)
δt =

∂(·)
∂t + v · ∇(·).

v is the fluid(particle) velocity. We assume v = {0, δη/δt} for the semi Lagrangian tracking
and v = ∇φ for the Lagrangian one.

Damping due to boundary layer flow
As already said, the viscous effects have been neglected in the mathematical model of

the sloshing stage, here, a procedure to quantify their contribution will be discussed. The
approach, following Faltinsen and Timokha [11], is based on Keulegan’s theory. A two-
dimensional linear flow outside the boundary layer is considered. Assuming no excitation of
the tank, i.e. fixed tank, and concentrating on the velocity potential of a natural mode that is
antisymmetric with respect to the y-axis (fig. 3.1), it is possible to express the total energy,
i.e. sum of kinetic and potential energy, according to the linear potential flow theory as:

E = Ek + Ep =
1
4
ρgA2lB (3.12)

where ρ is the liquid density, A is the wave amplitude, l and B are the length and the breadth
of the tank respectively. Assuming that the dissipation occurs on time scale longer than the
natural period of of the examined mode and considering a laminar boundary-layer flow, it is
possible to express the time rate of viscous dissipation over one period (assuming harmonic
oscillations of the liquid with frequency sigma of the examined mode) per unit area of the
plate, as

˙〈Evd〉 = −12ν
√
σ/2νU2

0(x) (3.13)
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Here ν is the kinematic viscosity of the liquid in the tank and U0 is liquid horizontal velocity
along the vertical walls. Using eq. (3.13) to estimate the viscous contributions from the
bottom and vertical walls of the tank, the total rate of energy dissipation can be written as
function of the total energy as:

˙〈E〉 ≡ −2αT−1E (3.14)

where the coefficient α is defined as

α =

√
πνT
B

[(B
l

) (
1 +

.5kl − kh
sinh(kh) cosh(kh)

)
+ 1

]
(3.15)

If ν = 1.01x10 − 6 m2/s and T = 1.6 sec the coefficient α is 0.0309. This means that for
each sloshing cycle there is a loss of energy due to the viscous boundary layer of about 3.8%
of the total energy. To keep into account, in the mathematical model, the damping effect due
to the boundary layer, the term −2α/Tnφ [11] is added in the right-hand side of the dynamic
boundary condition for the free surface (3.11).
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3.3 Mathematical model for the hydroelastic stage

The hydroelastic stage concerns the coupling of the hydrodynamic and the structural problem,
this implies that the mutual interaction between fluid and structure cannot be separated. As
done for the sloshing stage, also for the structural problem some simplifying assumptions
have been adopted. The dimensions of the elastic panel designed for the experiments
(L ×W × T is 10 × 9 × 0.25 cm), the constrains applied (double-clamp for the upper and
lower sides and free to move for the lateral ones) as well as the hydrodynamic loads allow
to consider the behaviour of the vertical centre-line of the panel as a beam. In particular,
because the pressure loads are orthogonal to the structure and due to the small beam
transverse displacement (w � L), the Euler theory can be considered a good approximation.
In [22] it has been pointed out, from the dynamic analysis of the plate, that its behaviour
is affected by small three-dimensional effects when it is subjected to impulsive load as
the hammer hits. Even if the elastic plate has been hit in the middle, beside the first
bending mode, which mainly characterizes the structural response, also the first two lower
torsional modes appear in the plate response. Because the hydrodynamic load acts along
the whole breadth of the plate in an almost uniform way, no three-dimensional effects are
expected. Furthermore, the analysis of the natural frequencies of the plate shows a quite
good agreement with the natural frequencies estimated with the Euler beam theory, at least
for the first two bending modes (as discussed in the experimental setup section). This
supports the use of an Euler beam model for the plate. A modal expansion in terms of
eigenfunctions has been used in the following for the representation of the beam deflection
w(y, t). For the estimation of the hydrodynamic loads a proper model for the fluid problem
is required. This stage can be characterized by a single or two-phase problem depending
on the impact scenario. In both cases the viscous effects for the hydrodynamic problem are
negligible with respect to the inertial ones and the problem can be modelled as already done
for the sloshing stage. Differently from the flip-through case, where the fluid problem can
be considered as a single phase flow for the entire evolution of the phenomena (sloshing +

hydroelastic stages), in the case of impact with gas entrainment the presence of the gas phase
cannot be excluded. In particular, the presence of the gas is important since the formation of
the cavity and subsequently for the impact evolution. During the initial stage, gas leakage
phenomena occur, modifying the following evolution of the cavity once it is completely
closed against the wall. During the initial phase, before the cavity closure, the hypothesis of
incompressible flow can be extended also to the gaseous phase, as it is expected a limited
effect of the gas flow on the liquid evolution. After the cavity closure compressible effects
must be taken into account for the gas inside the cavity.

The mathematical formulation of the simplified hydroelastic problem reads:
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p(y, t,w) = MB
∂2w(y, t)
∂t2 + EI

∂4w(y, t)
∂y4 , a ≤ y ≤ b (3.16)

w(y, t) = 0, ∀t, y = a, b (3.17)
∂w(y, t)
∂y

= 0, ∀t, y = a, b (3.18)

4φ = 0, in Ω (3.19)
∂φ

∂n
= 0, on Ωrigid (3.20)

∂φ

∂n
= ẇ(y, t) · ~n, on Ωelastic (3.21)

∂Xp

∂t
= ∇φ +

(
v − ∇φ

)T
· ∇Xp on Ω f s (3.22)

δφ

δt
= −gyp −

1
2
∇φ · ∇φ + v · ∇φ +

p0 − p(t)
ρ

− xax +
1
2

u2
x on Ω f s (3.23)

Eq. 3.17 is the beam equation with a<=y<=b the beam position on the right tank wall;
the rest of this and the other walls are assumed rigid. Here MB is the mass of the beam
per unit length, E is the Young modulus and I is the area moment of inertia of the beam
cross-section. Equations 3.17 and 3.18 represent the beam boundary conditions reproducing
clamped-end constrains at the beam ends y=a and b. Equations ??-?? are the Boundary
Value Problem (BVP) for the velocity potential in the liquid domain written in the tank fixed
reference frame. In order, we have the governing equation, impermeability condition along
the rigid and the elastic (beam) walls and the kinematic and dynamic free-surface boundary
conditions. Here Ωelastic refers to the wetted part of the beam, i.e. a ≤ y ≤ min(b, h∗(t)),
where h∗(t) is the instantaneous wave elevation on the right wall.

Eqs. (3.16)-(3.23) represent a general formulation of the hydroelastic problem, with
coupling between fluid and structural evolutions given by the hydrodynamic pressure term
in the beam equation. They can be used in the case of a flip-through impact only. In fact the
additional condition, that has to be added is the Bernoulli equation (3.23), where, for the
dynamic boundary condition on the free-surface, is required that the pressure is continuous
through it, i.e. p(t) = p0.

Otherwise, in the case of impact with gas entrainment, a mathematical model for the
gaseous phase must be added. During the first stage, when the cavity is not yet closed
against the wall, the hypothesis of incompressible and irrotational flow can be adopted also
for the gaseous phase. At the interface between the two phases the pressure and the normal
component of the velocity are required to be continuous.

Differently, when the cavity is closed, the gas compressibility causes an oscillatory
motion characterized by the natural frequency which depends on the gas-cavity properties.
The inner pressure oscillates with the same frequency. In the dynamic boundary condition
at the free surface, the dynamic pressure must be set equal to the pressure inside the gas
cavity. In the following a simplified mathematical model, which describe the behaviour of
the cavity is presented.



48 3. Mathematical Model

3.3.1 “Lumped” model for the gas-cavity

The proposed model is valid after the closure of the gas-cavity against the wall and it
does not take into account leakage phenomena which are present just before the closure of
the cavity. For the sloshing model, the simplifying hypotheses adopted are still valid, the
liquid can be considered even now as inviscid and irrotational and also the hypothesis of
incompressibility holds because the time scales of the pressure oscillations are not such to
induce compressibility effects. The pressure inside the gas cavity is assumed to be spatially
uniform and adiabatic or isothermal process for the gas can be considered. The fact that
thermal conductivity, as well as shear viscosity and acoustic wave radiation are not taken into
account means that no damping sources are present in the model. Two additional unknowns
are added to the problem: the pressure and the gas density and two more equations are
required. The first one establishes a relationship between pressure and density in the case of
adiabatic or isothermal transformation:

p̄g(t) = p0g

(
ρg

ρ0g

)k

(3.24)

where p̄g(t) and ρg are the instantaneous pressure and density inside the cavity, p0g and
ρ0g are the pressure and the density at the moment of the cavity closure and k = 1 or k = 1.4
are respectively the coefficients for an adiabatic or isothermal transformation. The initial
values for pressure and density can be set equal to the ullage values, i.e. p0g = p0 and
ρ0g = ρ0, or they can be estimated by taking into account the leakage phenomena present
just before the closure of the cavity. The latter requires the solution of the gas problem at
least during the final part of the sloshing stage.

The second equation is the mass conservation for the gas cavity, which is expressed as
Ωg0ρ0g = Ωg(t)ρg. With this, it is possible to write the pressure as function of the cavity
volume Ωg(t). While Ωg0 is the initial volume of the cavity at the time of the closure.
Combining the last link with eq. (3.24), we have

p̄g(t) = p0g

(
Ωg0

Ωg(t)

)k

(3.25)

It is not easy to identify the transformation that better characterizes the relationship between
pressure and density. As shown in [1], through a linear steady state thermodynamical analysis
of the cavity problem, the adiabatic transformation seems to be the most appropriate.

3.3.2 Structural sub-problem

The deflection w(y, t) can be expressed in terms of the eigenfunctions ψk(y) of the structural
differential operator L = EI∂4(•)/∂y4:

w(y, t) =

∞∑
k=1

wk(t)ψk(y) (3.26)

The expression of the eigenfunctions and the relative eigenvalues are obtained by solving
the differential problem L[ψk(y)] = λ4

kψk(y) with the boundary conditions (3.17-3.18). A
possible solution for the eigenfunctions is:
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ψk(y) = Ak sin(λky) + Bk cos(λky) + Ck cosh(λky) + Dk sinh(λky) (3.27)

With the assignment of the boundary conditions it is possible to evaluate the constants
Ak, Bk,Ck,Dk, which are determined but for a multiplicative constant:

Ak = −Bk
cos(λ(a − b)) − cosh(λ(a − b))
sin(λ(a − b)) − sinh(λ(a − b))

Bk = −1

Ck = −Ak

Dk = −Bk

and a compatibility condition which allows for the calculation of the eigenvalues λk

cos(λk(a − b)) cosh(λk(a − b)) = 1

Because the structural operator L is self-adjoint, both the eigenfunctions and the
eigenvalues are real and the eigenfunctions are orthogonal. From the physical point of
view, the eigenfunctions ψk(y) correspond to the natural dry modes of vibration of the

structure associated to the natural angular frequencies ωk =

√
λ4

k
MB

.
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3.4 Hybrid hydroelastic model

In this section, a semi-analytical hybrid hydroelastic model is presented, where the fluid
dynamic problem is not solved numerically but via a mix of a mathematical model for the
added mass and experimental results for the hydrodynamic loads.

The proposed hybrid model is based on the assumptions of a weak interaction between
excitation and response and on the absence of gas cavity during the impact, so that the
forcing term p(y, t,w) can be decomposed as the following linear superposition:

p(y, t,w) = pr(y, t) + pv(y, t,w) (3.28)

The first contribution pr(y, t) is the pressure field induced by a wave impact event on the
fully rigid wall. It is a fully nonlinear load which depends on the nonlinear kinematics of
the wave impact and needs to be modeled as such. In the present case it is modelled using
the experimental value of the pressure measured during the experimental activities on a fully
rigid tank. During these experiments the same filling condition and the tank motion used
in the case of a deformable panel, have been reproduced, hence the features of the wave
interacting with the wall are the same.

The second contribution, pv(y, t,w) is the vibrational pressure, which solves the
hydroelastic problem of the vibrating beam around a rest state. Using the potential
flow assumption for an incompressible fluid with density ρw, the pressure forcing term
pv = −ρw

∂φv
∂t is given by the linearized Bernoulli equation. The vibrational potential

function is instantaneously determined as the solution of the following boundary value
problem:

4φv = 0 in the water fluid
∂φv

∂n
= 0 on the rigid walls of the tank

∂φv

∂n
=
∂w
∂t

a ≤ y < min(b, h(t)) (3.29)

φv = 0 y = h(t)

In this case the vibrational pressure is assumed to be independent from the local shape
of the free surface and from the local kinematics of the wave impact (which is already
taken into account in the term pr). However, pv accounts for the instantaneous wetted
length h(t) of the vertical beam, influenced by the evolution of the impact event. Because
of the large value of the lowest wetted natural vibration frequency of the beam (with
respect to the typical frequency range when gravity affects the free surface behavior), a
high-frequency approximation is assumed for the combined free surface boundary condition.
This approximation simplifies greatly the problem and is also consistent with the fact that,
during the water impact with the tank and subsequent water rise up, the liquid velocity at
the free-surface is expected to be almost vertical near the wall. Its validity can be verified
through the comparison with the experiments. Like pr, also the wetted length h(t) of the
beam depends on the evolution of the wave, hence it cannot be predicted numerically and it
has been measured from the experimental images. Recalling eq. (3.16), the hydroelastic
problem reads:
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MBẅk(t)ψk(y) + EIλ4
kwk(t)ψk(y) = −ρw

∂φv

∂t
+ pr(y, t) (3.30)

where the beam deflection is expressed in terms of the eigenfunctions, here the repeated
index k means summation, and the vibrational pressure through the linearized Bernoulli
equation. The velocity potential associated to the k − th natural mode of the beam is defined
as ẇkφk(y). By replacing the last definition in eq. (3.30) and projecting on the generic m− th
mode ψm

(Mmm + Amm)ẅm(t) +
∑
k,m

Amkẅk(t) + Kmmwm(t) = prm(t) (3.31)

where

Mmm = MB

∫
l
φm(y)φm(y) dy

Amm = ρw

∫
l
ψm(y)φm(y) dy

Akm = ρw

∫
l
ψk(y)φm(y) dy, k , m

Kmm = EIλ4
m

∫
l
φm(y)φm(y) dy

are, respectively, the mass, the hydrodynamic added mass and the stiffness matrices and
prm(t) is the generalized hydrodynamic pressure. Due to the orthogonality property of
the eigenfunctions the mass and stiffness matrices are diagonal, while the added mass
matrix is full. The wetted natural frequencies of the beam can be easily evaluated from the
homogeneous solution of eq. (3.31), in particular considering only the first natural mode
(m = k = 1):

ω1w =

√
K11

M11 + A11
= ω1

√
M11

M11+A11

(3.32)

Note that the wetted natural frequency is equal to the dry one ω1 when A11 = 0. The
added mass matrix requires the solution of the boundary value problem (3.29), which can be
rewritten, introducing the eigenfunction expansion for the beam deformation, as follows:

4φv = 0 in the water domain

φv = 0 y = h(t)

∂φv

∂n
=

ψ(y, t) a ≤ y ≤ a + l
0 otherwise

(3.33)

Numerical solution

Eq. (3.31) is integrated in time by using a fourth-order Runge-Kutta method. At each
time step, the forcing pressure pr(y, t) is prescribed by using the experimental distribution
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Figure 3.2. Variation of the first (blue) and second (green) wet natural frequency as function of
the filling depth. Symbols are obtained from the HOBEM, while lines come from the Fourier
Transform method.

measured through the pressure transducers distributed along a rigid wall located like the
beam in the fully rigid experiments. The vibration potential φv comes from the numerical
solution of the boundary value problem (3.33). A possible solution was proposed by
Faltinsen and Timokha [11] with an analytical solution assuming a Fourier expansion for ψ
and φv but its validity is limited to the fully wet beam case. Since the dynamics of the wave
impact phenomena imposes a rapid change of the beam conditions from completely dry to
fully wet, a numerical solution is used to solve the vibrational problem associated to each
mode. The vibrational potential is assumed of the form

φv =
∑

n

An sin
[
(2n + 1)π

y
2h

]
cosh

[
(2n + 1)π

x + L
2h

]
(3.34)

which satisfies the Laplace equation and the boundary conditions on the free surface,on the
bottom and on the wall opposite to the impact of problem (3.33). This corresponds to using
the Fourier Transform method, thus a linear system is solved for the unknown coefficients An

which forces the fulfillment of the boundary condition on the tank side with the deformable
beam. At each time step t, h(t) is measured from the corresponding experimental image.

The present solution of the potential has been validated against the results of a Higher
Order Boundary Element Method (HOBEM) used to solve problem (3.33). Figure 3.2 shows
an estimation of the first two natural frequencies as function of the wetted length of the
beam. Problem (3.33) is solved considering different wetted lengths, from the dry to a fully
wet condition for the estimation of the added mass contribution. The lowest dry natural
frequency ωd(1) = 1575 Hz has been used to make the data dimensionless. The symbols
represent the value of the natural frequencies obtained by the solution of the boundary value
problem (3.33) through the HOBEM method, while the lines stand for the solution obtained
with the shape function (3.34). The good agreement between the two solutions confirms the
trustworthiness of the second approach (shape function), which is more advisable because
of its higher efficiency.

In figure 3.3 the comparison of the model with the experimental results is shown.
The purple lines represent the temporal evolution of the strain recorded in the middle



3.4 Hybrid hydroelastic model 53

of the structure, the black ones are the results obtained via the model while the dashed
green line (when present) is the value of the instantaneous wave height at wall measured
through the fast-cam image. In the top-left plot it is shown the comparison assuming the
structural problem undamped and the instantaneous wave height changing in time according
to the measured values. On the right the structural damping, which exponential decay
coefficient has been estimated with free-decay test in dry condition, was employed. From
the comparison it is quite evident how only the structural damping gives an underestimation
of the real damping, which characterizes the hydroelastic phenomenon. In terms of natural
vibration frequency, the instantaneous beam wetted length, and hence the added mass effects,
gives a quite good approximation of the frequency up to ≈ 5 ms, after such time, considering
the further increase of the wave elevation gives a natural frequency lower than the actual
one (left and right bottom panels in fig. 3.3). In the bottom-left plot, the exponential dacay
coefficient has been assumed depending on the instantaneous wetted length of the beam,
according to the law reported in section (2.1.2) (see figure (2.5)). The comparison shows
a better behaviour of the model. Finally, in the last plot (bottom-right), the instantaneous
wave height has been restricted to ≈ 0.22 cm, which corresponds to a fully wet condition for
the flexible structure. This assumption allows to reproduce the correct vibration frequency
for a longer time (up to ≈ 15 ms). Anyway, at a later time the period of oscillation of the
measured signal is larger than the simulated one, pointing out the continuous, even if slow,
growth of the added mass effects. The overestimation of the added mass effects in the model
can be justified with the fact that a flat free-surface condition with a water depth equal to
the instantaneous wave height at the wall is used, whereas, it seems that the more the wave
height grows (h(t) ≥ 0.22 cm) the more is the influence of the free-surface shape (for the
added mass estimation).

In terms of oscillations amplitude (with reference to the last plot, bottom-right), the
model is not able to reproduce the maxima and minima values recorded in the experiments,
especially in the fully hydroelastic stage and this can be ascribed to a stronger interaction
between fluid and structure than the modelled one. Later, i.e. for t ≥ 6 - 7 ms, the hydroelastic
evolution resembles the free-vibration behaviour with an almost constant added mass.
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Figure 3.3. Elastic test. Comparison between the numerical prediction (purple line) and experiment
(black line). If present the dashed green line shows the instantaneous wave elevation at wall. In
the top-left panel, no damping term is used in the model. In the bottom-left panel a constant
structural damping is added to the model. On the top-right panel, a time varying damping
coefficient is used. In the bottom-right panel, the time history of the wave height has been
restricted until to 0.22 cm.
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3.4.1 Gas cavity analytical model

With the intent of deriving an analytical model also for the hydroelastic problem when a
gas cavity is present during the impact, in this section the preliminary study is presented
concerning the problem considering the structure as rigid instead of elastic. The study starts
from the analytical model proposed by Faltinsen and Timokha [11] and in the successive
improvement in [2]. The model in [11], concerns the problem of a cavity entrapped by
a wave against the roof of a sloshing tank. It is proposed both a linearized estimation of
the cavity natural frequency and also the non-linear dynamic system, which describes the
problem. In [2] the linearized problem has been generalized also to a breaking wave, which
entraps gas cavity on the vertical wall. The influence of the free surface shape has been also
considered.

Here, the non linear model for a cavity entrapped against a vertical wall is taken into
account. This is done because the non-linearity plays an important role if the fluid structure
interaction is considered and also because in case of low ullage pressure the experiments
show a strong non-linear behaviour of the gas cavity both in rigid and elastic case.

Differently from the hybrid analytical model presented in the previous section
(concerning the flip-through impact) where the forcing hydrodynamic loads have been
estimated from the rigid test, in this case, the sloshing stage has been neglected at all and the
effects of the wave impact, i.e. impulsive hydrodynamic load, has been reproduced using
the same approach as done for the water entry problem.

The physical assumptions adopted here are the same as those considered in the cited
works and discussed in section (3.3.1). In figure (3.4) the simplified physical problem with
the associated boundary conditions is shown. A thin gas cavity is located in C ≤ y ≤ B.
The gas is considered compressible and characterized by spatially homogeneous properties.
For the water flow it has been neglected both viscosity and compressibility effects, the fluid
has also been considered irrotational and this allows to use the potential flow theory. The
domain is assumed infinite in the positive x direction. The frequency of the cavity can be
considered high so to avoid the gravity effect and then the flat free surface condition with
constant null value of the velocity potential can be adopted (φ = 0). On the rigid wall
the impermeability condition is imposed. In order to satisfy the impermeability condition
on the bottom of the tank, a mirroring of the physical domain with respect to the axis
y=0 is used. For the estimation of the velocity potential, the idea is to collocate a vortex
distribution along the vertical wall, with the exception of the cavity area, such as to satisfy
the boundary conditions. This approach is similar to the one already proposed by Newman
in the study of the lifting surface problem [27]. To transform the domain in a simpler one
for which the analytical solution of the boundary value problem can be easily derived, the
Schwarz-Christoffel mapping is used. In particular the transformation (3.35), allows to
transform a semi-infinite rectangle in a infinite half plane where all the physical boundaries
lie on the axis η = 0. Figure (3.5) shows the transformed domain with the new boundary
conditions.The half plane ξ > 0 represents the mirrored domain.

z = M cosh−1(ξ) + N (3.35)

Always through eq. (3.35) all the boundary conditions are modified for the new domain
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following the expressions:

ũ =
−2hv

π
√

1 − ξ2
, ṽ =

2hu

π
√

1 − ξ2
, |ξ| < 1 (3.36)

ũ =
2hu

π
√
ξ2 − 1

, ṽ =
2hv

π
√
ξ2 − 1

, |ξ| > 1 (3.37)

where ũ, ṽ are the velocity components in the transformed plane and u, v are the components
in the physical plane. h is the water depth and in the sketch is represented by the length of
the segment ĀD The velocity components in the transformed plane, when η→ 0+, can be
expressed as function of the vortex density γ(ξ) as:

ũ(ξ) = −
1
2
γ(ξ) (3.38)

ṽ(ξ) = −
1

2π
−

∫ a

−a

γ(x′)
x′ − ξ

dx′ (3.39)

where the integral −
∫

means that the Cauchy Principal Value method has to be used for the
evaluation of the integral. A solution for eq. (3.39), considering the function γ(ξ) unbounded
at both extrema, is:

γ(ξ) =
2
π

1√
a2 − ξ2

−∫ a

−a

√
a2 − x′2

x′ − ξ
ṽ(x′)dx′ + C

 (3.40)

where the constant C can be assumed equal to zero because of the symmetry of the problem
about the origin d. In the interval c ≤ |ξ| ≤ b we are looking for the homogeneous solution
of (3.40), (i.e. γ(ξ) = 0), for instance, considering the interval −b ≤ ξ ≤ −c it is possible to

A

B

C

D

A∞

D∞

Figure 3.4. Sketch of the proposed mathematical model for the gas cavity problem. AA∞ free
surface, AD tank vertical wall, DD∞ tank bottom, BC cavity size. The boundary conditions and
the governing equation are also reported.
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Figure 3.5. In the half plane η > 0 we have the transformed boundary conditions for the free
oscillation problem. For η < 0 we find the boundary conditions for the forced problem.

rewrite the integral equation as follow:

0 = −

∫ −c

−b

√
a2 − x′2

x′ − ξ
ṽ(x′)dx′ +

∫ b

c

√
a2 − x′2

x′ − ξ
ṽ(x′)dx′ (3.41)

By using the symmetry property for the velocity function ṽ(ξ), which requires it to be an
even function ṽ(ξ) = ṽ(−ξ), the integral may be rewritten as:

0 = −

∫ −c

−b

√
a2 − x′2

x′2 − ξ2 ṽ(x′)dx′ (3.42)

by defining
√

a2−x′2ṽ(x′)
x′ = g(x′) and operating the following change of variable −

√
η = x′,

then we get an integral equation (eq. 3.43) for which the solution (eq. 3.44) is known:

0 = −

∫ b2

c2

g(η)
η − y

dη (3.43)

g(y) =
1
π2

D(t)√
(y − c2)(b2 − y)

(3.44)

and then, the velocity distribution along the cavity is

v(ξ) =
1
π2

D(t)ξ√
a2 − ξ2

√
(ξ2 − c2)(b2 − ξ2)

(3.45)

The same steps are valid for the interval c ≤ ξ ≤ b and give the same result. Once the
vertical velocity is known, it is possible to estimate the vorticity distribution γ(ξ) along the
rigid wall by the (3.40)

γ(ξ) =
−2Dξ

√
a2−ξ2

√
(ξ2−c2)(ξ2−b2)

−a ≤ ξ ≤ −b

γ(ξ) =
2Dξ

√
a2−ξ2

√
(−ξ2+c2)(−ξ2+c2)

−c ≤ ξ ≤ c

γ(ξ) =
−2Dξ

√
a2−ξ2

√
(ξ2−c2)(ξ2−b2)

b ≤ ξ ≤ a

(3.46)

From the expression of the horizontal velocity (3.38), it is possible, by integration and by
using the boundary condition on the free surface (φ(−a) = 0), to estimate the value of the
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velocity potential on the left boundary of the cavity:

∫ −b

−a

∂φ

∂ξ
dξ =

∫ −b

−a
−

1
2
γ(ξ)dξ = φ(−b) − φ(−a) = φ(−b) =

−D(t)K
[√

1−(b/a)2

1−(c/a)2

]
π2
√

a2 − c2
(3.47)

where K(k) is the complete elliptic integral of the first kind.
With the assumptions that the non linear term as well as the hydrostatic term can be neglected
in the Bernoulli equation, the dynamic pressure on the cavity side, and then also inside, may
be expressed as the time derivative of the velocity potential

pD = −ρl
∂φ

∂t
= ρl

−Ḋ(t)K
[√

1−(b/a)2

1−(c/a)2

]
π2
√

a2 − c2
(3.48)

The pressure inside the cavity is expressed as the sum of the static pressure p0 and
the dynamic pressure pD. If the gas is considered to be compressed with an adiabatic
transformation then the relation between pressure and density is:

pgas/p0 = (ρgas/ρ0)γ → ρl

−Ḋ(t)K
[√

1−(b/a)2

1−(c/a)2

]
π2
√

a2 − c2
= (ρgas/ρ0)γ − p0 (3.49)

where γ is the ratio of specific heats. Because in this model the formation of the cavity is
not considered and then leakage phenomena are neglected, the static values of pressure and
density are the ullage one. The hypothesis about leakage phenomena allows to write the
mass conservation equation for the gas cavity as Ωgasρgas = Ω0ρ0 and it can be used in eq.
(3.49) to express the pressure as function of the volume for which its time rate of change
can be estimated by integrating, along the cavity, the vertical component of velocity v(ξ):

Ω̇ = −

∫ −c

−b
v(ξ)dξ = −

D(t)
π2

∫ −c

−b

ξ√
a2 − ξ2

√
(ξ2 − c2)(b2 − ξ2)

dξ

= −
D(t)

π2
√

a2 − c2
K


√

1 − (b/c)2

1 − (a/c)2

 (3.50)

By defining D1 =
−D(t)K

[√
1−(b/a)2

1−(c/a)2

]
π2
√

a2−c2
and by taking the time derivative of eq. (3.50) and then

by substituting the value of D1 from (3.49), a non linear second order equation is obtained:

Ω̈(t) = −
p0

ρl

(
1 −

(
Ω0

Ω(t)

)γ) K
[√

1−(b/c)2

1−(a/c)2

]
K

[√
1−(b/a)2

1−(c/a)2

] (3.51)

Through the linearization of the term Ω−γ it is possible to calculate a linear estimation of the
cavity natural frequency

Ω̈(t) = −
p0γ

ρlΩ0
K̄Ω(t) +

p0γ

ρl
K̄ (3.52)

where K̄ is the ratio between the two elliptic integrals. The system looks now as a classical
mass-spring system with natural frequency equal to:

σ2
n =

p0γ

ρlΩ0
K̄ (3.53)
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Figure 3.6. Non dimensional natural frequencies of the cavity as function of the initial cavity radius
at different position of the cavity center(yb).

Figure 3.6 shows the non dimensional natural frequency as function of the cavity radius
and position of the cavity center with respect to the free surface. The natural frequency
approaches to zero when the radius goes to zero too. When the cavity radius is such that the
upper part of the cavity is close to the free surface, the frequency tends to infinity while if
the lower part is close to the bottom of the tank the frequency approaches to a finite value. It
is also possible to observe as the natural frequency, for a fixed initial radius r0, is inversely
proportional to the distance from the free surface. The comparison with the analytical model
by Topliss shows a quite different behavior of the natural frequency. The proposed model
shows an underestimation of the natural frequency if compared with the Topliss’s model.
An additional comparison with the results of Topliss’s model and with experiments is shown
in table (3.1). The experimental activity concerns the entrainment of cylindrical air cavity
during a wave impact against a vertical wall. Differently from the Topliss model, which
predicts the natural frequency with a good accuracy in case of large air cavity, the proposed
model seems to be more accurate in the case of small cavity radius. In any case, some
differences with respect to the experimental results, for all the data, are shown. This could
be ascribed to the different hypotheses made in the analytical models with respect to the
experimental tests.

Equation (3.51) can be solved numerically with the suitable initial conditions. The
proposed models are used in the following to evaluate the cavity natural oscillation frequency
starting from initial conditions from the experimental activity. In particular, as initial time
(t0 = 0) the instant for which, the pressure transducer closer to the gas cavity recorded its
maximum value has been considered. In this condition the time rate of change of the cavity
volume is equal to zero, and then Ω̇(0) = 0, while the cavity volume Ω(0) can be estimated
from the fast cam image. In fact, once the volume and the pressure at t = 0 are known, from
eq. (3.49) combined with the continuity equation it is possible to estimate the equilibrium
volume of the cavity Ω0 = Ω(0)( p(0)

p0
+ 1)1/γ.
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Figure 3.7. Comparison of the velocity potential along the vertical wall calculated with the proposed
analytical model and with the Topliss model. The center of the cavity is at yb/h = 0.5455

A different way to assign the initial condition to the dynamic problem is to consider the
pressure impulse. Integrating in time eq. (3.48) from t0 to t1 = 0 and using the condition
D1(0) = 0 we have ∫ t1

t0
pDdt = ρLD1(t0) = −ρL

Ω̇(t0)
K̄

(3.54)

while the initial condition for the cavity volume is Ω(t0) = Ω0.
In figures (3.9 - 3.14) the liquid and cavity configurations chosen for the free evolution

problem with respect to the real case are shown (top image). The blue line represents the
flat free surface, the water depth has been chosen as the wave height at the moment of the
impact when the pressure reaches is maximum value. During the whole evolution of the
impact the water depth is considered constant. This implies that also the distance between
the cavity center and the free surface is constant. The red line shows the gas cavity form
which has been assumed semi-circular. The yellow markers show the position of the five
pressure transducers along the vertical wall. The lower panels show the comparison with
the experiments. The left panel shows the pressure time evolution recorded by the pressure
transducer inside or closer the gas cavity (blue line) and the time evolution of the pressure
inside the cavity calculated with the analytic model (red line). On the right panel the Fast
Fourier Transform of the signals plotted on the left are shown.

From the comparison of the results emerges that the non-linear effects characterize the
cavity behaviour specially when the ullage pressure is much lower than the atmospheric
value. The cavity size shows a dependence from the ullage pressure. In particular, as the
pressure decreases, the dimension of the cavity seems to decrease too for the cases marked
63 mm (medium cavity size) while an opposite behaviour is observed for the cases 65 mm
(small cavity size). In both cases, the natural oscillation frequency decreases with the ullage
pressure. From the linear model it has been observed that the resonance frequency decreases
as the cavity size become larger, this can lead to say that, in this case, the influence of
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distance d (m) distance yb (m) radius r0 (m)
frequency
(Hz) Hattori
experiment

frequency
(Hz) Topliss
analytical
model

frequency
(Hz)
proposed
model

.06 .016 .011 210 235 194

.06 .017 .011 210 228 190
.061 .017 .011 210 228 190

.031 .038 .007 210 233 206

.032 .04 .007 210 231 204

.033 .042 .007 210 229 202

.031 .024 .008 190 241 208

.031 .04 .008 190 207 183

.031 .044 .008 190 202 179

.027 .025 .02 104 142 111

.029 .041 .02 104 106 88

.029 .043 .02 104 104 87

.029 .044 .024 100 93 76
.03 .047 .024 100 90 74
.03 .05 .024 100 87 72

.032 .037 .02 99 113 92

.032 .044 .02 99 104 87

.032 .049 .02 99 99 84

Table 3.1. Comparison of the natural oscillation frequency of a gas cavity during a wave impact. In
the first two columns the distance of the cavity center from the bottom of the tank and from the
free surface are indicated respectively, in the third column the cavity radius is indicated while in
the last three columns the natural frequency estimated from the experiment, from the Topliss
analytical model and from the proposed model are reported.
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Figure 3.8. Non dimensional natural frequencies (blue dots) compared with the ones from Topliss
analytical model (black circles).

the ullage pressure on the natural frequency of oscillation is most influent with respect
to the cavity size and position. In all the presented cases, the comparison of the natural
frequency shows a quite good agreement between the values obtained experimentally and
those calculated numerically with the analytical model, in special way, with the non-linear
one. The Topliss’s model shows an overestimation of the frequency for all the cases.
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Figure 3.9. Medium cavity size at 1000 mbar, r0=.0052 m, d=.1729 m, h=.1910 m, Non-Linear
model 320 Hz, Linear model 319.61 Hz, Topliss model 366.89 Hz, experimental ≈ 320Hz.
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Figure 3.10. Medium cavity size at 400 mbar, r0=.0051 m, d=.1719 m, h=.1873 m, Non-Linear
model 200 Hz, Linear model 213.56 Hz, Topliss model 246.40 Hz, experimental ≈ 185Hz.
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Figure 3.11. Medium cavity size at 100 mbar, r0=.0045 m, d=.1709 m, h=.1887 m, Non-Linear
model 100 Hz, Linear model 114.32 Hz, Topliss model 130.63 Hz, experimental ≈ 90Hz.
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Figure 3.12. Small cavity size at 1000 mbar, r0=.0073 m, d=.1694 m, h=.1899 m, Non-Linear model
240 Hz, Linear model 239.2 Hz, Topliss model 276.95 Hz, experimental ≈ 233Hz.
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Figure 3.13. Small cavity size at 400 mbar, r0=.0103 m, d=.1722 m, h=.1918 m, Non-Linear model
118 Hz, Linear model 120.14 Hz, Topliss model 141.72 Hz, experimental ≈ 120Hz.
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Figure 3.14. Small cavity size at 100 mbar, r0=.012 m, d=.1679 m, h=.1890 m, Non-Linear model
50 Hz, Linear model 52.9 Hz, Topliss model 62.68 Hz, experimental ≈ 50/55Hz.
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A

B

C

D

A∞

Figure 3.15. Top sketch: representation of the physical problem with boundary conditions and
governing equation. AA∞ free surface, EE∞ tank bottom, AE tank vertical wall, BC gas cavity
and D lower extrema of the elastic beam. Bottom sketch: geometry and the boundary conditions
are reported in the transformed plane (ξ, η).

3.4.2 Gas cavity hydroelastic model

Differently from the previous section, where the free oscillating problem of a gas cavity in
contact with a rigid vertical wall has been considered, in this section the coupled forced
problem of the gas cavity in contact with an elastic wall is presented. Figure 3.15 shows
the characteristics of the problem in the physical (upper drawing) and the transformed
(lower drawing) plane respectively. The elastic structure is represented by the red vertical
line, the gas cavity is located between the point B and C. In order to take into account the
forcing term, the velocity potential φ(x, y, t) has been considered as the superposition of
two contributions: the first due to the vibrational problem φbc and the other one due to the
incident flow φr = xV(t) f (y). The structure is modeled by the Euler beam theory and the
diplacement is expressed in term of its first eigenfunciton only.
As for the previous case, we are looking for a vortex distribution along the vertical wall,

with the exclusion of the cavity area, with the form of eq. (3.40):

γ(ξ) =
2
π

1√
a2 − ξ2

−

∫
wetbeam

√
a2 − x′2

x′ − ξ
2h
π

(−ẇ1(t)ψ1(x′) − V(t))
√

1 − x′2
dx′+

2
π

1√
a2 − ξ2

−

∫
cavity

√
a2 − x′2

x′ − ξ
vcav(x′)dx′ =

=
2
π

1√
a2 − ξ2

ẇ1(t) f (ξ) + V(t) fv(ξ) + −

∫
cavity

√
a2 − x′2

x′ − ξ
vcav(x′)dx′

 (3.55)
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Because the vorticity is equal to zero inside the cavity, c ≤ |ξ| ≤ b, by solving integral
equation in the square bracket of eq.(3.55), we get the expression of the velocity inside the
cavity:

vcav(ξ) =
1
π2

− (D(t)ξ + ẇ1(t)F(ξ) + V(t)Fv(ξ)) sign(ξ)√
a2 − ξ2

√
(ξ2 − b2)(c2 − ξ2)

(3.56)

Substituting the expression of the cavity velocity in eq. (3.55), we find the vorticity
distribution along the vertical wall:

γ(ξ) =
2
π

1√
a2 − ξ2

ẇ1(t) ( f (ξ) + G(ξ)) + V(t) ( fv(ξ) + Gv(ξ)) +
D(t)ξsign(|ξ| − c)

π
√

(ξ2 − b2)(ξ2 − c2)


(3.57)

As done for the rigid case, using the expression (3.38) for the horizontal velocity component
and integrating from the free surface (-a) to the cavity boundary (-b) (see eqs. 3.47-3.48),
we get the value of the dynamic pressure inside the cavity:

pd(t) = ρl


−Ḋ(t)K

[√
1−(b/a)2

1−(c/a)2

]
π2
√

a2 − c2
+ ẅ1(t)ΦB + V̇(t)Φv

 (3.58)

By integrating the vertical component of velocity along the cavity (from -b to -c, see eq.
3.50) we get time rate of change of the cavity volume:

Ω̇ = −
D(t)

π2
√

a2 − c2
K


√

1 − (b/c)2

1 − (a/c)2

 + ẇ1(t)ΩB + V(t)Ωv (3.59)

Using the state equation for gases and the mass conservation equation (Ωgasρgas = Ω0ρ0), as
done for the “rigid” model, we obtain the non-linear hydroelastic model:

Ω̇(t) = D1(t)K̄ + ẇ1(t)ΩB + V(t)Ωv + Fµ(Ω)
Ḋ1(t) =

p0
ρl

[
1 −

(
Ω0
Ω(t)

)γ]
− ẅ1(t)ΦB − V̇(t)Φv

Mẅ1(t) + Cẇ1(t) + EI(λ1
l )4w1(t) =

∫
P(y, t)ψ1(y)dy =

∫ −d
−a P(ξ, t)ψ1(ξ) dy

dξdξ

(3.60)

In the first equation of the system (3.60) the artificial term Fµ(Ω) has been added to try to
keep into account the dissipative effects which are not present in the presented model. If the
pressure acting on the beam is approximated by the time derivative of the velocity potential,
P(ξ, t) ≈ −ρdφ(ξ,t)

dt , the R.H.S of the third equation of the dynamic system can be written as:

∫ −d

−a
P(ξ, t)ψ(ξ)

dy
dξ

dξ = −ẅ1Madd + p0

(
−1 +

Ω0

Ω(t)

)γ
Ks − V̇(t)Mv (3.61)

where 
Madd =

∫
ξwetbeam

ρl
(
φb(ξ) − ΦB

ΦR
φr(ξ)

)
ψ1(ξ) dy

dξdξ

Ks =
∫
ξwetbeam

φr(ξ)
ΦR

ψ1(ξ) dy
dξdξ +

∫
ξcavity

ψ1(ξ) dy
dξdξ = Kc + Ψc

Mv =
∫
ξwetbeam

ρl
(
φv(ξ) − Φv

ΦR
φr(ξ)

)
ψ1(ξ) dy

dξdξ
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Figure 3.16. First wet natural frequency as function of the filling depth. Comparison of the results
obtained by solving the fluid problem with a HOBEM method (blue markers) and using the
vortex distribution along the vertical wall.

Taking the derivative with respect to time of the first equation in (3.60) and substituting the
value of Ḋ1 in both the equations we get:Ω̈(t) = −p0

(
Ω0
Ω(t)

)γ
KΩ − µΩ̇(t) + KΩw

C
Mtot

ẇ1(t) + KΩw
KEI
Mtot

w1(t) + p0KΩ + V̇(t)KΩV

ẅ1(t) = p0
(

Ω0
Ω(t)

)γ Ks
Mtot
− C

Mtot
ẇ1(t) − KEI

Mtot
w1(t) − p0

Ks
Mtot
− V̇(t) Mv

Mtot
(3.62)

where Mtot = M + Madd, KΩw = K̄ΦB − ΩB, KΩV = −K̄ΦV + Ωv + KΩwMv/Mtot and
KΩ = K̄/ρl + KΩwKs/Mtot. The time derivative of the unknown function Fµ gives the
damping term µΩ̇.

In figure (3.16) the behaviour of the first wet natural frequency of the beam is shown as
function of its wetted length. It has been calculated avoiding the gas cavity in the analytical
model. The comparison with the values estimated with a HOBEM method shows the same
results which are consistent with the experimental findings [22].

The linearization of the non-linear term Ω−γ in the dynamic system (3.62) allows the
study of coupled eigenvalues as function of different parameters of the system. In figure
(3.17) the behaviour of the coupled problem eigenvalues (dots) is shown as function of the
cavity radius r. The values of the same eigenvalues are also shown when the two problems
(i.e. cavity and beam oscillation) are considered uncoupled (circles, green and magenta,
respectively). It is possible to observe the asymptotic behavior of the eigenvalues (dots):
when the cavity size is very small or comparable with the beam length the eigenvalues tend
to their values in the case of uncoupled problem. In the other conditions the presence of
the gas cavity seems to induce a reduction of the added mass effects on the beam due to
the presence of the liquid (vertical shift of the red line with respect to the purple one). This
is due not only to the fact that the presence of the gas cavity reduces the wetted length of
the beam but also to an additional contribution related to the coupling of the two dynamic
system. In (3.62), in the Madd equation, beside the term φb, which is used for the added
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Figure 3.17. Behaviour of the eigenvalues of the linearized dynamic system as function of the cavity
radius (red and blue dots). The circle show the eigenvalues trends in the case of uncoupled
problem.

mass estimation in absence of gas cavity, it appears the term −ΦB/ΦRφr, which is due to the
coupling of the beam and cavity problems. A further consideration, which can be done by
observing the figure 3.17 is the fact that no resonance condition will occur. The eigenvalues
of the coupled system will be always quite separated.

Figures (3.19) to (3.24) show the comparison between the proposed model and the
experimental results. The cases considered are the same that have been shown for the rigid
wall case. Each panel shows the comparison of the deformation of the structure calculated in
the middle of the beam (top), their Fourier transform (middle) and the hydrodynamic pressure
in two points close to the bottom of the tank (bottom). In each caption the parameters used
in the model are indicated: the water height h, the position of the cavity center yr0, the radius
of the cavity r0 and its volume Ω0, the maximum velocity at the moment of the wave impact
Vmax, the quantity Ta which characterize the impulsive behaviour of the impact and the
damping coefficient µ. All the parameters, with the exclusion of the damping coefficient
and Ta, have been estimated from the experimental activities. In particular they have been
extracted from the images of the fast cam. From the frame corresponding to the closure of
the cavity against the wall the wave height, the radius and the position of the cavity and also
the area where the forcing term acts have been calculated. From the evolution of the wave
before the closure of the cavity, the speed at the instant of the impact has been estimated.
Figure (3.18) shows an example of how the model configuration appears with respect to the
experimental case. The blue line shows the water level, the red half circle represents the
size and the position of the gas cavity, which will be constant for all the temporal evolution.
The green line (which, in the figure, is not in the right scale, its maximum value is 1) shows
the vertical shape of the forcing term φr = xV(t) f (y). Such shape is due to the fact that
the fluid flow, below the cavity, is vertical, while in the upper part (from the cavity center
till the free surface) the flow direction is almost horizontal. The temporal law assumed
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Figure 3.18. Comparison between the experiment and the analytical model in terms of impact
scenario with gas-cavity. The colored lines of the model are explained in the main text.

for V(t) is Vmax/(1 + exp (−T/Ta)). Once the parameters have been fixed, the value of
Ta has been chosen to fit, as much as possible, the first peak of the deformation both in
terms of its maximum value and in terms of rise time. Similar to the experimental results,
also the model shows a behaviour of the system which is driven principally by the cavity
dynamics. The external forcing is such to excite also the natural frequency of the structure
but the pressure oscillation due to gas compressibility inside the cavity prevails. From the
comparison of the Fourier transforms, it is possible to note how the model overestimates
the contributions of the non-linear frequencies, particularly in the case of ullage pressure
equal to the atmospheric value and in case of large cavity. This can be ascribed to a non
accurate modelling of the damping term for the cavity. The hypothesis of stationary state for
the water height at the wall, as well as for the cavity position, used in the analytical model,
is reflected by the fact that the oscillation frequency, which characterizes the model response
does not change in time. While the predicted frequency is quite similar to the experimental
one during the first oscillation cycles (t < 0.01/0.02 sec), successively a temporal shift
between the signals is present in agreement with the increasing of the distance between the
free surface and the cavity, which determines the decreasing of the natural frequency. From
the case in figure (3.21) it is possible to notice that the structure is highly damped when
oscillating in water and the only structural damping, present in the model, is not enough.
In fact the high frequency, associated with the first wet natural frequency of the structure,
persists for a longer time with respect to the experimental case.
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Figure 3.19. Comparison between experiments and analytical model of impact with gas cavity:
Medium size cavity - 1000 mbar. Top plot: structural stresses evaluated in the middle of the
structure. Center plot: Fast Fourier Transform of stress signals. Bottom plot: hydrodynamic
pressure for the two pressure transducers located close to the tank bottom. Parameters used in
the analytical model: h = 0.19765 m, yr0 = .17215 m, r0 = .00463 m, Ω0=3.36E-5 m2, Vmax = 2
m/s, Ta=3.0E-4 s, µ = 200.
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Figure 3.20. Comparison between experiments and analytical model of impact with gas cavity:
Medium size cavity - 400 mbar. Top plot: structural stresses evaluated in the middle of the
structure. Center plot: Fast Fourier Transform of stress signals. Bottom plot: hydrodynamic
pressure for the two pressure transducers located close to the tank bottom. Parameters used in
the analytical model: h = .19507 m, yr0 = .17086 m, r0 = .00376 m, Ω0=2.207-5 m2, Vmax = 2
m/s, Ta=4.6E-4 s, µ = 100.
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Figure 3.21. Comparison between experiments and analytical model of impact with gas cavity:
Medium size cavity - 100 mbar. Top plot: structural stresses evaluated in the middle of the
structure. Center plot: Fast Fourier Transform of stress signals. Bottom plot: hydrodynamic
pressure for the two pressure transducers located close to the tank bottom. Parameters used in
the analytical model: h = .19559 m, yr0 = .17260 m, r0 = .00495 m, Ω0=3.30E-5 m2, Vmax = 2
m/s, Ta=6.2E-4 s, µ = 60.
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Figure 3.22. Comparison between experiments and analytical model of impact with gas cavity:
Large size cavity - 1000 mbar. Top plot: structural stresses evaluated in the middle of the
structure. Center plot: Fast Fourier Transform of stress signals. Bottom plot: hydrodynamic
pressure for the two pressure transducers located close to the tank bottom. Parameters used in
the analytical model: h = .19610 m, yr0 = .17240 m, r0 = .00734 m, Ω0=8.46E-5 m2, Vmax = 2
m/s, Ta=8.0E-4 s, µ = 60.



3.4 Hybrid hydroelastic model 75

Time (sec)
-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

µ
st
ra
in

-60

-40

-20

0

20

40

60

80

100

120

140

experiment

analytical model

Frequency (Hz)
0 500 1000 1500 2000 2500

A
m
p
li
tu
d
e

-2

-1.5

-1

-0.5

0

0.5

1

1.5

experiment

analytical model

Time (sec)
-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

P
re
ss
u
re

(P
a)

-4000

-2000

0

2000

4000

6000

8000

10000

12000

experiment, y=35 mm

experiment, y=50 mm

analytical model, y=35mm

analytical model, y=50mm

Figure 3.23. Comparison between experiments and analytical model of impact with gas cavity:
Large size cavity - 400 mbar. Top plot: structural stresses evaluated in the middle of the structure.
Center plot: Fast Fourier Transform of stress signals. Bottom plot: hydrodynamic pressure for
the two pressure transducers located close to the tank bottom. Parameters used in the analytical
model: h = .19765 m, yr0 = .16306 m, r0 = .00867 m, Ω0=1.18E-4 m2, Vmax = 2 m/s, Ta=9.0E-4
s, µ = 60.
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Figure 3.24. Comparison between experiments and analytical model of impact with gas cavity:
Large size cavity - 100 mbar. Top plot: structural stresses evaluated in the middle of the structure.
Center plot: Fast Fourier Transform of stress signals. Bottom plot: hydrodynamic pressure for
the two pressure transducers located close to the tank bottom. Parameters used in the analytical
model: h = .19817 m, yr0 = .16573 m, r0 = .00695 m, Ω0=7.59E-5 m2, Vmax = 2 m/s, Ta=1.3E-3
s, µ = 60.
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Figure 3.25. Comparison between the exponential decay as function of ullage pressure, for rigid and
elastic test, marked with dashed and continuous lines respectively. The different colors refer to
the three different cavity sizes: blue for large, red for medium and green for small cavity.





79

Chapter 4

Numerical Model

In the previous chapter we introduced the simplified mathematical model which reproduces
the phenomena observed during the experiments and some semi-analytical/analytical
solutions concerning only the hydroelastic interaction disregarding at all the sloshing
problem. Here, the solution of the mathematical problem is treated from a purely numerical
point of view. In the first part, following the scheme of the previous chapter, we present,
separately, the numerical procedures which have been employed for the solution of the
three mathematical sub-problems. For each of them, the results of the numerical schemes
are compared against reference case in order to check the accuracy. In the second part of
the chapter, the hydroelastic numerical model is discussed. In particular the coupling of
the sub-problems during the time integration. Due to numerical difficulties arised during
the simulation of the wave impact events, any fully numerical results of the hydroelastic
interaction will be presented. Alternatively, the results of sloshing stage simulation, just
before the impact phenomenum, has been employed for a parametric study on the forcing
term for the semi analytical model proposed in the previuous chapter.
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Figure 4.1. Domain discretization.

4.1 Sloshing Stage

The sloshing mathematical problem (3.1), (3.2), (3.3) and (3.4) is solved with a two step
mixed Eulerian-Lagrangian (MEL) approach [26] [33]. This method, which is widely used
for free-surface problems, consists in dividing the mathematical problem into a kinematic
(Eulerian) and a time evolution (Lagrangian) sub-part. During the kinematic step, at a given
time t, the Laplace equation is solved using the instantaneous geometry of the water domain,
as it was frozen, and knowing the velocity potential on the free surface and its normal
gradient on the solid boundaries. During the time evolution part the kinematic and dynamic
free-surface boundary conditions are stepped forward in time updating the free-surface
configuration and the values of the velocity potential on the nodes on the free surface. The
applied time integration scheme is the explicit fourth order Runge-Kutta. During the sloshing
stage, the normal velocity along the solid boundaries is known at any time instant .

4.1.1 Potential flow solver

Two different approaches exist for the solution of Laplace equation: the field methods and
the boundary methods. For the first class the discretization of the whole domain is required
while for second only the discretization of the domain boundary is necessary. This, generally,
implies a lower number of unknowns for the second methodology but leads to a full matrix
of the algebraic system to be solved numerically, while for the field class methods the matrix
is sparse or banded if a structured grid is used. Speaking in term of computational cost, both
memory usage and computation time, the use of sparse matrix instead of a full one is an
advantage specially when the sparsity is lower than xx % (for the method used here ≈ 1%).

In this work a new field method, proposed by Faltinsen and Shao [32], named Harmonic
Polynomial Cell (HPC) method has been used. The high accuracy of the method, up to 4th

order, as well as the easy way to determine the coefficients of the algebraic system matrix
were the reasons leanding to the choice of such approach.

The velocity potential φ(x, y), in each nodes of the numerical grid (blue dots, see fig.
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n zn

0 1
1 x + iy
2 (x2 − y2) + i(2xy)
3 (x3 − 3xy2) + i(3x2y − y3)
4 (x4 − 6x2y2 + y4) + i(4x3y − 4xy3)

Table 4.1. Two-dimensional harmonic polynomials with corresponding order n.

(4.1)), is approximated by a linear combination of harmonic functions, which automatically
satisfy the Laplace equation. Then, the coefficients of the expansion are expressed, via a
collocation procedure, as function of the velocity-potential values in the surrounding nodes,
which form the associated stencil (for example, to the generic grid point (p, q) in fig.4.1 is
associated the magenta stencil). Repeating the procedure for each point of the discretized
domain, an algebraic linear system, for the unknown values of the velocity potential on the
grid nodes, is obtained in the form

φ(x, y) = ai fi(x, y) (4.1)

Eq. (4.1) is the expansion of the velocity potential, where the Einstein notation of
repeated indexes has been adopted. The harmonic functions fi(x, y) originate from the real
and imaginary part of the complex polynomial z = (x + iy)n, in particular, to achieve a 4th

order approximation the first 8 functions are necessary, i.e. up to the real part of z4 (see table
(4.1)). Such functions are:

f1(x, y) = 1; f2(x, y) = x; f3(x, y) = y; f4(x, y) = x2 − y2; f5(x, y) = 2xy;

f6(x, y) = x3 − 3xy2; f7(x, y) = 3x2y − y3; f8(x, y) = x4 − 6x2y2 + y4.

Applying eq. (4.1) at the stencil boundary nodes (x j, y j) where j = 1, .., 8 (see fig. (4.1),
the coefficients ai are obtained by solving the “local” algebraic system:

φ j = f jiai ⇒ ai = f −1
i j φ j (4.2)

if the velocity potential is known at such nodes. Therefore, the way to express the
coefficients ai is equivalent to consider a sub Dirichlet boundary problem in the stencil
with the Laplace equation as the governing equation and where the boundary conditions
are assigned on the boundary nodes. By replacing the coefficients ai in eq. (4.1) we get the
velocity potential inside a cell interpolated only by the velocity potential at its boundary
nodes:

φ(x, y) = fi(x, y) f −1
i j φ j (4.3)

This last equation is then evaluated in the inner 9th node of the cell (x9, y9) giving:

φ9 = c jφ j, where c j = fi(x9, y9) f −1
i j (4.4)
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The repetition of the operation for all the center-cell nodes of the domain ensures the
continuity of the flow. The Neumann boundary conditions, i.e. known normal velocity, are
imposed by the analytical derivative of eq. (4.3) at the boundary nodes:

∂φ(x, y)
∂n

=
∂ fi(x, y)
∂n

f −1
i j φ j (4.5)

while for the Dirichlet boundary conditions, i.e. known velocity potential, are directly
assigned on the inner nodes of the discretized domain:

φ9 = φ∗ (4.6)

Putting together the continuity constraint and the boundary condition equations (4.4-4.5/4.6)
for all the computational nodes we get a “global”, i.e. for whole liquid-domain problem,
linear algebraic system, which can be expressed in the following matrix form:

AΦ = B (4.7)

where the coefficients matrix A is sparse with at most 9 non-zeros element for each row (c j),
Φ and B are the column vectors representing the unknowns and the boundary conditions,
respectively. The dimension of the matrix A is N × N, while Φ and B have dimension N,
with N the number of domain nodes, as well as of the problem unknowns. For the solution
of (4.7) either a direct or an iterative algorithm can be used. In this case the UMFPACK
suite with a column pre-ordering algorithm as been employed [8].
Always from eq. (4.3), it is easy to derive the matrices for estimating the gradient of the
velocity potential:

∂φ(x, y)
∂x

=
∂ fi(x, y)
∂x

f −1
i j φ j ⇒ Φx = AxΦ ⇒ Φx = AxA−1B (4.8)

∂φ(x, y)
∂y

=
∂ fi(x, y)
∂y

f −1
i j φ j ⇒ Φy = AyΦ ⇒ Φy = AyA−1B (4.9)

Numerical treatment of the free surface

The HPC method requires structured mesh for the discretization of the physical domain
and quadrilateral cells for the calculus of the “local” coefficients. When the free surface is a
single-valued function, the grid generation is straightforward. The points on the free surface
can be enforced to move only along the vertical direction and consequently a grid stretching
in the same direction needs to be introduced. On the other hand, when the wave is very steep
or a breaking wave is present, substantial difficulties arise to generate a “good” structured
mesh deforming only the original one. For this reason, with the intent to be able to capture
this kind of phenomena, as for the flip-through or breaking waves, an approach with double
overlapping structured mesh has been developed (see fig. (4.2)), where a coarse background
grid is kept fixed while a finer one is anchored to the free-surface and evolves with it.

With reference to fig. (4.2), the blue grid is the fixed background mesh, it is obtained by
dividing in quadrilateral elements an area bigger than the physical domain. In general, a
stretching both in the x and/or y direction may be considered, if required. The necessity to
consider a greater area is due to the fact that during the free-surface time evolution some grid
points enter or leave the physical domain. Anyway, during the computation, just the points
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Figure 4.2. Double overlapping meshes. The blue one is the fixed background mesh, while the
magenta is a moving mesh, anchored to the free-surface (red dots).

below the free-surface (red dots) are taken into account. For the nodes of the background
grid, which belong to the bottom as well as to the vertical walls the Neumann boundary
conditions are assigned (i.e. ∂φ/∂n = φ∗,n). The finer grid (magenta) is structured but,
differently from the blue one, it is anchored to the free-surface and moves following the
free-surface motion, i.e. at each time step, after the geometry of the free-surface has been
updated, the mesh is generated adapting itself to the new configuration. With respect to
the free-surface, the grid rows are parallel while the columns are orthogonal. Close to the
vertical boundaries, in some conditions, it may happen that, if the grid is designed following
only the normal direction to the free surface, some grid points can stand outside of the
domain. To avoid that problem, close to the boundary, a ramp function, which gradually
rotates the grid columns from the normal to the vertical direction, has been used. On the
two lateral columns and on the free surface nodes the prescribed boundary conditions are
assigned. With this multi-grid configuration it is possible to indentify some “special nodes”,
belonging both to background and free-surface grid, for which it is impossible to define a
centered stencil composed only by nodes of the same grid. These are used as connection
nodes between the two grids. Typically they are in the last row for the free-surface grid and
in the upper rows in the water domain for the background one. In fig. (4.3) an example of
such nodes, for the background and free-surface grid, are shown named a and b, respectively.
It is important to say that all the connection points, which belong to the background mesh,
must be boundary points of at least one stencil of the background mesh. These “special”
nodes are used to establish a communication between the two grids. The background grid,
on which the Dirichlet boundary condition is not assigned, receives information from the
finer grid through the nodes a. Vice-versa, the finer grid receives information for its bottom
boundary condition by the nodes b. The way the grids exchange informations is explained
the following considering for example the node b but the same is valid also for a nodes a:
if b is observed from the background grid, it belongs to four stencils and it is possible to
express its velocity potential, in each stencil, as

φ(xb, yb)stenk = fi(xb, yb) f −1
i j φ

stenk
j with k = 1, .., 4 (4.10)
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Figure 4.3. Details of the grid overlapping. The black normal vector to the free-surface shows how
the moving grid (magenta) has been built. The red dots identify the free-surface nodes, while the
black and green circles, named a and b, are an example of connection nodes for the background
and free-surface grid, respectively.

where the index j refers to nodes of the background grid. Then a mean value is
calculated:

φ(xb, yb) =

∑4
k=1 φ(xb, yb)stenk

4
(4.11)

The necessity of the mean value is due to the non uniqueness of the interpolation of the
potential in a generic point if it is estimated from different stencils. The number of points
in the normal direction, as well as the spacing between them, is related to the background
grid discretization. In fact, since between the two grids there is a two-way communication,
an adequate overlapping is required, i.e. at least two points of the background grid must be
present along the normal direction.

4.1.2 Time integration procedure

For the time evolution of eqs. (3.9), (3.10) and (3.11) an explicit 4th order Runge-Kutta
(RK4) method is used. The time derivatives of the previous equations are stored as time
derivative of the vector Y = [xp; yp; φ f s] and the right-hand side in the vector F such that
the time evolution problem can be written as Ẏ = F(Y, t), where the dot denotes the time
derivative.

In agreement with the accuracy order of the method used, the algebraic system (4.7)
has to be solved four times for each time step. To prevent the establishment of sawtooth
instabilities, each m time steps, a numerical filter [9] has been applied to the free surface
position (xp, yp) and velocity potential (φ f s). The filtering frequency m depends on the
characteristics of the flow and on the spatial and temporal discretization.
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For n = 1..Nt

k1 = ∆t F(Yn, tn)
k2 = ∆t F(Yn + 1

2 k1, tn + ∆t
2 )

k3 = ∆t F(Yn + 1
2 k2, tn + ∆t

2 )
k4 = ∆t F(Yn + k3, tn + ∆t)

Yn+1 = Yn + 1
6 (k1 + 2k2 + 2k3 + k4), tn+1 = tn + ∆t

4.1.3 Test cases

In the following, some test cases to check the reliability of the proposed numerical scheme
are shown.

In particular, the accuracy of the Laplace solver in terms of error behaviour as function
of the domain discretization and the goodness of the free-surface evolution are presented.
Further, with the intent of using stencils with a deformed shape, especially in the free-surface
fixed mesh, an analysis of the stencil shape influence on the error has been performed. The
convergence analysis, as well as the conservation of physical properties (of the system)
as mass and energy, in a time evolving problem have been tested. Finally, the proposed
free-surface method has been stressed with a problem regarding the focusing of a wave
packet into a steep wave with the formation of a plunging breaker.

Convergence analysis for the HPC method

The two dimensional potential velocity problem for a linear wave is solved in a rectangular
domain, L × H, discretized with uniform spacing in both directions (dx = dy). The Dirichlet
boundary condition is assigned on the upper side of the boundary, while on the remaining
the Neumann boundary conditions are applied.

The analytical solution reads:

φ(x, y) = cosh (k(y + h)) sin (kx) (4.12)

where k = 2π/λ is the wavenumber, h is the depth (L/h = 40, kh = π and kh = 1).
For the blue case in fig. (4.4) (kh = π) the theoretical order of accuracy is confirmed,

while an hyper-convergence is obtained for the red one (kh = 1). Similar behaviour is
obtained for the derivative of the velocity potential.

The stencil-shape influence on the method accuracy has been tested by solving the same
boundary value problem considering a restricted domain composed by only one stencil.
Dirichlet boundary conditions are assigned on the eight boundary points and then, the stencil
central point is the only unknown of the problem. For such point, velocity potential and its
gradient have been compared with the analytical solution.

In figures (4.5) the stencil configurations and the L2-norm numerical errors are shown
as function of a stretching parameter α, where α = 0 identifies the “classic” square
configuration. For the first test, the parameter α is the slope of the upper boundary of
the stencil, i.e. the left and right upper nodes have been moved in asymmmetric way only in
vertical direction. The error behaviour shows a minimum value for the solution and for the
derivative in y direction when the stencil is not deformed, while the error for the x-derivative



86 4. Numerical Model

shows a minimum in a stretched configuration (dashed-circle). In the second test also the
x-position of the upper right and left nodes has been changed. In this case, the minimum
error is obtained for the “classic configuration” both for velocity potential and derivatives.
The last test concerns the movement of all the boundary points. The error for the solution is
quite constant for all the configurations, while for the derivatives, there is a large differences
depending on the stencil shape. As for the first configuration, it is possible to find two stencil
configurations, which minimize the error on the derivative (α = 0.3 for ∂(×)/∂y and α =

0.05 for ∂(×)/∂x).

Periodic Fenton wave

To study the capability of the HPC method as well as the multi-mesh approach in the
pure wave-propagation problem, a periodic problem has been implemented, avoiding in
this way influences from wave generator and reflections from the downstream absorption
zone. As a reference problem, the Fenton analytical solution for non-linear waves has been
adopted [12] [31]. For the solution of the elliptic problem, the periodicity requires that the
same values of the velocity potential on the two vertical boundararies of the domain are
assigned, while Neumann and Dirichlet boundary conditions are assigned on the bottom
and on the free-surface, respectively. The semi-Lagrangian formulation for kinematic and
dynamic conditions on the free-surface is stepped forward in time with RK4 integration
scheme. Waves with several steepness values have been tested, for each one the temporal
behaviour of the code has been estimated through the control of different quantities as the
mass, kinetic and potential energies, L2 norm error for velocity potential on the free-surface
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Figure 4.4. Boundary value problem for a linear wave solved in a rectangular domain. Convergence
analysis of the error in norm L2 in logarithmic scale. The continuous lines show the error
behaviour for two waves with different kh. The dot-dashed line represents the theoretical trend
dx4.
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Figure 4.6. Initial boundary value problem for a periodic Fenton wave. Left plot: ratio between the
L2 norm error for velocity potential (dashed line) and free surface elevation (continuous line)
for two different discretizations with different time steps. Right plot: temporal evolution for the
mass of the system.

and wave elevation, and mean-max-min values for the free-surface.

To verify the convergence properties of the numerical method both for the time
integration and spatial (HPC) schemes, the temporal evolution of the ratio between L2 norm
errors associated to two different computational grids with ratio 1:2, has been evaluated for
velocity potential and free-surface elevation.

In the left plots of figure (4.6 - 4.7) the results for two different time steps are shown.
The continuous line represents the free-surface and the dashed line the velocity potential. For
a small wave steepness ka = 0.1, the error for the free-surface elevation shows the expected
behaviour. The error ratio tends to 16, which is the theoretical behaviour considering the
4th order accuracy of the schemes used for the time and space discretizations. The step
from 14 to 16 moving from dt = T/50 to dt = T/100 shows that the error due to numerical
integration prevails. A complete different behaviour is obtained for the velocity potential.
The error decreases with the time step; for the coarser grid the error growth is slower than
for the finer one (L2 ratio decreases). In the right plot of figure (4.6 - 4.7) the temporal
evolution of the mass system is shown. This is estimated as

∫
f ree−sur f ace η(x)dx/L/D, and

only the values for the last 10 seconds of the simulation are reported. For all the cases an
oscillatory behaviour is observed with the same period of the Fenton wave. No differences
are observed for different time steps while moving from the coarser to the finer grid the
values halve. For a higher steepness (ka = 0.3) the behaviour of the mass is the same, its
value decreases with the number of points used for the discretization and it is constant with
the time step. The error ratio for the free surface is quite constant in time for the two times
steps, its value is higher for the smallest dt but is quite far from the expected value of 16.
Similarly as the for the case of ka=0.1, the ratio for the velocity potential decreases with
time and it is quite far from the expected value of 16.
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Wave propagation - Wave maker and Sloshing

The last test case shown here is the propagation of a wave packet [10], which produces
a very steep wave with a resulting plunging breaker. In this case both the effects of the
wave-maker as well as the numerical beach at the end of the domain are included. The
presence of a plunging breaker is useful to stress as much as possible the proposed method
for the free-surface treatment.

The length of the wave tank is 25 m with a 5.5 m beach at the end and the depth is 0.6 m.
The non-dimensional excursion and velocity of the piston wavemaker are defined as follows:

x̄(t̄) =
∑

i

X̄i sin (ω̄i t̄ + θ̄i)

ū(t̄) =
∑

i

Ūi cos (ω̄i t̄ + θ̄i)

where t̄ =
√

g/h, ω̄ =
√

h/g, (x̄, ȳ, η̄) = (x, y, η)/h and g = 1. The fully Lagrangian
formulation for the free-surface boundary conditions has been used with a re-interpolation of
the Lagrangian markers every 10 time steps to avoid their clustering. A piecewise Hermite
interpolation of 3th order is used [?]. To suppress wave reflections from the end of the tank a
numerical beach has been implemented as in [14], where the damping coefficient is defined
by a cubic function:

ν(x∗) =

0 x∗ < 0
νmax(−2ζ3 + 3ζ2) 0 ≤ x∗ < lbeach

Several wave probes were used to measure the wave elevation along the tank, the
following figures show the comparison between the experimental and the numerical results
computed with a BEM code [21] and with the proposed method.
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Figure 4.7. Initial boundary value problem for a periodic Fenton wave. Left plot: ratio between the
L2 norm error for velocity potential (dashed line) and free surface elevation (continuous line)
for two different discretizations with different time steps. Right plot: temporal evolution for the
mass of the system.
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The parameter used for the discretization of the problem are:
Nx = 100; Ny = 40; Ns = 4Nx Nn = 9, dt = 0.01.

The wave geometry at the beginning of the plunging breaker formation is shown in
figure (4.9). The blue dots are the computational nodes of the background mesh while the
magenta stars are those of the free-surface mesh. The red vectors show the velocities of the
Lagrangian markers on the free surface. Since the proposed method requires an adequate
overlapping between the stencil of the two meshes, a strong stretching has been imposed
to both of them. In particular, the small geometric characteristic of the plunging breaker,
forces to increase the discretization on the tangential direction for the free-surface mesh, as
well as, to reduce the thickness to avoid the exit of nodes from the physical domain. This,
inevitably, leads to the stretching of the background mesh also. For the case in figure (4.9)
the nodes have been organized following a cubic law, aiming to have their maximum density
in proximity of the plunging breaker area. The wave configuration shown is the last instant
of the simulation before the code breaks down.
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4.2 Fully hydroelastic model

In this section, the coupling of the numerical schemes discussed beforehand is presented,
achieving in this way the fully hydroelastic numerical model. Here the model valid only for
the case regarding the flip-through impact is presented where only the coupling between
one-phase sloshing and structural sub-problems is considered.

In 3.16 the pressure p is expressed through the dynamic Bernoulli equation, giving:

MBẅ + EIwIV = −ρ

(
1
2
|∇φ|2 +

∂φ

∂t
− g · P

)
(4.13)

with g gravity acceleration and P the position of the fluid particles on the structure. This
requires to know the value of the temporal derivative of the velocity potential, and since
also this one satisfies Laplace equation an additional boundary value problem(b.v.p) must be
solved.

In [15] the hydroelastic interaction has been evaluated by imposing two conditions: 1)
the impermeability condition: ∂φ

∂n = ∂w
∂t and 2) the normal acceleration of the fluid particles

which lie along the beam must be equal to the beam acceleration: n · Du
Dt = ∂2w

∂t2 . The first one
is used as boundary condition for the b.v.p. for the velocity potential, while the second one
gives an additional boundary condition for the b.v.p associated with its temporal derivative
4(∂φ/∂t) = 0. From the last condition, assuming the linear beam theory, a non-homogeneous
Robin condition is obtained:

∂

∂n

(
∂φ

∂t

)
+
ρ

m
∂φ

∂t
= a1(y) + a2(y) (4.14)

where ρ is the water density, m is the structural mass per unit length and width and a1 and
a2 are known functions defined as:

a1 =
∂w
∂t
∂2φ

∂τ2 −
∂φ

∂τ

∂2w
∂y∂t

(4.15)

a2 = −
1
m

(
EI
∂4w
∂y4 + ρ

1
2
|∇φ|2 − ρg · P

)
(4.16)

A different approach is to estimate directly the pressure by solving the Poisson problem
for p, which can be easily derived by taking the divergence of Euler’s equations. For this
aim the HPC method has been generalized for the solution of non homogeneous elliptic
problem [4] (see Appendix A for more details). Also this approach it is characterized by a
non-homogeneous Robin boundary condition due to the two conditions for the hydroelastic
coupling

4P = −2ρ
(
φxxφyy − φxyφyx

)
(4.17)

∂P
∂n

+
ρ

MB
P =

EI
MB

∂4w
∂y4 + g · n (4.18)

here n1 represents the normal to the beam.
The interaction between fluid and structure is activated only when the characteristic

time scales of hydrodynamic pressure are close to the structural ones. When the beam is
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wetted by a slow rise up wave a quasi-steady approach can be used and the structure can be
considered as rigid.

For each sub-step of RK4 scheme, first the velocity potential is calculated and the free-
surface boundary conditions are updated, successively the b.v.p for ∂φ/∂t is solved using the
Robin boundary condition on the wetted part of the beam, a Neumann boundary condition
along the rigid walls and the dynamic boundary condition as Dirichlet boundary condition
for the free-surface. Once all the R.H.S terms of eq. (4.13) are known the structural modal
coefficient wn(t) are calculated. To test the proposed hydroelastic method, the case of a beam
in a fully wet condition under only the hydrostatic pressure, has been implemented. The
middle point beam deflection in steady state condition has been compared with the results
of analytical model considering both the dynamic and static cases (see fig. (4.10)). The blue
line represents the dynamic evolution via the Euler beam analytical model, the green is the
same of the blue using a ramp on the gravitational acceleration, avoiding in this way the
oscillatory behaviour. The black line is the static solution while the magenta is the result
from the fully-hydroelastic model. The comparison of the solution at steady state shows a
good agreement between the different models.

4.2.1 semiAnalytic Flip-Through

In the following, the sloshing stage numerical simulation is used to initialize the semi
analytical hydroelastic model for the flip-through impact. In particular, because in the model
the impact is represented by a sort of water entry problem, information about the impacting
wave velocity and position of the impact are required and for that, are extracted from the
numerical simulation. Before to discuss the model and results, it is important to define the
limitations of the proposed model for the reproduction of a flip-through impact effects. For
this kind of impact, the main contribution to the hydrodynamic pressure exerted on the wall
is the sudden high vertical acceleration (parallel to the structure) of the fluid at wall. In the
proposed model, because it is borrowed from water entry problem, the main contribution
is due to the fast deceleration (orthogonal to the structure) of the beam when hits the fluid.
This assumption means that the complex kinematic and dynamic effects which characterize
the flip-through are modelled in not proper way and not probably all of them are included
in the modelling. This lead to say that this kind of model, at the moment, is not the most
suitable for a flip-through impact. Different it is the situation when a gas cavity in present
during the impact where the kinematic and dynamic effects are more similar to the ones of a
water entry problem. The formulation of the analytical model follows the steps covered in
case of impact with entrainment of a gas cavity, but differently from that, here the cavity
length is set equal to zero. An additional step added for the flip-through model with respect
to the cavity is the time dependence of the water depth, h = h(t). Such temporal dependency
must be considered, not as a real temporal evolution but more as a sequence of steady state
conditions, i.e. the hypotheses of flat free surface is still considered at each time step.

The resulting system of equations is

Mmnẅn(t)+Cmnẇn(t)+Kmnwn(t) = −Maddmn(t)ẅn(t)−Caddmn(t)ẇn(t)−Fg1m(t)V̇(t)−Fg2m(t)V(t)
(4.19)

where Mmn, Cmn and Kmn, in the left hand side, are the mass, damping and stiffness matrices
respectively obtained for the modal decomposition of the beam deflection, while, in the right
hand side, Fg1(t) and Fg2(t) are generalized force coefficients and Maddmn(t) and Caddmn(t)
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Figure 4.10. Comparison of deflection for a beam under hydrostatic pressure. The blue line
represents the dynamic solution using the Euler beam model. For the green one always the
Euler beam model has been used but a ramp function on gravitational acceleration g to avoid the
impulsive start of the problem. The black line represents the solution for the static problem. The
magenta line represents the solution for the fully-hydroelastic problem.
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Figure 4.11. Vertical distributions of the impact horizontal velocity in the three considered cases.
The values are made dimensionless with the maximum horizontal velocity. The beam is located
between 0.125 m to 0.215 m. In the bottom left black box an enlarged view of the velocity
profiles is reported.

are the added mass and added damping matrices. Take in account the time dependence of the
water depth gives the additional terms Caddmn(t) and Fg2(t). It is to be noted as the first one is
a damping term which increases the effects of the structural one. The second one contributes
to an additional forcing term. From the comparison of the two forcing term, proportional
respectively to h(t)V̇(t) and to ḣ(t)V(t), the first one results the most influential. To obtain
the input parameters from the kinematic and dynamic configurations of the impacting wave,
the numerical simulation has been stopped at the end of the advancement stage, just before
the focusing. From the kinematic configuration the position of the impact and the length
of the impact area have been identified. The elevation of the wave crest has been selected
as vertical position for the impact and its area has been set as twice the wave height. From
the dynamic configuration, the horizontal velocity component of the advancing wave from
the trough until the crest is used to define the different impact velocity profile (fig. (4.11)).
Three vertical shapes considered for the velocity are: s1 a constant value based on the
maximum value of horizontal velocity (blue), s2 triangular, where the maximum is reached
at the wave crest, s3 parabolic, always with the maximum at wave crest. In the black box
an enlargement view of the profiles is shown, it is also added the horizontal component
of velocity obtained with the numerical simulation, marked by magenta dots. It’s worth
to note how the better approximation of numerical result is given by the parabolic profile.
Must be say that, while the horizontal velocity will remain more or less the same until the
impact, the wave front height will decrease moving toward the focusing instant and hence,
the hydrodynamic load will be more concentrated in space than the modelling one. In
fig. (4.12) the comparison between the strain gauges is presented. The different colours
represent the structural responses associated to the analysed forcing terms in accord with
the description reported for fig. (4.11). The black dashed line is the value recorded during
experiments. Looking at the first peak, the triangular profile s2 has a better agreement with
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Figure 4.12. Comparison of the strain gauges evaluated in the middle of the structure. The colours
identify the different vertical velocity profile. (blue - constant, red - triangular, green - parabolic,
dashed black line experiment)

the experiment, while the constant s1 and parabolic s3 profiles show an overestimation of the
beam deflection. The result of the constant profile gives overestimation also in the successive
temporal instants, while for the triangular and the parabolic, the beam amplitude oscillations
are comparable with the experiment. The main error can be ascribed to an input load not
well reproduced. Looking at the instantaneous oscillation frequency, the agreement with
experiment is satisfactory, highlighting a good choice for the water depth temporal evolution.
In fig. (4.13), the temporal evolution for water depth and impact acceleration are reported.
On the left axis, the curve represents the water depth. For the first part, from a fully dry
condition up to the point of impact (t=0), a parabolic law has been used. Then the trend is
assumed linear with a slope which decrease after the fully wet condition. On the right axis,
the impact acceleration is reported. The acceleration profile has been designed following the
temporal behaviour of the impact pressure for the case of impact against a rigid wall (see fig.
(2.8)).

V̇(t) =

 Vmaxe−t/ta

(1+e(−t/ta))2ta
t <= 0

V∗e−t/ts

(1+e(−t/ts))2ts
+ C

(1−t)2 − D(2t − 1) t > 0
(4.20)

where Vmax is the wave crest velocity calculated from numerical simulation and equal to
-2.3 m/s, ta is a characteristic time scale which define the rise time of the first peak. In the
second equation, ts is a time scale which define the decrease of acceleration, in fact the peak
is not symmetric with respect to its maximum value. It has been set equal at 3.5ta, while the
parameter V∗ and C are obtained imposing the continuity of velocity and acceleration at t=0.
The parameter D keep into account the almost flat part of the acceleration after the peak. It
as been set equal Vmax/4/ta/30, where Vmax/4/ta is the maximum value of the acceleration.
The value of 30 has been chosen by the analysis of the experimental pressure during the
impact on rigid wall, considering the pressure ratio between the maximum value and the
almost flat segment, for the pressure transducer closest to the impact region. Even if the
comparison between the beam deflection shows some differences, anyway with a proper
setting of the model parameters, it is possible to obtain results which can useful to get some
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Figure 4.13. Left axis: temporal evolution for the water depth. Right axis: temporal evolution for
impact acceleration.

informations about the structural response, i.e. magnitude of structural stress, dynamic
behaviour of the structure (frequency and damping). But if we look at the hydrodynamic
pressure in a location far from the structure the limitation of the model appears more evident.
In fig. (4.14) the comparison of the hydrodynamic pressure, for a probe located about 0.1 m
below the lower bottom of the structure, is reported. As for fig. (4.12) the different colour
refer to the three velocity profile tested and the dashed black line to experimental results. It
is easily to observe as the hydrodynamic pressure is overestimated for all the cases, both in
the first peak and also for all the successive oscillations. Also the damping has a completely
different behaviour. Is is also possible to observe that the first peak occurs before than in the
experiment. This large differences are consequences of the impact modelling. The spatial
profile for velocity potential, obtained via a vortex distribution along the vertical wall, loses
of accuracy, with respect the physical event, moving away from the impact area.
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Figure 4.14. Comparison of hydrodynamic pressure for a probe located at 0.025 m from the tank
bottom. Blue line s1 constant spatial velocity profile, red line s2 triangular spatial velocity profile,
green line s3 parabolic spatial velocity profile and dashed black line experimental results.
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Chapter 5

Conclusions

The investigation of the hydroelastic phenomena during wave impact events on the vertical
side wall of a two dimensional sloshing tank has been the main objective of this work. The
experimental activity, as well as semi-analytical and numerical modeling, have been the tools
used in order to the understand the main physical features which drive the phenomenon.

An ad-hoc experimental set-up has been designed to reproduce repeatable wave impact
events against a deformable aluminium plate installed on a vertical wall of the tank.
Concurrently with the geometrical characteristics of the tank, the excitation signal used
for the tank motion helps to achieve a good repeatability of the events. The effects of two
different wave impact typologies have been investigated: the flip-through and the impact
with a single gas-cavity entrainment. The choice of these two typologies of wave impacts
has been driven by their characteristic time scales which can be quite close to the structural
ones and hence able to trigger hydroelastic phenomena. For the structural stress estimation,
differently from the usual approach, which consists of the measurement of hydrodynamic
pressure, here the structure deflection has been measured with the use of strain gauges.

In the time evolution of the flip-through impact three different stages has been identified:
in the advancement stage the structure is stressed by the slow rise up of the wave through
along the wall and the load applied is proportional to ρgh, with h the filling depth. Next,
moving to the focusing and flip-through stages, due to the strong vertical acceleration
and sudden turning of the flow the fully hydroelastic stage is triggered. The rise time of
the hydrodynamic pressure is comparable with the highest natural periods of the wetted
deformable structure and then the corresponding natural modes of vibration are excited.
During this stage, whose duration can be quantified in about 5/6 ms, the hydrodynamic
pressure is strongly influenced by the motion of the structure and it is characterized by
an oscillatory behaviour with the same frequency of the structure. The structural wetted
natural frequencies decrease in time as consequence of the added-mass effect growth due
to the increase of the structural wetted length. In the last stage, called free-vibration, the
behaviour of a free-oscillating system characterizes the temporal evolution of the structure.
By comparing the maximum value of hydrodynamic pressure between impact on rigid and
elastic wall, it is possible to assert that the structural reaction increases the maximum value
of the hydrodynamic pressure. An hybrid hydroelastic model has been developed for the
reproduction of the wave impact only. The hydrodynamic pressure has been considered
as superposition of a pressure field measured during the experiments on rigid wall and a
vibrational pressure solutions of the hydroelastic problem for a vibrating beam around a
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rest state. Using the images recorded with a fast-cam to evaluate the instantaneous wetted
length of the structure and a structural damping which changes with the wetted length,
obtained experimentally with impulsive test hammer in calm water, the model gives results
in quite good agreement with the experiments especially in terms of oscillation frequency
and damping. The model shows an underestimation in the fully hydroelastic stage regarding
the stress amplitude and a good agreement in the subsequent one, highlighting that the
hydroelastic interaction is greater than that predicted by a weakly-coupled model.

The impact with the entrainment of a single gas-cavity shows some differences with
respect to the flip-through case. The system behaves more like a forced oscillating system
where the gas cavity is the forcing: the gas-cavity is compressed at the wall by the
surrounding water at the instant of the impact, due to the compressibility effects, it starts
oscillating with its natural frequency and this behaviour is reflected on the structural stress.
Anyway, for the small and medium size cavity the rise time of the pressure is such to excite
the structural natural modes and this is evident in the stress signal just after the first peak.
Such oscillations appear clearly for ullage pressure lower than 200 mbar. The effects of
hydroelastic interaction can be observed in comparison with the results of experiments
against rigid wall. For the cited cases, small and medium size cavity, the interaction with
the deformable structure entails a decrease of the cavity natural frequencies and of the
pressure signals damping coefficient. The differences between rigid and elastic case, hence
the hydroelastic effects, decrease with the ullage pressure because of the increase of the
distance between the two characteristic time scales. Starting from the works in [11], [2] a
semi-analytical model which takes into account the non-linear dynamics of the gas cavity
and of the hydroelastic problem has been developed. The non-linear frequencies of the
oscillating gas cavity have an important role especially in case of low ullage pressure
and may assume values close to the structural natural frequencies. The analysis of the
hydroelastic natural frequencies shows, as observed in the experimental case, a reduction
of the first natural frequency and damping, for the gas cavity, with respect to the case of
uncoupled problem, even if the reduction is lower than in the experiments. Though the
presented analytical model shows a quite good agreement with the experiment results, the
simplifying hypotheses adopted are still too limiting. For a better description of the problem
the flow kinematic, the free-surface evolution and a proper modelling of damping and
thermal effects inside the cavity have to be taken in account. In the last part of the work, the
tools for the numerical treatment of the hydroelastic problem have been implemented. A
relatively new, highly accurate and efficient, field method for potential-flow problems, the
HPC, has been adopted for the fluid-dynamic sub-problem and fully coupled with an Euler
beam equation for the structure sub-problem. In the numerical context, important novel
contributions of this research have been the proposal of multi-grid approach to handle very
steep waves propagation and the extension of the HPC method to the solution a Poisson
problem. The latter is given in detail in Appendix A and opens to a genuinely new strategy
for the numerical solution of viscous-flow problems involving the Poisson equation for the
pressure.

5.1 Suggestions for future activities

Possible suggestions for a future activities are:

• Experimental activities to investigate the thermal effects as source of damping for the
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gas cavity impact problem.

• Experimental investigation on possible cavitation phenomena always in the gas cavity
problem at low Cavitation Number.
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Appendix A

Generalized HPC method for the
Poisson equation
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An efficient and innovative numerical algorithm based on the use of Harmonic Polynomials 
on each Cell of the computational domain (HPC method) has been recently proposed 
by Shao and Faltinsen (2014) [1], to solve Boundary Value Problem governed by the 
Laplace equation. Here, we extend the HPC method for the solution of non-homogeneous 
elliptic boundary value problems. The homogeneous solution, i.e. the Laplace equation, is 
represented through a polynomial function with harmonic polynomials while the particular 
solution of the Poisson equation is provided by a bi-quadratic function. This scheme has 
been called generalized HPC method. The present algorithm, accurate up to the 4th order, 
proved to be efficient, i.e. easy to be implemented and with a low computational effort, for 
the solution of two-dimensional elliptic boundary value problems. Furthermore, it provides 
an analytical representation of the solution within each computational stencil, which allows 
its coupling with existing numerical algorithms within an efficient domain-decomposition 
strategy or within an adaptive mesh refinement algorithm.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Elliptic Partial Differential Equations, associated with boundary value problems (time independent) rather than with 
evolution problems, are quite common in many fields of physics such as: heat flow, electrostatic and gravitational potential, 
potential flow, static elasticity and quantum mechanics. The generic elliptic operator L can be expressed as:

Lu = −
n∑
i

n∑
j

ai j(x)
∂2u

∂xi∂x j
+

n∑
i

bi(x)
∂u

∂xi
+ c(x)u = f (x) (1)

where the coefficients aij are the elements of a positive-definite matrix [2].
If the Navier–Stokes equation for an incompressible fluid is numerically time integrated by Chorin’s projection 

method [3], there a Poisson equation for the pressure appears. The Poisson equation, which comes from (1) with aij = δi j , 
bi = c = 0, is used in many applications in fluid dynamics, as for the pressure calculation in incompressible flow or for the 
velocity calculation in a 2D incompressible and viscous fluid, where a Poisson equation relates the stream function and the 
vorticity field. From the numerical point of view, the solution is achieved in two steps consisting in the discretization of the 
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Table 1
Computational burden of direct and indirect methods for the solution of 
algebraic system (from [6]).

Algorithm Oper. Memory

Dense LU N3 N2

Band LU N2 N3/2

Sparse LU N3/2 N*log(N)
Jacobi N2 N
SOR N3/2 N
Conj. Grd N3/2 N
GMRES N N
Multigrid N N

continuous system (first step), and in the solution of the discretized system (second step). Because of the fine discretization 
necessary to properly describe the smallest scales involved in the physical phenomenon, the computational effort for the 
solution of the Poisson equation can be an issue. The number N of points, indeed, influences the computational cost of the 
algorithm, both in terms of required computational time and memory (see Table 1). This becomes even more critical when 
the elliptic equation is part of an evolution problem, i.e. if the pressure distribution must be calculated at each time step, 
which requires an efficient solution of the elliptic boundary value problem.

Several approaches are used for the discretization of the elliptic BVP. The most common are finite difference methods 
(FDM), finite volume methods (FVM) and the Finite Element Methods (FEM) [3,4]. FDM makes a finite difference approxima-
tion of the derivatives; FVM first reformulates the problem via its integral form and then approximates the integral equation 
on each control volume. With respect to FDM, FVM provides a solution of the weak form of a differential problem, which 
includes also the treatment of the discontinuous solutions. The most used implementation of such methods yields 2nd order 
accurate schemes, because of the difficulties in building high-order approximation schemes. Although a fine discretization 
of the computational domain is still required to capture the smallest scales of the phenomenon, a high-order solver allows 
for using a lower number of computational points with respect to a low-order solver, in order to ensure a similar accuracy.

The finite element method, which is capable of handling general domains, is quite difficult to use for the solution of 
elliptic BVP. It is based on the use of shape functions on each element of the computational domain. Galerkin method is 
then used to determine the coefficients of the shape function, requiring the integrals to be calculated on each element.

All the mentioned methods lead to a linear algebraic system AU = X ; depending on the feature of the coefficient ma-
trix A, a proper technique can be used to solve the system (see Table 1).

The direct methods (e.g. Gauss Elimination, LU decomposition), which give an exact solution of the system, are suited in 
case of small algebraic systems [5].

The indirect or iterative methods (e.g. Jacobi, Gauss–Seidel, Thomas algorithm, SOR, ADI, GMRES) are based on a sequence 
of approximations that converge to the exact solution (see [5]) and are indicated for large algebraic system. Furthermore, 
they can be easily parallelized.

Recently, a new numerical algorithm has been proposed by Shao and Faltinsen [1,7], to solve Boundary Value Problem 
governed by the Laplace equation. The method, based on the use of Harmonic Polynomials on each Cell of the computational 
domain (HPC method), is 4th order accurate in space and it has been successfully applied to solve several problems of 
concern in marine hydrodynamics [1].

The present paper proposes an extension of the HPC method to the solution of elliptic boundary value problems. The 
method is based on the use of a polynomial function with harmonic polynomials representing the homogeneous solution 
and a bi-quadratic function representing a particular solution of the Poisson equation. Hereinafter this is called generalized 
HPC method. The algorithm, accurate up to the 4th order, is here proved to be efficient for the solution of two-dimensional 
elliptic boundary value problem. The generalization to the three dimensional case, though straightforward, is an ongoing 
activity.

It is worth to point out that the method, although here applied to prototype elliptic problems, can be useful for the solu-
tion of the pressure field in incompressible flows governed by the Navier–Stokes equations, within a projection method [3].

The main advantage of the method with respect to the classical field methods (e.g. FDM, FVM, FEM) consists in the 
high accuracy with a relatively low computational effort, which means easy implementation and efficient evaluation of the 
numerical solution. Moreover, it provides an analytical representation of the solution within each stencil, making straight-
forward its coupling with existing numerical algorithms within an efficient domain-decomposition strategy.

Because of these features, it is conceivable to use the present method in an efficient way within an adaptive mesh 
refinement strategy. In particular, the pressure field (governed by the Poisson equation) can be first evaluated, with a 4th
order accuracy, on a Cartesian coarse grid using the present solver. Then, the pressure may be interpolated (using the 
continuous representation of the solution within each stencil) on a refined mesh which is fitted to the flow field, where the 
velocity field can be achieved through a classical field method.

However, the final goal is the use of the generalized HPC to solve fluid dynamic problems, where the Navier–Stokes 
equations are solved by a projection method [3].

The above mentioned research topics are ongoing activities of the present research group.
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2. Mathematical formulation

Let us consider the Poisson problem in the fluid domain � with either Dirichlet or Neumann conditions prescribed over 
different and exclusive portions of the domain boundaries ∂�D and ∂�N respectively:⎧⎪⎪⎨

⎪⎪⎩
�u(x) = σ(x), in �

u(x) = gD(x), on ∂�D

∂u(x)

∂n
= gN(x), on ∂�N

(2)

where the forcing σ(x) is assumed to be known. The solution u(x) is expressed as the sum of two functions:

u(x) = ū(x) + ũ(x) (3)

where ũ(x) is a particular solution of the Poisson equation

�ũ(x) = σ(x) (4)

and ū(x) is a harmonic function which satisfies the homogeneous BVP⎧⎪⎪⎨
⎪⎪⎩

�ū(x) = 0, in �

ū(x) = gD(x) − ũ(x), on ∂�D

∂ ū(x)

∂n
= gN(x) − ∂ ũ(x)

∂n
, on ∂�N

(5)

Note that the above decomposition (3), as well as the following solution scheme, can be easily extended to problems where 
Robin condition holds in a part of the domain boundary.

According to the HPC methodology [1], the harmonic function ū(x, y) is approximated through a series of harmonic 
polynomials. These form a complete harmonic functional basis in the star-shaped domains relative to the origin [8–10].

For the 2-dimensional case, they come from the linear combination of the real and imaginary part of the complex 
harmonic polynomials zn = (x + iy)n , i.e. for n ≤ 4:

ū(x, y) = a1 + a2x + a3 y + a4(x2 − y2) + a5(2xy) +
+ a6(x3 − 3xy2) + a7(3x2 y − y3) + a8(x4 − 6x2 y2 + y4) =

= ai f̄ i(x, y), with i = 1, ..,8, (6)

where the repeated index implies summation. In the 3-dimensional case, the harmonic polynomials arise from the spherical 
harmonic functions, i.e. the solution for the 3D Laplace equation in spherical coordinates.

The forcing term σ(x, y) is approximated through a bi-quadratic interpolation. In the 2D case, this reads:

σ(x, y) ≈ (α0 + α1x + α2x2)(β0 + β1 y + β2 y2) =
= c1 + c2x + c3 y + c4x2 + c5xy + c6 y2 + c7x2 y + c8xy2 + c9x2 y2 =
= c jh j(x, y), with j = 1, ..,9. (7)

A particular solution of the Poisson equation (4), suitably approximated through �ũ(x, y) ≈ c jh j(x, y), is:

ũ(x, y) ≈ c1
x2 + y2

4
+ c2

xy2

2
+ c3

x2 y

2
+ c4

x4

12
+ c5

x3 y + xy3

12
+

+ c6
y4

12
+ c7

x4 y

12
+ c8

xy4

12
+ c9

x4(−x2 + 15y2) + y4(−y2 + 15x2)

360
=

= c j g j(x, y), with j = 1, ..,9. (8)

As a consequence, the solution of the problem (2) is:{
u(x, y) = ai f̄ i(x, y) + c j g j(x, y), with i = 1, ..,8, j = 1, ..,9.

σ (x, y) = c jh j(x, y), with j = 1, ..,9.
(9)

The system (9), which enables the interpolation of the solution, must be collocated on each cell of the computational 
domain in order to achieve the linear system associated with the BVP and to find the unknown coefficients ai .

Note that the approximation of the forcing term through a bi-quadratic interpolation is just one of the possible strategies 
that may be used. Indeed, different approaches for representing σ(x, y) can be adopted, each one originating a different 
class of methods for the solution of the non-homogeneous elliptic BVP.

A fundamental issue concerns the use of analytical functions to represent the solution. In the generalized HPC algorithm, 
the solution is analytic because of the polynomial functions used for the solution of the homogeneous problem and the 
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Fig. 1. Discretization of a square domain � = (0, 1) × (0, 1). The small dots are the computational points, while the bold symbols represent the border of a 
generic stencil. The dashed area is the overlapped region of two stencils.

Fig. 2. Detail of the stencil associated to node 9 (black circle in Fig. 1).

interpolation functions adopted for the particular solution of the non-homogeneous problem. This implies that the HPC 
solver cannot capture singular solutions of the Laplace equation (e.g. in a domain with a sharp corner [11], or at the 
intersection between the free surface and the tank wall when it is non-vertical at the waterline [12] and the free-surface 
condition is linear). A strategy consists in matching an inner non-analytical solution for the singularity and an outer solution 
through the HPC solver. A similar approach could be used when the singularity occurs in the forcing term. In this case the 
matching between inner and outer domain only concerns the interpolation of the forcing term.

3. Numerical formulation

Let the 2D fluid domain � be composed by a finite number of computational points (Fig. 1). A “direct numerical depen-
dence” domain (or stencil) is associated with each point in �. Specifically, the stencil is composed by the eight closest nodes 
(Fig. 2).

Each point (p, q) of the grid is, at the same time, the center node of the stencil (p, q) and a boundary node of the closest 
stencils (e.g. (p − 1, q + 1), (p − 1, q) and so on, see Fig. 1); that is, an overlapping grid system is used.

The collocation of the equation system (9) on the stencil (p, q) enables evaluating the coefficients ai , c j as a function of 
the unknown solution um and of the known forcing term σk . In particular, by collocating the forcing term (second equation 
of (9)) on the nine nodes (xk, yk) of the stencil (k = 1, .., 9 see Fig. 2), provides the coefficients c j :

σk = hkjc j ⇒ c j = h−1
jk σk, j,k = 1, ..,9. (10)

Similarly, the first equation of (9) collocated on the eight boundary nodes (xm, ym) of the stencil (m = 1, .., 8 see Fig. 2) 
gives an explicit equation for the unknown coefficients ai :

um = f̄miai + gmjc j ⇒ ai = [ f̄ −1]im(um − gmjc j) i,m = 1, ..,8; j = 1, ..,9 (11)
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By substituting eqs. (10) and (11) in (9), the solution of the Poisson BVP can be written as:

u(x, y) = f̄ i(x, y)[ f̄ −1]im(um − gmj[h−1] jkσk) + g j(x, y)[h−1] jkσk,

i,m = 1, ..,8; j,k = 1, ..,9. (12)

Equation (12) enables evaluating the solution as a continuous function inside each stencil. In any case, the uniqueness of the 
solution is ensured only at the grid points. In fact, from eq. (12) the representation of the solution u(x, y) at a generic point 
of the continuous field that does not belong to the grid differs by considering two different stencils overlapped in (x, y)

(see the dashed area in Fig. 1).
The derivatives of the solution can be then easily obtained as:

∂u(x, y)

∂x
= ∂ f̄ i(x, y)

∂x
[ f̄ −1]im(um − gmj[h−1] jkσk) + ∂ g j(x, y)

∂x
[h−1] jkσk, (13a)

∂u(x, y)

∂ y
= ∂ f̄ i(x, y)

∂ y
[ f̄ −1]im(um − gmj[h−1] jkσk) + ∂ g j(x, y)

∂ y
[h−1] jkσk, (13b)

with i, m = 1, .., 8, and j, k = 1, .., 9.
Equations (12) or (13) are necessary to build the global linear equation system. At the point of the domain where the 

solution is unknown, equation (12) is evaluated in the center of the stencil; at the point of the boundary, depending on 
the assigned Dirichlet or Neumann boundary condition, eqs. (12) or (13), respectively, are evaluated at the boundary of the 
stencil. In both cases, the linear algebraic equation that is obtained from the “collocation” on each stencil is

b = F T u − G T σ (14)

where F , u, G, σ are nine components vectors, and b contains the boundary data.
The collocation on each point of the domain, gives the following global system:

B = FU − G� (15)

U = F−1(B + G�) (16)

Once the solution is known on the computational nodes, it is possible to interpolate the continuous solution on a generic 
point of the physical domain:

u(x, y) = F(x, y)U + G(x, y)� (17)

which derives from eq. 12 with the single elements of the matrices given by

Fnm = f̄ i(xn, yn)[ f̄ −1]im, (18)

Gnm = (g j(xn, yn) − f̄ i(xn, yn)[ f̄ −1]ik gkj)[h−1] jm (19)

The method can be easily extended to the solution of the Helmholtz equation

− � u(x, y) − λ2u(x, y) = γ (x, y) (20)

For the homogeneous case (i.e. γ (x, y) = 0), σ(x, y) = λ2u(x, y), i.e. � = λ2U in equation (15), and we can write:

B = (F − λ2G)U ⇒ U = (F − λ2G)−1 B . (21)

For the forced case, σ(x, y) = λ2u(x, y) + γ (x, y), that is � = λ2U + �, and we obtain:

B = (F − λ2G)U − G� ⇒ U = (F − λ2G)−1(B + G�). (22)

It is worth to note that the matrix of the global linear system (16) or (21), i.e. F for the Poisson BVP and F −λ2G for the 
Helmholtz BVP, is a sparse matrix with at most 9 non-zero elements in each row. Then, a suitable and efficient algorithm 
can be applied which ensures a computational effort proportional to the number of grid points. In the proposed solver, 
the UMFPACK suite, using a column pre-ordering [13] algorithm, proved its efficiency, giving a computational time which 
increases slightly super-linearly as is to be expected for the direct solution of a 2D Laplacian [14].

4. Test cases

In order to show the accuracy and efficiency of the numerical solver proposed, 2D elliptic boundary value problems 
for which an analytical solution is available are considered in the following. Most of them are strictly related to physical 
problem, such as: Green–Taylor vortex, Lamb–Oseen vortex, Wave Front. Just one, i.e. the boundary line singularity, is not 
immediately related to a physical problem, but it has been considered to stress the method when a strong singularity 
occurs on the forcing term. Finally, two cases for the homogeneous and forced Helmholtz equation, i.e. MacCamy–Fuchs 
and Schrödinger equation respectively, are discussed. In all the cases, Dirichlet BVP is solved. However, for the Lamb–Oseen 
vortex, the corresponding Neumann BVP is also proposed.
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Fig. 3. Green–Taylor vortex field: solution of the pressure field at t = 10−4 s, and ν = 1 m2/s.

The accuracy of the method is quantified in terms of the L2 and L∞ error, defined as

ErrL2 = ||unum − uan||2
||uan||2

ErrL∞ = ||unum − uan||∞
||uan||∞

respectively. In both definitions unum and uan are the numerical and analytical solutions, respectively. The theoretical accu-
racy of the method depends on the order of the harmonic polynomial functions used in the interpolation formula (6) and 
on the order of the interpolation function used to approximate the forcing term σ(x, y) in (7). Because for both of them a 
fourth-order accuracy of the interpolation functions is used, it is expected that the error should decrease as a fourth power 
of the grid size dx. A reference value 4 of the chosen error norm is used in the following convergence studies. In case of 
nonuniform grid or when a polar grid is used, a measure of the grid size is estimated as

ds =
√

XY

NxN y
, (23)

with X and Y representing length and width of the computational domain (in case of a polar grid X = R and Y = R), 
while Nx and N y is the number of points along X and Y , respectively.

4.1. Green–Taylor vortex

The Green–Taylor Vortex is an unsteady flow of a periodic decaying vortex system, governed by the Navier–Stokes equa-
tion, for which an analytical solution of the velocity field is:

u(x, y, t) = sin (x) cos (y)e−2νt, v(x, y, t) = − cos (x) sin (y)e−2νt

where ν indicates the kinematic viscosity of the fluid and with the pressure field (see Fig. 3 at t = 10−4) given by:

p(x, y, t) = ρ

4
(cos (2x) + cos (2y))(e−2νt)2

with ρ the fluid density. In particular, in the fluid domain � = [0, 2π ] × [0, 2π ], the pressure field p(x, y) = p(x, y, tp) at a 
prescribed time instant t = tp satisfies the Poisson problem

�p(x, y) = −2ρ(vx(x, y) u y(x, y) − ux(x, y) v y(x, y)) (24)

with proper conditions at the domain boundaries. Because the aim of the proposed numerical method is the solution of the 
Poisson equation, the BVP ((24) + Boundary Conditions) has been first solved by assuming the RHS of equation (24) to be 
known at the prescribed time tp = 10−4. In order to assess the features of the method for different boundary conditions, 
two different sets of boundary conditions have been imposed to the squared domain �:

(a) Dirichlet BC

p(0, y) = p(2π, y) = ρ

4
(1 + cos (2y))(e−2νtp )2

p(x,0) = p(x,2π) = ρ

4
(1 + cos (2x))(e−2νtp )2

(b) Neumann BC

∂ p

∂x
(0, y) = ∂ p

∂x
(2π, y) = ρ

4
cos (2y)(e−2νtp )2

∂ p

∂ y
(x,0) = ∂ p

∂ y
(x,2π) = ρ

4
cos (2x)(e−2νtp )2
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Table 2
Convergence study for the Green–Taylor vortex case: grid parameters and order of convergence 
according to ErrL2 and ErrL∞ norms.

grid # Nx N y Order of convergence

Dirichlet BVP Neumann BVP

ErrL2 ErrL∞ ErrL2 ErrL∞

1st 51 51
4.0386 4.0593 6.0274 5.5302

2nd 101 101
4.0213 4.0313 5.8450 5.5385

3rd 151 151
4.0149 4.0235 5.0866 5.2163

4th 201 201
4.0091 4.0145 3.4301 3.5532

5th 401 401
4.0034 4.0065 3.6530 3.7769

6th 801 801

Mean value 4.0175 4.0270 4.8084 4.7230
Global value 4.0179 4.0276 4.7041 4.6152

Fig. 4. Convergence of the pressure field at t = 10−4 s, and ν = 1 s−1, for the Dirichlet (left) and Neumann (right) BVP.

As a consequence, Poisson equation (24) has been solved numerically with Dirichlet (a) or Neumann (b) conditions at the 
boundary of the domain. A convergence study has been performed by considering six grids, whose number of points is 
reported in Table 2, with the associated local order of convergence for both the case (a) (Dirichlet BVP) and (b) (Neumann
BVP) and for both the norm-L2 and -L∞ error related to each couple of grids. Last two rows show the mean value and 
the best fitting (i.e. global value) of the local order of convergence, respectively. The log–log plot of the error L2 and L∞ is 
shown in the left (i.e. Dirchlet BVP) and right (Neumann BVP) panel of Fig. 4, together with the theoretical trend associated 
with fourth order accuracy of the used scheme (dashed line). A convergence rate close to 4 for the Dirchlet BVP and slightly 
higher for the Neumann one, confirms the theoretical value of the present algorithm.

Fig. 5 shows the log–log diagram of the CPU time as function of the number N = NxN y of grid points, both for the 
Dirichlet (left panel) and Neumann (right panel) BVP. The computational time necessary for the inversion of the matrix 
(blue line) and for determining the global solution (green line) is reported together with the theoretical trends N3/2 and N . 
It is evident how the generalized HPC method shows a CPU time which increases with the number of the grid points closer 
to the N-trend than to the N3/2, assessing the efficiency of the proposed approach.

4.2. Lamb–Oseen vortex

The Lamb–Oseen Vortex [15] displays a solution of the vorticity equation in 2D, i.e. the vortex-stretching term is zero, 
and, due to the axisymmetry of the solution, the nonlinear advective term vanishes as well. Hence, the governing equation 
is:

∂ω(x, y, t)

∂t
= ν�ω(x, y, t) (25)
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Fig. 5. Convergence analysis of the CPU time for the Dirichlet (left) and Neumann (right) BVP. (For interpretation of the references to color in this figure, 
the reader is referred to the web version of this article.)

Fig. 6. Lamb–Oseen vortex: solution ω(x, t) at t = 10−4 s for ν = 1 m2/s.

with �ω = ∇x�v = (0, 0, ω) which represents the vorticity vector. The effect of the Laplacian operator consists in diffusing the 
vorticity in the field at a rate proportional to the viscosity ν . Let

ω(x, y, t = 0) = �0δ(x)δ(y) (26)

be the initial condition, that is we consider a point vortex with initial circulation �0 (where δ( f ) is the Dirac function), the 
exact solution is the Lamb–Oseen vortex:

ω(x, y, t) = �0

4νπt
e−r2/4νt,

where the vorticity field is a purely radial function depending only on r = √
x2 + y2. The solution of the velocity field leads 

to a purely tangential velocity field vτ ,

vτ = �0

2πr
(1 − e−r2/4νt),

i.e. the radial velocity is zero. The following Poisson BVP has been solved numerically:

�ω(x, y, t) = ∂ω(x, y, t = tp)

∂t
with Dirichlet conditions at the boundary of the domain, by assuming the term ∂ω(x, y, t)/∂t to be known at the prescribed 
time tp = 10−4 s. A regular Cartesian grid on a square domain has been considered. The analytical solution calculated at 
t = 10−4 s is reported in Fig. 6.

A convergence study has been performed by considering seven grids, whose number of points is reported in Table 3, 
together with the associated order of convergence for both the norm-L2 and -L∞ error. The log–log plot of the errors L2
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Table 3
Convergence study for the Lamb–Oseen vortex case: grid parameters and 
order of convergence.

grid # Nx N y Order of convergence

ErrL2 Errmax

1st 51 51
4.0926 4.0966

2nd 101 101
4.0437 4.0449

3rd 141 141
4.0285 4.0291

4th 201 201
4.0165 4.0168

5th 401 401
4.0089 4.0089

6th 601 601
4.0061 4.0064

7th 801 801

Mean value 4.0332 4.0343
Global value 4.0334 4.0344

Fig. 7. Lamb–Oseen vortex: convergence of the solution (top) and of the CPU Time (bottom) at t = 10−4 s for ν = 1 m2/s.

and L∞ is shown in the top panel of Fig. 7, together with the theoretical trend associated with dx4 (dashed line). The 
bottom panel of Fig. 7 shows the convergence of the computational cost of the proposed method.

A convergence rate of the solution close to 4 and a convergence rate of the CPU time proportional to the number of the 
grid points confirms the efficiency of the algorithm.
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Fig. 8. Analytical solution for the wave front with (xc , yc) = (−0.05,−0.05), r0 = 0.7. Left: α = 20 (mild wave front). Right: α = 103 (steep wave front).

Table 4
Convergence study for the mild wave front case: grid parameters, local and 
global order of convergence.

grid # Nx N y Order of convergence

ErrL2 ErrL∞

1st 51 51
4.1136 4.1732

2nd 101 101
4.0467 4.0664

3rd 151 141
4.0278 4.0208

4th 201 201
4.0148 4.0166

5th 401 401
4.0073 4.0104

6th 601 601
4.0046 4.0060

7th 801 801

Mean value 4.0358 4.0489
Global value 4.0366 4.0502

4.3. Wave front

The previous cases represent two classical analytical solutions of the Navier–Stokes equation well reproduced numerically 
by using a uniform Cartesian grid. In order to test a refinement algorithm for the solution of the Poisson problem, a steep 
wave front in the interior of the fluid domain is considered in the following. A circular wave front, whose analytical form 
is:

u(x, y) = arctan(α(r − r0)), with r =
√

(x − xc)2 + (y − yc)2

is the solution of the Poisson problem

�u(x, y) = σ(x, y;α) (27)

for u(x, y) with Dirichlet boundary conditions. In eq. (27), the forcing term σ(x, y; α) is prescribed once α is assigned [16]. 
Parameter α gives the steepness of the circular wave front, (xc, yc) is the center of the wave front and r0 is the distance 
between the wave front and its center.

For the case considered in Fig. 8 the center of the wave front is outside the domain. The solutions are characterized 
by a mild (i.e. α = 20, see left panel of Fig. 8) and steep (i.e. α = 103, see right panel of Fig. 8) wave front. The mild 
problem is solved on a regular Cartesian grid. The convergence study (see left panel of Fig. 9) has been done by using seven 
grids, whose number of nodes along x (Nx) and y (N y) direction are reported in Table 4, together with the local order 
of convergence relative to the norm-L2 and -L∞ error. Last two rows report the mean and the global value (which is the 
best fitting coefficient of the log–log error curve) of the L2 and L∞ error. The corresponding CPU time necessary for the 
inversion of the matrix and the determination of the global solution is shown in the right panel of Fig. 9.

The steep wave front case (whose analytical solution is shown in the right panel of Fig. 8) is numerically solved by 
using a stretched polar grid whose radial spacing is constant in the region with a flat solution while it changes as a linear 
function (see right panel of Fig. 11) across the “jump”. The forcing term σ(x, y; α = 103), according to [16], is shown in the 
left panel of Fig. 11. In particular the grid has been built as:
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Fig. 9. Convergence analysis for the mild wave front case α = 20 with (xc , yc) = (−0.05,−0.05), r0 = 0.7. Top: error L2 and L∞ . Bottom: CPU time.

r(n) =

⎧⎪⎪⎨
⎪⎪⎩

drminn, n = 1, . . . , N1 and r < r0 − ε

e1n2 + e2n + e3, n = 1, . . . , Nε/2 + 1 and r0 − ε ≤ r ≤ r0

e4n2 + e5n + e6, n = 1, . . . , Nε/2 and r0 ≤ r ≤ r0 + ε

(r0 + ε) + drmaxn, n = 1, . . . , N2 and r > r0 + ε

with the coefficients ei (i = 1, . . . , 6) which are determined by imposing the derivative of the function and the value of the 
distance r in prescribed points of the domain. Here, ε represents a small distance (approximately equal to 10−12) around 
the wave front. According to the previous definitions, Nr = N1 + Nε + N2 + 1, while Nθ represents the nodes number in 
the azimuthal direction. The grid parameters for the convergence study shown in the left panel of Fig. 10 have been fixed 
according to Table 5, where the local order of convergence for the norm L2 and L∞ error is also given as a function of the 
grid spacing ds defined in eq. (23). The corresponding computational time necessary for the inversion of the sparse matrix 
and for the evaluation of the solution is reported in the right panel of Fig. 10, that confirms a trend of the CPU time variable 
between N and N3/2.

4.4. Boundary line singularity

In order to test the capability of the proposed numerical model to deal with a singular behavior of the forcing term, the 
boundary line singularity [16] is faced. This is the solution of the following Poisson problem:

�u(x, y) = −(π/2)2 cos (π/2y) + α(α − 1)xα−2

with Dirichlet boundary conditions. The solution

u(x, y) = cos (π/2y) + xα .
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Fig. 10. Convergence analysis for the steep wave front case α = 103 with (xc , yc) = (−0.05,−0.05), r0 = 0.7. Top: error L2 and L∞ . Bottom: CPU time.

Table 5
Convergence study for the steep wave front case: grid parameters, local and global order of 
convergence.

grid # drmin drmax N1 Nε N2 Nr Nθ Order of convergence

ErrL2 ErrL∞

1st 0.0977 0.100 6 78 5 90 80
3.3671 3.6763

2nd 0.0782 0.080 7 98 6 112 100
3.8169 3.9475

3rd 0.0559 0.057 9 138 8 156 140
3.8222 3.8747

4th 0.0434 0.044 12 178 11 202 180
3.8602 3.9088

5th 0.0355 0.036 14 218 13 246 220
3.7657 3.7615

6th 0.0301 0.031 17 258 16 292 260
3.7452 3.7797

7th 0.0261 0.027 19 298 18 336 300
3.6278 3.6281

8th 0.0230 0.024 22 338 21 382 340

Mean value 3.7150 3.7967
Global value 3.7624 3.8466

is shown in Fig. 12 (for α = 1.1). The parameter α determines the strength of the singularity line which characterizes the 
forcing term: α < 2 implies a strong singularity and the solution lies in Hα+1/2−ε , ∀ε > 0, with Hm the Sobolev space of 
functions whose derivatives of order m are square integrable [16].
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Fig. 11. Forcing σ(x, y) and stretched polar mesh used for the steep wave front.

Fig. 12. Computed solution of the boundary line singularity equation with α = 1.1.

Fig. 13. Forcing function (left) and stretched Cartesian mesh (right) used for the boundary line singularity case.

The problem, with α = 1.1, is solved in � = (ε, 0.5) × (−0.5, 0.5) (with ε = 10−12) by using a Cartesian grid which is 
stretched along the x direction, i.e. across the singularity (see right panel of Fig. 13). In contrast, the spacing along the 
y-direction is kept constant. Left panel of Fig. 13 shows the forcing term.

More in details, the coordinate x of each grid node varies as a cubic function:

e1n3 + e2n2 + e3n + e4,n = 1, . . . , Nx (28)
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Fig. 14. Convergence analysis for the boundary line singularity case (α = 1.1). Top: error L2 and L∞ . Bottom: CPU time.

Table 6
Convergence study for the boundary line singularity case: grid parameters, 
local and global order of convergence.

grid # Nx N y Order of convergence

ErrL2 ErrL∞

1st 21 21
5.4830 5.6294

2nd 41 41
4.7288 4.7419

3rd 61 61
4.1703 4.1834

4th 81 81
3.6812 3.7010

5th 101 101
3.1634 3.1835

6th 121 121

Mean value 4.2454 4.2878
Global value 4.6520 4.7117

where the ei (i = 1, . . . , 4) coefficients have been determined by imposing the value of the coordinate x and the relative 
derivative in prescribed points of the domain. A convergence study has been performed in Fig. 14 by considering six grids, 
whose number of nodes and the local and global order of convergence relative to the norm L2 and L∞ error are reported 
in Table 6. Top panel of Fig. 14 shows the convergence analysis through the log–log plot of the error L2 and L∞ together 
with the theoretical trend associated with dx4 (dashed line). A 4th order convergence rate can be appreciated also in this 
case. However, a decreasing local order of convergence is observed by increasing the number of nodes; it is related with 
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Fig. 15. Computed solution of the MacCamy–Fuchs equation.

Table 7
Convergence study for the MacCamy–Fuchs problem: grid parameters, local 
and global order of convergence.

grid # Nr Nθ Order of convergence

ErrL2 ErrL∞

1st 100 100
3.6595 3.6466

2nd 200 200
3.9806 3.9780

3rd 300 300
4.0061 4.0106

4th 400 400
4.0088 4.0128

5th 500 500

Mean value 3.9137 3.9120
Global value 3.8563 3.8515

the singularity of the forcing term. Also the CPU time, shown in the bottom panel of Fig. 14, confirms the efficiency of the 
model proposed.

4.5. Helmholtz equation

4.5.1. Homogeneous case: MacCamy–Fuchs equation
In hydrodynamics, the homogeneous Helmholtz equation

�u(x, y) + k2u(x, y) = 0

describes the steady-state scattering problem of a plane wave system with wavenumber k advancing from the negative axis, 
which is incident to a circular cylinder of radius a with infinite draught [17]. The solution, representing the scattered wave 
in a polar domain (r, θ) (see Fig. 15) is:

u(r, θ) = J0(kr) − J ′
0(ka)

H (2)′
0

H (2)
0 (kr) + 2

∞∑
m=1

im[ Jm(kr) − J ′
m(ka)

H (2)′
m (ka)

H (2)
m (kr)] cos (mθ) − eikx

where H (2)
m (·) is the Hankel function of the second type and Jm(·) is the Bessel function of the first kind. The solution 

assumes the time dependence eiωt .
The problem has been solved numerically on a polar domain (r, θ) with outer radius R = 10, cylinder radius a = 1 and 

by considering an incident wave with wavenumber k = 2.
The convergence analysis has been performed on five grids, whose number of points are indicated in Table 7, together 

with the local order of convergence relative to the error in norm L2 and L∞ . Mean and global value of error are also reported 
in the last two rows of the table. Top panel of Fig. 16 shows the convergence analysis for the errors L2 and L∞ , together 
with the theoretical trend associated with dx4 (dashed line), confirming the 4th order convergence of the generalized HPC. 
Bottom panel in the same figure shows the CPU time necessary for the inversion of the sparse matrix and for the evaluation 
of the solution and confirms the required efficiency of the proposed model.
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Fig. 16. Convergence analysis for the MacCamy and Fuchs problem. Top: errors L2 and L∞ . Bottom: CPU time.

4.5.2. Forced Helmholtz problem: Schrödinger equation
The forced Helmholtz problem is inspired by the wave function that satisfies the Schrödinger equation model of two 

interacting atoms:

�u(x, y) + 1

(α + r)4
u(x, y) = −σ(x, y)

with

σ(x, y) = (−r2 + α2) cos ( 1
(α+r) )

r(α + r)4
+ 2 sin ( 1

(α+r) )

(α + r)4

which represents the forcing term (see Fig. 17). The solution:

u(x, y) = sin (
1

α + r
), with r =

√
x2 + y2

is highly oscillatory near the origin and it represents a wave with wavelength decreasing from infinity to zero when ap-
proaching the origin. The parameter α is related to the number of oscillations N in the whole domain, through the relation 
α = 1/(Nπ). Because of the behavior of the solution (see Fig. 18), the problem has been solved near the origin on a polar 
domain � = (�r × �θ) = [0, 1] × [0, π/4].

The convergence analysis has been done on five grids with a quadratic stretching along the radial direction (see a zoomed 
view of the coarsest grid in Fig. 19). Table 8 reports the number of points along the radial and azimuthal directions for each 
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Fig. 17. Forcing term of the Schrödinger equation.

Fig. 18. Solution of the Schrödinger equation.

Fig. 19. Zoom of the mesh #1 used for the Schrödinger equation.
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Table 8
Convergence study for the Schrödinger equation: grid parameters, local and global 
order of convergence.

grid # Nr Nθ Order of convergence

ErrL2 ErrL∞

1st 700 71
4.0035 4.0202

2nd 900 91
4.0615 4.0174

3rd 1100 111
4.0813 4.2582

4th 1300 131
4.1095 4.0179

5th 1500 151

Mean value 4.0639 4.0784
Global value 4.0563 4.0791

Fig. 20. Schrödinger equation: convergence rate for the error (top) and for the CPU time (bottom).

grid, as well as the local and global order of convergence for the L2 and L∞ error. According to the equation (23), the order 
of convergence has been expressed as a function of the grid size ds. Top panel of Fig. 20 shows that the local and global 
error goes as the theoretical trend ds4, confirming the accuracy of the method. Similarly to the previous cases, also the CPU 
time varies proportional with the number of that unknowns (see bottom panel of Fig. 20).
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5. Conclusions

The present paper proposes an original and 4th order accurate numerical method, the generalized HPC method, for the 
solution of the Boundary Value Problem for the Poisson equation. It is based on the decomposition of the global problem as 
the superposition of the homogeneous BVP, i.e. that for the Laplace equation, and a particular solution of the corresponding 
inhomogeneous problem on an unbounded domain. In the former, the solution is approximated through the harmonic 
polynomial functions [1]. In the latter, in order to keep the same order of accuracy as the solution, the forcing term has 
been approximated through a bi-quadratic interpolation. The method has been validated for several test cases for which an 
analytical solution is available, confirming the 4th order accuracy even in the case where a singular solution is expected, or a 
singular behavior of the forcing term is achieved. The method is promising to be used within incompressible Navier–Stokes 
solver where a high accuracy with small computational time in the solution of the Poisson equation is still a challenge. In 
particular, the main advantages of the proposed algorithm consist in the high accuracy and high efficiency both in terms 
of computational effort and easy to be implemented. These features, together with the availability of a closed form of the 
solution within each stencil, make feasible coupling the generalized HPC method with other numerical algorithms within 
a domain-decomposition strategy or within an adaptive mesh refinement technique. The ongoing research development of 
the present research group is addressed just in this direction, as well as on the extension of the method to the 3D case.

Acknowledgements

This research activity has been partially supported by Centre for Autonomous Marine Operations and Systems (AMOS), 
NTNU, Trondheim (project number 223254). It has been also partially supported by the Flagship Project RITMARE – The 
Italian Research for the Sea – coordinated by the Italian National Research Council and funded by the Italian Ministry of 
Education, University and Research within the National Research Program 2011–2013.

References

[1] Y.-L. Shao, O.M. Faltinsen, A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics, J. Comput. 
Phys. 274 (2014) 312–332, http://dx.doi.org/10.1016/j.jcp.2014.06.021.

[2] L.C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, American Mathematical Society, 1998.
[3] A.J. Chorin, Numerical solution of the Navier–Stokes equations, Math. Comput. 22 (1968) 745–762, http://dx.doi.org/10.1090/s0025-5718-1968-

0242392-2.
[4] R. Vanselow, Relations between FEM and FVM applied to the Poisson equation, Computing 57 (1996) 93–104, http://dx.doi.org/10.1007/BF02276874.
[5] J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, 3rd edition, Springer, 2002.
[6] J. Demmel, Sources of parallelism and locality in simulation, CS267: Lecture 13, Feb 27, 1996, http://www.cs.berkeley.edu/~demmel/cs267/lecture17/

lecture17.html.
[7] Y.-L. Shao, O.M. Faltinsen, Towards efficient fully-nonlinear potential-flow solvers in marine hydrodynamics, in: ASME 2012-31st International Confer-

ence on Ocean, Offshore and Artic Engineering, ASME, 2012, pp. 369–380.
[8] R. Hiptmair, A. Moiola, I. Perugia, C. Schwab, Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefftz

hp-DGFEM, Tech. Rep. 2012-38, Seminar fuer Angewandte Mathematik, Eidgenoessische Technische Hochschule, CH-8092 Zuerich, Switzerland, 2012.
[9] I.N. Vekua, On completeness of a system of harmonic polynomials in space, Dokl. Akad. Nauk SSSR 90 (1953) 495–498.

[10] I.N. Vekua, New Methods for Solving Elliptic Equations, Interscience Publishers John Wiley & Sons, Inc., New York, USA, 1967.
[11] H. Liang, O.M. Faltinsen, Y.-L. Shao, Application of a 2D harmonic polynomial cell (HPC) method to singular flows and lifting problems, Applied Ocean 

Research under Review.
[12] O. Faltinsen, A. Timokha, Analytically approximate natural sloshing modes and frequencies in two-dimensional tanks, Eur. J. Mech. B, Fluids 47 (2014) 

176–187, http://dx.doi.org/10.1016/j.euromechflu.2014.01.005, http://www.sciencedirect.com/science/article/pii/S0997754614000077.
[13] T.A. Davis, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software 30 (2004) 196–199, http://dx.

doi.org/10.1145/992200.992206.
[14] H. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211–228.
[15] G.K. Batchelor, Axial flow in trailing line vortices, J. Fluid Mech. 20 (1964) 645–658, http://dx.doi.org/10.1017/S0022112064001446.
[16] W.F. Mitchell, A collection of 2D elliptic problems for testing adaptive algorithms, Tech. Rep., Mathematical and Computational Sciences Division, 

National Institute of Standards and Technology, Gaithersburg, MD 20899-8910, USA, February 2010.
[17] R.C. MacCamy, R.A. Fuchs, Wave forces on piles: a diffraction theory, Tech. Rep. memorandum, No. 69, US Army, Corps of Engineers, Beach Erosion 

Board, Washington DC, USA, December 1954.



125

Bibliography

[1] Abrahamsen, B. C. Sloshing induced tank-roof impact with entrapped air pocket. Ph.D.
thesis, Norwegian University of Science and Technology (NTNU) (2011).

[2] Abrahamsen, B. C. and Faltinsen, O. M. The natural frequency of the pressure
oscillations inside a water-wave entrapped air pocket on a rigid wall. Journal of Fluids
and Structures, 35 (2012), 200.

[3] Bagnold, R. A. Interim report on wave-pressure research. Tech. rep. (1939).

[4] Bardazzi, A., Lugni, C., Antuono, M., Graziani, G., and Faltinsen, O. M. Generalized
hpc method for the poisson equation. Journal of Computational Physics, 299 (2015),
630.

[5] Bouscasse, B., Antuono, M., Colagrossi, A., and Lugni, C. Numerical and
experimental investigation of nonlinear shallow water sloshing. International Journal
of Nonlinear Sciences and Numerical Simulation, 14 (2013), 123.

[6] Chan, E. S. andMelville, W. K. Deep-water plunging wave pressures on a vertical
plane wall. 417 (1988), 95.

[7] Chapot, M. K. Cs1 - new containment system for lng carriers. In Gastech Conference
(2002).

[8] Davis, T. A. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal
method. ACM Transactions on Mathematical Software (TOMS), 30 (2004), 196.
doi:10.1145/992200.992206.

[9] Dold, J. W. An efficient surface-integral algorithm applied to unsteady gravity waves.
Journal of Computational Physics, 103 (1992), 90.

[10] Dommermuth, D. G., Yue, D. K. P., Lin, W. M., Rapp, R. J., Chan, E. S., and
Melville, W. K. Deep-water plunging breakers: a comparison between potential
theory and experiments. Journal of Fluid Mechanics, 189 (1988), 423. Available
from: http://journals.cambridge.org/article_S0022112088001089, doi:
10.1017/S0022112088001089.

[11] Faltinsen, O. M. and Timokha, A. N. Sloshing. Cambridge University (2010).

[12] Fenton, J. D. Numerical methods for nonlinear waves, chap. 5, pp. 241–324. Wolrd
scientific (2011). Available from: http://www.worldscientific.com/doi/
abs/10.1142/9789812797544_0005, arXiv:http://www.worldscientific.

http://dx.doi.org/10.1145/992200.992206
http://journals.cambridge.org/article_S0022112088001089
http://dx.doi.org/10.1017/S0022112088001089
http://dx.doi.org/10.1017/S0022112088001089
http://www.worldscientific.com/doi/abs/10.1142/9789812797544_0005
http://www.worldscientific.com/doi/abs/10.1142/9789812797544_0005
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/9789812797544_0005
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/9789812797544_0005
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/9789812797544_0005


126 Bibliography

com/doi/pdf/10.1142/9789812797544_0005, doi:10.1142/9789812797544_
0005.

[13] Graczyk, M. Experimental investigation of sloshing loading and load effects in
membrane LNG tanks subjected to random excitation. Ph.D. thesis, Norwegian
University of Science and Technology (NTNU) (2008).

[14] Greco, M. A Two-dimensional Study of Green-Water Loading. Ph.D. thesis, Norwegian
University of Science and Technology (NTNU) (2001).

[15] Greco, M., Landrini, M., and Faltinsen, O. Impact flows and loads on ship-deck
structures. Journal of Fluids and Structures, 19 (2004), 251 . Available from: http://
www.sciencedirect.com/science/article/pii/S0889974604000088, doi:
http://dx.doi.org/10.1016/j.jfluidstructs.2003.12.009.

[16] Hull, P. and Müller, G. An investigation of breaker heights, shapes and
pressures. Ocean Engineering, 29 (2002), 59 . Available from: http://www.
sciencedirect.com/science/article/pii/S0029801800000755, doi:http:
//dx.doi.org/10.1016/S0029-8018(00)00075-5.

[17] Kim, H.-C. and Lee, D.-Y. Core design issues of large lng carrier. In Gastech
Conference (2005).

[18] Lee, H., Kim, J. W., and Hwang, C. Dynamic strength analysis for membrane type lng
containment system due to sloshing impact load. In RINA, pp. 39–47 (2004).

[19] Lee, J. M., Paik, J. K., Kim, M. H., Kim, W. S., Noh, B. J., , and Choe, I. H. Dynamic
strength characteristics of membrane type lng cargo containment system. In RINA, pp.
189–200 (2006).

[20] Lindemark, T., Austefjord, H. N., Sele, H. O., Urm, H. S., Lee, K. J., and Ha, T. M.
Csa-2 analysis of a 216k lngc membrane carrier. In RINA, pp. 121–132 (2006).

[21] Lugni, C. Un’ indagine sull’interazione fra onde di superficie libera e strutture
galleggianti. Ph.D. thesis, Universitad̀egli studi di Roma “Sapienza” (0000).

[22] Lugni, C., Bardazzi, A., Faltinsen, O. M., and Graziani, G. Hydroelastic slamming
response in the evolution of a flip-through event during shallow-liquid sloshing. Physics
of Fluids, 26 (2014), 032108.

[23] Lugni, C., Brocchini, M., and Faltinsen, O. M. Wave impact loads: The role of the
flip-through. Physics of Fluids, 18 (2006), 122101. doi:10.1063/1.2399077.

[24] Lugni, C., Miozzi, M., Brocchini, M., and Faltinsen, O. M. Evolution of the air cavity
during a depressurized wave impact. i. the kinematic flow field. Physics of Fluids,
22 (2010), 056101+. Available from: http://dx.doi.org/10.1063/1.3407664,
doi:10.1063/1.3407664.

[25] Lugni, M., Brocchini, M., and Faltinsen, O. M. Evolution of the air cavity
during a depressurized wave impact. ii. the dynamic field. Physics of Fluids, 22
(2010), 056102+. Available from: http://dx.doi.org/10.1063/1.3409491,
doi:10.1063/1.3409491.

http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/9789812797544_0005
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/9789812797544_0005
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/9789812797544_0005
http://dx.doi.org/10.1142/9789812797544_0005
http://dx.doi.org/10.1142/9789812797544_0005
http://www.sciencedirect.com/science/article/pii/S0889974604000088
http://www.sciencedirect.com/science/article/pii/S0889974604000088
http://dx.doi.org/http://dx.doi.org/10.1016/j.jfluidstructs.2003.12.009
http://dx.doi.org/http://dx.doi.org/10.1016/j.jfluidstructs.2003.12.009
http://www.sciencedirect.com/science/article/pii/S0029801800000755
http://www.sciencedirect.com/science/article/pii/S0029801800000755
http://dx.doi.org/http://dx.doi.org/10.1016/S0029-8018(00)00075-5
http://dx.doi.org/http://dx.doi.org/10.1016/S0029-8018(00)00075-5
http://dx.doi.org/10.1063/1.2399077
http://dx.doi.org/10.1063/1.3407664
http://dx.doi.org/10.1063/1.3407664
http://dx.doi.org/10.1063/1.3409491
http://dx.doi.org/10.1063/1.3409491


Bibliography 127

[26] Marino, E., Lugni, C., and Borri, C. A novel numerical strategy for the simulation of
irregular nonlinear waves and their effects on the dynamic response of offshore wind
turbines. Computer Methods in Applied Mechanics and Engineering, 255 (2013), 275.

[27] Newman, J. N. Marine hydrodynamics. MIT Press Cambridge, Mass (1977). ISBN
0262140268.

[28] Olsen, H. and Johnsen, K. Nonlinear sloshing in rectangular tanks. a pilot study on
the applicability of analytical models. Tech. Rep. 74-72-S, Vol. II, DNV - Det Norske
Veristas (1975).

[29] Pastoor, W., Østvold, T. K., Byklum, E., and Valsgård, S. Sloshing load and response
in lng carriers for new designs, new operations and new trades. In Gastech (2005).

[30] Peregrine, D. H. Water-wave impact on walls. Annual Review of Fluid Mechanics, 35
(2003), 23. doi:10.1146/annurev.fluid.35.101101.161153.

[31] Rienecker, M. M. and Fenton, J. D. A fourier approximation method for
steady water waves. Journal of Fluid Mechanics, 104 (1981), 119. Available
from: http://journals.cambridge.org/article_S0022112081002851, doi:
10.1017/S0022112081002851.

[32] Shao, Y.-L. and Faltinsen, O. M. Towards efficient fully-nonlinear potential-flow
solvers in marine hydrodynamics. In ASME 2012-31st International Conference on
Ocean, Offshore and Artic Engineering, pp. 369–380. ASME (2012).

[33] Shao, Y.-L. and Faltinsen, O. M. Towards efficient fully-nonlinear potential-flow
solvers in marine hydrodynamics. In Proceedings of the 31st International Conference
on Ocean, Offshore and Arctic Engineering (OMAE), Rio de Janeiro, Brazil, pp.
369–380 (2012).

[34] Topliss, M. E., Cooker, M. J., and Peregrine, D. H. Pressure oscillations during wave
impact on vertical walls. vol. 2, pp. 1639–1650. Publ by ASCE, New York, NY, United
States (1992).

[35] Verhagen, J. and VanWijngaarden, L. Non-linear oscillations of fluid in a container.
Journal of Fluid Mechanics, 22 (1965), 737.

[36] Zhao, R., Rognebakke, O., and Zheng, X. Wave and impact loads in design of large
and conventional lng ships. In RINA, pp. 75–85 (2004).

http://dx.doi.org/10.1146/annurev.fluid.35.101101.161153
http://journals.cambridge.org/article_S0022112081002851
http://dx.doi.org/10.1017/S0022112081002851
http://dx.doi.org/10.1017/S0022112081002851

	Introduction
	Objective and outline of the thesis

	Experimental Investigation
	Experimental Set-Up
	Scaling of the problem
	Dynamic characterization of the structure

	Wave scenarios
	Case A) Flip-through
	Case B) Gas cavity

	Discussion of the results
	Flip-through impact
	Impact with gas cavity


	Mathematical Model
	Physical assumptions for the hydroelastic problem
	Mathematical Model for the sloshing stage
	Mathematical model for the hydroelastic stage
	``Lumped'' model for the gas-cavity
	Structural sub-problem

	Hybrid hydroelastic model
	Gas cavity analytical model
	Gas cavity hydroelastic model


	Numerical Model
	Sloshing Stage
	Potential flow solver
	Time integration procedure
	Test cases

	Fully hydroelastic model
	semiAnalytic Flip-Through


	Conclusions
	Suggestions for future activities

	Appendix Generalized HPC method for the Poisson equation

