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Abstract We construct a collocation method based on the fractional B-splines to

solve a nonlinear differential problem that involves fractional derivatives, i.e., the

fractional-order logistic equation. The use of the fractional B-splines allows us to

express the fractional derivatives of the approximating function in an analytical form.

Thus, the fractional collocation method is easy to implement, accurate, and efficient.

Several numerical tests illustrate the efficiency of the proposed collocation method.
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1 Introduction

When we speak about Fractional Derivative, we are generalizing to positive real order

the well-understood notion of derivative of integer order (see, for instance, [14]). The

nonlocal behavior of the fractional derivative allows to model physical phenomena

where memory processes are relevant. For this reason, in the last decades, fractional-

order differential problems were extensively used to describe the anomalous diffusion

in porous media, the behavior of viscoelastic materials, the population growth of

ecosystems, the intermittent phenomena in plasma, just to cite a few (see, for instance,

[6, 9, 15] and references therein).

On the other hand, the nonlocality is a challenge when one wants to construct

numerical methods for the solution of fractional-order differential problems. In fact,

to approximate the fractional derivative of a function, its values from the beginning

of the discretization interval have to be taken into account. Many numerical methods
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that generalize to fractional-order numerical methods well established in the case

of integer-order derivatives, have been proposed in the literature (see, for instance,

[2, 3, 11, 21] and references therein). Unfortunately, these methods are computa-

tionally demanding when a high accuracy in the numerical solution is required.

In this paper, we construct a collocation method that is especially tailored for

fractional-order differential problems. The method looks for an approximating func-

tion that belongs to the functional space generated by the fractional B-splines and

takes advantage of the explicit formula for their fractional derivatives. The resulting

method is easy to implement, accurate, and efficient.

We will use the proposed method to solve a nonlinear fractional differential prob-

lem, i.e., the fractional-order logistic differential equation, and we will show that the

method produces good approximations while keeping the computational cost low.

The organization of the paper is as follows. In Sect. 2, the fractional-order logistic

model is presented, and the definition of fractional derivative is given. Section 3

is devoted to the fractional B-splines and their main properties, while the explicit

expression of their fractional derivatives is given in Sect. 4. The fractional spline

collocation method is introduced in Sect. 5. Finally, in Sect. 6, some numerical tests

on the solution of the linear fractional growth model and of the nonlinear fractional

logistic model are shown. Some conclusions are drawn in Sect. 7.

2 The Fractional-order Logistic Differential Equation

The logistic equation [19]







u′(t) = ρ u(t)
(

1 − u(t)
)

, t > 0 ,

u(0) = u0 ,

(1)

where ρ > 0 is the growth rate, is extensively used to model the growth of a popula-

tion in the case of limited resources. It has application in several fields, from ecology

to chemical reactions, from medicine to transport of goods. Remarkably, the solution

of the logistic equation has a closed form, i.e.,

u(t) =
u0

u0 + (1 − u0)e−ρ t
, (2)

also known as the sigmoid function. We notice that Eq. (1) is normalized so that

limt→∞ u(t) = 1.

Recently, it has been observed that many real-life growth phenomena are better

described by fractional-order differential problems (see, for instance, [1, 8, 16, 17]),

so that it seems natural to generalize to the fractional order the logistic model. The

fractional-order logistic equation, first analyzed in [4], is
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Dγ u(t) = ργ u(t)
(

1 − u(t)
)

t > 0 , 0 < γ < 1 ,

u(0) = u0 ,

(3)

where D
γ
t u denotes the Caputo fractional derivative with respect to the time t .

We recall that the Caputo derivative of fractional-order γ > 0 of a function f ∈

C⌈γ ⌉−1(R+) having absolute integrable derivative of order k = ⌈γ ⌉ is defined as

D
γ
t f (t) :=

(

J (k−γ ) f (k)
)

(t) , k − 1 < γ < k , k ∈ N\{0} , t > 0 , (4)

where J (γ ) is the Riemann–Liouville integral operator

(

J (γ ) f
)

(t) :=
1

Γ (γ )

∫ t

0

f (τ ) (t − τ)γ−1 dτ , (5)

and Γ denotes the Euler’s gamma function

Γ (γ ) :=

∫ ∞

0

τ γ−1 e−τ dτ . (6)

Here, N denotes the set of nonnegative integers.

For details on fractional calculus and fractional derivatives see, for instance, [14].

The existence and uniqueness of the solution to (3) was proved in [4], while its

analytical solution was given in [20],

u(t) =

∞
∑

k=0

(

u0 − 1

u0

)k

Eγ (−k ργ tγ ) , (7)

where Eγ (z) is the Mittag–Leffler function defined as

Eγ (z) =

∞
∑

k=0

zk

Γ (k γ + 1)
. (8)

The fractional-order influences the population growth: The lower the derivative order

is, the slower the rate of growth becomes.

In the following, we will construct a collocation method based on the fractional

B-splines to solve the fractional logistic equation.

3 The Fractional B-Splines

The fractional B-splines, i.e., the B-splines of fractional order, were introduced in

[18] generalizing to fractional power the classical definition of polynomial B-splines

of integer order. We notice that here ‘fractional’ actually means ‘real.’ In fact, let

francesca.pitolli@sbai.uniroma1.it



310 F. Pitolli and L. Pezza

tα
+ :=







tα , t ≥ 0 ,

0 , otherwise ,

α > −1/2 , (9)

be the fractional truncated power function, and let ∆
γ

h be the generalized finite

difference operator

∆
γ

h f (t) :=
1

hγ

∞
∑

k=0

(−1)k

(

γ

k

)

f (t − h k) , γ ∈ R
+ , (10)

where

(

γ

k

)

:=
Γ (γ + 1)

k! Γ (γ − k + 1)
, k ∈ N , γ ∈ R

+ , (11)

are the generalized binomial coefficients. When γ ∈ N\{0}, {
(

γ

k

)

} is the usual bino-

mial coefficient sequence so that the series in (10) is a finite sum and ∆
γ

h reduces to

the usual finite difference operator. When γ ∈ R
+\N, the sequence {

(

γ

k

)

} is no more

compactly supported even if it is absolutely summable so that the limit of the series

(10) exists under suitable conditions on f .

The fractional B-spline Bα of order α is defined as

Bα(t) :=
∆α+1

h tα
+

Γ (α + 1)
, α > −

1

2
. (12)

When α = n ∈ N, Bn is the well-known polynomial B-spline of integer degree n

and compact support [0, n + 1]. When α is not an integer, the fractional B-spline Bα

does not have compact support but it decays as

Bα(t) →
1

|t |−α−2
, (13)

for t → ∞ and belongs to L2(R).

The fractional B-splines for different values of the parameter α are displayed in

Fig. 1 (top left panel). The classical polynomial B-splines are also displayed (dashed

lines). The picture shows that even if the fractional B-splines do not have compact

support, they decay very fast so that they can be truncated for computational purposes.

Moreover, we observe that the fractional B-splines are not always positive, even if

the nonnegative part becomes smaller and smaller when α increases.
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Fig. 1 The fractional B-splines (solid lines) and the polynomial B-splines (dashed lines) for α

ranging from 0 to 4 (top left panel). The fractional derivatives of the linear B-spline B1 for γ =

0.25, 0.5, 0.75 (top right panel). The fractional derivatives of the cubic B-spline B3 (bottom left

panel) and of the fractional B-spline B3.5 (bottom right panel) for γ ranging from 0.25 to 2. Ordinary

derivatives are displayed as dashed lines

4 The Fractional Derivatives of the Fractional B-Splines

Fractional derivatives of fractional B-splines can be evaluated by differentiating

(12). First of all we observe that the fractional derivative of order γ of the fractional

truncated power (9) can be evaluated explicitly using definition (4). We get

D
γ
t tα

+ =















Γ (α + 1)

Γ (α + 1 − γ )
t
α−γ
+ , t > 0 ,

0 , otherwise ,

0 < γ ≤ α . (14)
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Substituting (14) in (12), we get the differentiation rule

D
γ
t Bα(t) =

∆α+1
h t

α−γ
+

Γ (α − γ + 1)
, 0 < γ < α +

1

2
, (15)

which reduces to the differentiation rule for the classical B-splines when γ, α ∈ N.

We observe that since Bα is a causal function with B(n)
α (0) = 0 for n ∈ N\{0},

the Caputo fractional derivative coincides with the Riemann–Liouville fractional

derivative defined as

D
γ
t f (t) :=

dk

dtk

(

J (γ ) f
)

(t) , k − 1 < γ < k , k ∈ N , t > 0 . (16)

It is interesting to note that the fractional derivative of a fractional B-spline of degree α

can be expressed as a linear combination of translates of a fractional B-spline of lower

degree, i.e., D
γ
t Bα is a fractional spline. Since the differentiation rule (15) holds also

when α is an integer, the fractional derivatives of the classical polynomial B-splines

are fractional splines, too. As a consequence, D
γ
t Bn is not compactly supported

when γ ∈ R
+\N reflecting the nonlocal behavior of the fractional derivatives. In

Fig. 1, the fractional derivatives of B1 (top right panel), B3 (bottom left panel), and

B3.5 (bottom right panel) are displayed for different values of γ .

5 The Fractional Spline Collocation Method

The fractional spline collocation method looks for an approximating function that

belongs to the space of the fractional spline Bα . Let ∆ = { j h, 0 ≤ j ≤ N }, N =

T/h, be a partition of equispaced nodes in the interval [0, T ] and let Vα,h be the

fractional spline space on the partition ∆. As a basis for Vα,h , we choose the set of

functions

Φα,h,k = {ϕα,h,k(t) = Bα(t − h k), k ∈ Nh , t ∈ [0, T ]} . (17)

Here, Nh is a suitable set of indexes chosen in order to take into account all the

translates of Bα that are significantly different from zero in [0, T ]. When α = n ∈ N,

due to the compact support of Bn we get Nh = {k,−n ≤ k ≤ N }. When α is not

an integer, since Bα decays fast toward infinity, for computational purposes we can

assume supp Bα ≈ [0, N0], where N0 ≥ ⌈α⌉ + 2 is a truncation parameter (cf. Fig. 1).

Thus, Nh = {k,−N0 + 1 ≤ k ≤ N }. We observe that the basis Φα,h,k has a certain

number of boundary functions, depending on the value of α. More precisely, let Nα

be an integer equal to n when α has an integer value and equal to N0 when α is not

an integer. Then, the basis Φα,h,k has 2Nα boundary functions, i.e., the Nα functions

ϕα,h,k(t) with index k ranging from −Nα to −1 (left boundary), and the Nα functions
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ϕα,h,k(t) with index k ranging from N − Nα + 1 to N (right boundary). Here, the

boundary functions are obtained just restricting Bα(t − h k) to the interval [0, T ].

For a given partition ∆, we look for an approximating function uα,h(t) ∈ Vα,h ,

i.e.,

uα,h(t) =
∑

k∈Nh

λα,h,k ϕα,h,k(t) , (18)

which solves the differential problem (3) on a set of collocation points. Here, we

choose as collocation points the set of equispaced nodes {tp = p δ, p = 0, . . . , M},

where M = T/δ. Thus, the discretized version of (3) reads







D
γ
t uα,h(tp) = ργ uα,h(tp)

(

1 − uα,h(tp)
)

, p = 1, . . . , M ,

uα,h(0) = u0 .

(19)

Substituting (18) in (19), we get























∑

k∈Nh

λk D
γ
t ϕk(tp) = ργ

∑

k∈Nh

λkϕk(tp)
(

1 −
∑

k∈Nh

λkϕk(tp)
)

, p = 1, . . . , M ,

∑

k∈Nh

λkϕk(0) = u0 ,

(20)

where, for short notation, we dropped the subscripts α and h.

Equations (20) form a nonlinear system of M equations for the N ≤ M unknowns

{λk, k ∈ Nh} and can be solved, for instance, by the Levenberg–Marquardt algorithm.

In the following section, we give some numerical results showing the feasibility of

the method.

6 Numerical Tests

In this section, we will show the performance of the proposed collocation method in

solving some test problems.

First of all, we test the fractional spline collocation method on the fractional

growth equation







Dγ u(t) = ργ u(t) , t > 0 , 0 < γ ≤ 1 , ρ > 0 ,

u(0) = u0 ,

(21)
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which generalizes to the fractional-order derivative the well-known Malthusian

model [10]. Its analytical solution, obtained through the Laplace transform, has the

following expression (cf. [20])

u(t) = u0 Eγ

(

(ρ t)γ
)

. (22)

It reduces to the classical exponential growth law when γ = 1.

Applying to Eq. (21) the collocation method highlighted in the previous section,

we get the linear system























∑

k∈Nh

λk D
γ
t ϕk(tp) − ργ

∑

k∈Nh

λk ϕk(tp) = 0 , p = 1, . . . , M ,

∑

k∈Nh

λk ϕk(0) = u0 ,

(23)

Fig. 2 Fractional growth model: The numerical solution and the error obtained by using the frac-

tional B-spline B3.75 for γ = 1 (top left panels), 3/4 (top right panels), 1/2 (bottom left panels),

1/4 (bottom right panels) for increasing values of M and N ; i.e., M = 64, N = 37 (red); M = 128,

N = 69 (blue); M = 256, N = 133 (green). The analytical solution is shown as a dashed black

line
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where {λk} are the N unknowns. When N < M , the linear system is overdetermined

and can be solved in the least squares sense.

In the following numerical tests, we set ρ = 1.

The numerical solution and the error u(t) − uα,h(t) obtained when α = 3.75 are

shown in Fig. 2 for different values of γ and decreasing values of the partition step

h and of the collocation step δ, i.e., γ = 1, 3/4, 1/2, 1/4, h = 2−4, 2−5, 2−6, and

δ = 2−5, 2−6, 2−7. Here, the truncation parameter N0 is set equal to 6 so that N =

T/h + N0 − 1 = 37, 69, 133 while M = T/δ = 64, 128, 256.

Figure 3 displays the numerical solution and the error obtained by using the frac-

tional B-splines Bα with α = 3, 3.25, 3.5, 3.75, 4, for the two values γ = 1/4 and

γ = 1 (Malthus model).

These simple tests show that the numerical solution obtained by the proposed

collocation method has a good accuracy even in the case of few nodes and low

dimension of the approximating space. Moreover, a suitable choice of the fractional

order of the fractional B-spline can improve the approximation accuracy.

Then, we solved the fractional logistic equation using the same parameters as in

the previous tests. The numerical solution and the error obtained when α = 3.75 are

shown in Fig. 4 for different values of γ . Figure 5 displays the numerical solution

and the error obtained by using the fractional B-splines Bα with α = 3, 3.25, 3.5,

3.75, 4, for the two cases γ = 1/4 and γ = 1.

The numerical results show that also for this nonlinear problem, the collocation

method provides an accurate solution.

Fig. 3 Fractional growth model: The numerical solution and the error for γ = 1/4 (left), γ = 1

(right) obtained by using the fractional B-splines B3.25 (blue), B3.5 (green), B3.75 (cyan). Dashed

lines correspond to the polynomial B-splines B3 (red) and B4 (magenta). Here, M = 128, N = 69
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Fig. 4 Fractional logistic model: The numerical solution and the error obtained by using the frac-

tional B-spline B3.75 for γ = 1 (top left panels), 3/4 (top right panels), 1/2 (bottom left panels),

1/4 (bottom right panels) for increasing values of M and N , i.e., M = 64, N = 37 (red); M = 128,

N = 69 (blue); M = 256, N = 133 (green). The analytical solution is shown as a dashed black

line

Fig. 5 Fractional logistic model: The numerical solution and the error for γ = 1/4 (left panels),

γ = 1 (right panels) obtained by using the fractional B-splines B3.25 (blue), B3.5 (green), B3.75

(cyan). Dashed lines corresponds to the polynomial B-splines B3 (red) and B4 (magenta). Here,

M = 128, N = 69
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7 Conclusion

We presented a fractional spline collocation method suitable to solve both linear and

nonlinear fractional-order differential problems, and we tested their performance

on the growth and logistic differential equations of fractional order. The numerical

results show that the proposed method produces an accurate approximation with a

low computational cost. Moreover, the order of the fractional B-spline to be used

in the method can be considered as a free parameter and can be chosen in order to

reduce the approximation error.

A theoretical proof of the convergence when h and δ go to zero can be given

following classical arguments in approximation theory (cf. [13]) and will be the

subject of a forthcoming paper where the use of different approximating operators

and different node distributions will be also considered. Moreover, the additional

approximation error introduced by the truncation parameter N0 has to be carefully

evaluated.

Another issue to be taken into account is the truncation of the boundary functions

since it could generate numerical instabilities due to the possibly high condition

number of the corresponding collocation matrix. There exist different approaches

to obtain stable bases on finite intervals. Since the fractional B-splines are refinable

functions and generate a multiresolution analysis in L2(R), we can adapt to the

fractional B-spline case some methods already used for constructing refinable bases

on the interval (see, for instance, [5]).

As a final remark, we observe that refinability is a key ingredient to construct

fractional wavelet collocation methods (cf. [12]).
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