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Abstract

We introduce a multiscale collocation method to numerically solve differential problems involving both ordinary and fractional
derivatives of high order. The proposed method uses multiresolution analyses (MRA) as approximating spaces and takes advantage
of a finite difference formula that allows us to express both ordinary and fractional derivatives of the approximating function in
a closed form. Thus, the method is easy to implement, accurate and efficient. The convergence and the stability of the multiscale
collocation method are proved and some numerical results are shown.
c⃝ 2017 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Fractional Calculus generalizes to positive real order the well-understood notion of derivative and integral of
integer order (see, for instance, [19,24,26] and references therein). Even if the development of fractional calculus has
a long history dating back to the 18th century, its use in real world applications has become popular just in more recent
years. Indeed, in the last decades fractional differential problems are extensively used to model phenomena arising
in several fields, from physics to continuum mechanics, from signal processing to electrochemistry, from biophysics
to control theory. For instance, different kinds of fractional differential equations have been recently used to describe
wave propagation in porous materials, diffusive phenomena in biological tissues, damping in viscoelastic mechanical
systems, dynamic control of thermal systems. For a survey on applications see, for instance, [12,13,17,25,27] and
references therein. Along with the development of models there is a great effort to find out efficient numerical methods
to solve fractional differential problems [2].

In this paper we introduce a multiscale collocation method to numerically solve fractional differential problems
of order greater than 1. The method, which uses refinable functions as approximating functions, takes advantage
of the refinability property to give rise to an accurate and efficient algorithm. Moreover, the fractional derivatives
of the refinable functions appearing in the collocation matrix have a closed form that involves just the generalized
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finite difference operator. All these reasons make the multiscale collocation method particularly attractive in solving
fractional differential problems of different forms.

The paper is organized as follows. In Section 2 a general class of fractional differential problems recently used
to model viscoelastic damping is described. The definition of fractional derivatives is also given. The multiscale
collocation method is introduced in Section 3 where stability and convergence of the method are also proved. In
Section 4 the analytical expression of both ordinary and fractional derivatives of refinable functions is given. Finally, in
Section 5 the proposed method is used to numerically solve some fractional differential problems arising in continuum
mechanics.

2. Multi-term fractional differential equations

Among the great variety of fractional differential problems used to model problem arising in real world
applications, multi-term fractional differential equations have gained a great interest especially in the modeling of
viscoelastic damping [1,7,24]. These problems are characterized by the presence of both ordinary and fractional
derivatives, possibly of order greater than 1. In particular, in this paper we consider linear multi-term fractional
differential equations of the form⎧⎪⎨⎪⎩y(n)(t) +

n0∑
i=0

ai (t)y(i)(t) +

n1∑
i=0

bi (t)(Dγi
t y)(t) = f (t), t ∈ [0, T ],

y(0) = y′(0) = · · · = y(n−1)(0) = 0,

(2.1)

where
n ∈ N, n0, n1 ∈ N0 := N ∪ 0, 0 ≤ n0 ≤ n − 1,

0 < γ0 < · · · < γn1 < n, γi ̸∈ N, 0 ≤ i ≤ n1,

and ai (t), 0 ≤ i ≤ n0, bi (t), 0 ≤ i ≤ n1, and f (t) are some given continuous functions from [0, T ] into R. Here, Dγ
t y

denotes the Caputo fractional derivative with respect to the time t defined as

Dγ
t y(t) :=

(
J (k−γ ) y(k))(t), k − 1 < γ < k, k ∈ N, t > 0, (2.2)

where J (γ ) is the Riemann–Liouville integral operator(
J (γ ) y

)
(t) :=

1
Γ (γ )

∫ t

0
y(τ )(t − τ )γ−1dτ, (2.3)

and Γ denotes the Euler’s gamma function

Γ (γ ) :=

∫
∞

0
τ γ−1e−τ dτ. (2.4)

We notice that, due to the homogeneous initial condition for the function y(t), the Caputo definition (2.2) coincides
with the Riemann–Liouville definition

Dγ
t y(t) :=

dk

dtk

(
J (γ ) y

)
(t), t > 0, (2.5)

and both reduce to the usual differential operator in case γ ∈ N [24,26]. One of the advantage of the Riemann–
Liouville definition is in that the usual differentiation operator in the Fourier domain can be easily extended to the
fractional case, i.e.,

F
(
Dγ

t y(t)
)

= (iω)γF(y(t)), γ ∈ R+, (2.6)

where F(y) denotes the Fourier transform of the function y. Moreover, the Riemann–Liouville definition coincides
with the Grunwald–Letnikov definition

Dγ
t y(t) = lim

δ→0

1
δn

t
δ∑

k=0

(−1)k
(γ

k

)
y(t − δk), (2.7)

where(γ

k

)
:=

Γ (γ + 1)
k!Γ (γ − k + 1)

, k ∈ N0, γ ∈ R+, (2.8)



212 L. Pezza, F. Pitolli / Mathematics and Computers in Simulation 147 (2018) 210–219

are the generalized binomial coefficients. When γ ∈ N, the generalized binomial coefficients reduce to the usual
binomial coefficients so that the sequence {

(
γ

k

)
} is compactly supported. When γ ∈ R+

\N, the sequence is no longer
compactly supported but the coefficients decay toward infinity as(γ

k

)
→ k−γ−1 for k → ∞. (2.9)

We notice that the Grunwald–Letnikov definition (2.7) is easier to use when addressing the numerical solution of
fractional differential problems.

The multi-term fractional differential problem (2.1) was studied in [20] where the existence and uniqueness of
its solution were proved. In that paper the authors proposed a spline collocation method to numerically solve (2.1).
Multi-term fractional differential equations were studied also in [5] where they are solved by a multistep method (see
also [6,11,15] and references therein for different methods). In the next section we will introduce a new collocation
method, the multiscale collocation method, which takes advantage of multiscale techniques to give rise to an efficient
and accurate algorithm.

3. The multiscale collocation method

A sequence {V j , j ∈ Z} of embedded approximating spaces, which are closed subspaces of L2(R), forms a
multiresolution analysis (MRA) of L2(R) if

(i) V j ⊂ V j+1, j ∈ Z; (ii) ∪ j∈ZV j = L2(R);
(iii)

⋂
j∈ZV j = {0}; (iv) f (t) ∈ V j ↔ f (2t) ∈ V j+1, j ∈ Z;

(v) there exists a L2(R)-stable basis in V0.

A MRA can be generated by a refinable function, i.e., a function defined through a refinement mask a = {ak ∈

R, k ∈ Z} and a refinement equation as follows,

ϕ(t) =

∑
k∈Z

akϕ(2t − k), t ∈ R. (3.1)

Suitable conditions on the mask coefficients {ak} ensure the existence of a unique function ϕ solution to (3.1),
belonging to L2(R) and such that their integer translates {ϕ(t − k), k ∈ Z} form a L2(R)-stable basis in V0 (see [18]
for details). As a consequence, the refinable function ϕ generates all the spaces V j through dilation and translation,
i.e.,

V j = span{ϕ(2 j t − k), k ∈ Z}, j ∈ Z, t ∈ R. (3.2)

We say that a refinable function ϕ has order of approximation α when

inf
g∈V j

∥ f − g∥L2(R) = O
(
2− jα) (3.3)

for all f ∈ Hα(R) (the Sobolev space of order α) [18,29].
Now, let us denote by

V 0
j [0, T ] = span{ϕ jk(t), k ∈ N j }, j ≥ j0, t ∈ [0, T ], (3.4)

the restriction of V j on the interval [0, T ] such that the basis functions ϕ jk fulfill the initial conditions

ϕ jk(0) = ϕ′

jk(0) = · · · = ϕ
(n−1)
jk (0) = 0. (3.5)

Here, N j ⊂ Z is the set of admissible index k and j0 is the initial multiresolution scale. Thus, V 0
j [0, T ] is generated

by the N j functions ϕ jk with N j = dim(N j ).
For any j held fix, the multiscale collocation method looks for an approximating function

y j (t) =

∑
k∈N j

c jkϕ jk(t) ∈ V 0
j [0, T ] (3.6)

that solves the differential problem (2.1) on a set of collocation points. Due to (3.1), ϕ jk can be efficiently evaluated
on dyadic nodes by the cascade algorithm [18], thus it seems natural to use dyadic nodes as collocation nodes. For
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any integer value T , let {tp = p/2s, p = 0, . . . , T 2s
}, be a set of Ns = T 2s

+ 1 dyadic nodes in the interval [0, T ].
Here, s is a given non-negative integer such that Ns ≥ N j . Thus, the discretized version of (2.1) reads⎧⎪⎪⎨⎪⎪⎩

y(n)
j (tp) +

n0∑
i=0

ai (tp)y(i)
j (tp) +

n1∑
i=0

bi (tp)(Dγi
t y j )(tp) = f (tp), 0 < p ≤ T 2s,

y j (0) = y′

j (0) = · · · = y(n−1)
j (0) = 0.

(3.7)

Using (3.6) in (3.7) and recalling (3.5), we get∑
k∈N j

c jk

(
ϕ

(n)
jk (tp) +

n0∑
i=0

ai (tp)ϕ(i)
jk (tp) +

n1∑
i=0

bi (tp)(Dγi
t ϕ jk)(tp)

)
= f (tp), 0 < p ≤ T 2s, (3.8)

where {c jk, k ∈ N j } are the unknown coefficients. The linear system (3.8) can be written in matrix form as

A j C j = F, A j = A j1 + A j2 + A j3, (3.9)

where

A j1 =

(
ϕ

(n)
jk (tp)

)
0<p≤2s T,k∈N j

,

A j2 =

( n0∑
i=0

ai (tp)ϕ(i)
jk (tp)

)
0<p≤2s T,k∈N j

,

A j3 =

( n1∑
i=0

bi (tp)Dγi
t ϕ jk(tp)pk

)
0<p≤2s T,k∈N j

,

F =
(

f (tp)
)

0<p≤2s T ,

(3.10)

and C j = (c jk)k∈N j is the unknown vector. Since the most celebrated refinable functions are compactly supported
or have fast decay, in practical applications the collocation matrix A j is a band matrix with bandwidth equal to
2(|supp(ϕ)| − 1). When 2s T = N j , the linear system (3.9) is square and the unknown vector C j can be recovered
by a LU algorithm for band matrices. Since the basis functions ϕ jk and their derivatives are linearly independent, the
collocation matrix A j is invertible. When 2s T > N j , (3.9) is an overdetermined linear system that can be solved in
the least squares sense [8].

We notice that the entries of A j involve the values of ϕ jk and its ordinary and fractional derivatives on the dyadic
nodes tp. As a consequence, ϕ jk(tp) can be evaluated by usual refinement techniques [18] while ϕ

(i)
jk (tp) and Dγi

t ϕ jk(tp)
can be evaluated by finite difference formulas (see Section 4).

The stability and the convergence of the multiscale collocation method are proved in the following theorems.

Theorem 3.1. Let Hs[0, T ] denote the Sobolev space equipped with the norm

∥v∥s =

⎛⎝|̃v(0)|2 +

∑
k∈Z\{0}

|k|
2s

|̃v(k)|2

⎞⎠ 1
2

, v ∈ Hs[0, T ],

where ṽ(k) are the Fourier coefficients of v. Assume y and f in (2.1) belong to Hs[0, T ] and Hq−n[0, T ], 0 ≤ s ≤ q,
respectively. Moreover, assume ϕ belongs to the Hölder space Cd,r (R) with 0 ≤ s − n ≤ d + r .

Then, the multiscale collocation method (3.8) is stable, i.e., the inequality

∥C j∥ℓs ≤ η∥F∥ℓs−n (3.11)

holds for any level j with η a constant independent of j .

Proof. The multi-term fractional differential equation (2.1) fulfills the hypotheses of the class of differential operators
studied in [4]. Thus, the stability follows from [4, Proposition 6.4]. □
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Theorem 3.2. Let y, f and ϕ satisfy the hypotheses of Theorem 3.1. Then, the multiscale collocation method (3.8) is
convergent, i.e.,

∥y − y j∥s → 0 as j → ∞. (3.12)

Moreover, the following error estimate holds

∥y − y j∥s ≤ η2− j(q−s)
∥y∥q , 0 ≤ s ≤ q, (3.13)

where η is a constant independent of j .

Proof. The convergence and the error estimate follow from Theorem 3.1 and [4, Theorem 6.3]. □

We observe that from the estimate (3.13) it follows that the order of accuracy of the method is 2− j(q−s).

4. Fractional derivatives of refinable functions

Both ordinary and fractional derivatives of refinable functions can be expressed in the closed form by the
generalized finite difference operator

1
γ

δ v(t) :=
1
δγ

∑
k∈N0

(−1)k
(γ

k

)
v(t − δk), γ ∈ R+. (4.1)

When γ ∈ N, {
(

γ

k

)
} is a compactly supported sequence and 1

γ

δ reduces to the usual finite difference operator. When
γ ∈ R+

\ N, the sequence {
(

γ

k

)
} is absolutely summable (cf. (2.9)) so that the limit of the series (4.1) exists under

suitable hypotheses on v.
Before to proceed with the differentiation rule for refinable functions we need the B-spline factorization theorem

that involves the fractional B-splines, i.e., the B-splines of real order [28,29]. They are defined as

Bα(t) :=
1α+1

δ tα
+

Γ (α + 1)
, α > −

1
2
, (4.2)

where tα
+

:= max(0, tα), t ≥ 0, is the fractional truncated power function. We notice that the fractional B-splines
reduce to the well-known polynomial B-splines when α has an integer value.

Theorem 4.1. Let ϕ be a refinable function generating a MRA in L2(R) with approximation order α. Then, ϕ can be
factorized as

ϕ = Bα−1 ∗ ϕ0, (4.3)

where α ≥ 1 and ϕ0 is a distribution such that
∫

ϕ0 = 1. Moreover, if ϕ0 ∈ L2(R), then Dα
t ϕ ∈ L2(R) and the

following differentiation rule holds

Dγ
t ϕ = Dγ

t (Bα ∗ ϕ0) = 1
γ

δ (Bα−γ ∗ ϕ0), 0 < γ ≤ α. (4.4)

Proof. The claim follows from some results in [29]. □

Now, we are in a position to prove the differentiation rule for ϕ jk .

Corollary 4.2. Let ϕα = Bα ∗ ϕ0 be a refinable function with ϕ0 ∈ L2(R) and let ϕα, j,k(t) := ϕα(2 j t − k). Then,

Dγ
t ϕα, j,k = 1

γ

2− j ϕα−γ, j,k, 0 < γ ≤ α. (4.5)

Proof. Let Φα(t) := ϕα(2 j t) so that ϕα, j,k(t) = Φα(t − 2− j k) =: Φα, j,k(t). Thus, the claim follows by applying (4.4)
to the function Φα, j,k(t). □

Since any admissible refinable function belongs to L2(R), the series in (4.5) converges. Moreover, the generalized
binomial coefficients decay like k−γ−1 as k → +∞. Thus, for computational purposes 1

γ

δ ϕα−γ, j,k can be
approximated by a finite sum.
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5. Numerical results

In this section we will apply the multiscale collocation method described in the previous sections to solve a first
order and a second order multi-term fractional differential problem. As approximating spaces we use the family of
MRAs generated by the fractional refinable functions introduced in [21]. They can be defined through the convolution
law

ϕα,h = Bα−2 ∗ ϕh, 2 ≤ α ≤ h, (5.1)

where ϕh ∈ L2(R) ∩ C0(R) is the elementary refinable function that generates all the refinable functions in the class.
ϕh is the solution to the refinement equation

ϕh(t) =

3∑
k=0

ah,kϕh(2t − k), t ∈ R, (5.2)

with mask coefficients

ah,0 = ah,3 =
1
2h

, ah,1 = ah,2 = 1 −
1
2h

. (5.3)

Here, h ≥ α is a real shape parameter that controls the shape of ϕα,h . In particular, when α ∈ N with α ≥ 2,
ϕα,h is compactly supported, belongs to Cα−2(R) and reduces to the GP refinable functions introduced in [10]; in the
particular case h = α ∈ N0, ϕα,α ∈ Cα−1(R) coincides with the polynomial B-spline of degree α. For any admissible
value of the parameters α and h, ϕα,h belongs to C⌊α⌋−2(R) and decays to the infinity rather rapidly so that it can
be assumed compactly supported for computational reasons. As a consequence, ϕα,h can be efficiently evaluated on
dyadic nodes by standard multiresolution techniques (cf. [18]). Finally, we notice that ϕα,α ≡ Bα . (See [21] for further
details and properties of the fractional refinable functions ϕα,h .)

Now, let us denote by V 0
α,h, j [0, T ] the multiresolution spaces generated by ϕα,h in the closed interval [0, T ], i.e.,

V 0
α,h, j [0, T ] = span{ϕα,h, j,k(t), k ∈ N j }, j ≥ j0. (5.4)

We notice that the basis {ϕα,h, j,k} can be constructed by adapting to the fractional refinable functions the same
techniques used in [9].

By Theorem 4.1 and [21, Theorem 5] the following differentiation rule holds

Dγ
t ϕα,h(t) = 1

γ

δ ϕα−γ,h−α+2(t) =
1
δγ

∑
k∈N0

(−1)k
(α

k

)
ϕα−γ,h−α+2(t − δk), 0 < γ ≤ α, (5.5)

where the series converges for any admissible value of α and h.

5.1. A first order fractional differential problem

We consider the fractional differential problem of first order [14]⎧⎨⎩y′(t) + D0.8
t y(t) + (1 + t)y(t) =

14
Γ (3.8)

t1.8
+ 2.5t2

+
5

Γ (3.8)
(1 + t)t2.8, t ∈ [0, 1],

y(0) = 0.

(5.6)

which can be seen as a multi-term fractional differential problem of type (2.1) with

n = 1, n0 = 0, a0(t) = 1 + t, n1 = 0, γ0 = 0, b0(t) = 1.

Its exact solution is y(t) =
5

Γ (3.8) t
2.8.

We numerically solve Eq. (5.6) by the multiscale collocation method with s = 8 and j = 4. As approximating
functions we use four different refinable functions: the cubic B-spline ϕ3,3 ≡ B3, the GP refinable function ϕ3,3.8, the
fractional refinable function ϕ3.2,3.8 and the fractional B-spline ϕ3.8,3.8 ≡ B3.8. The corresponding numerical solutions
yα,h,4 and errors y − yα,h,4 are displayed in Fig. 1. In Fig. 2, the refinable function ϕ3.8,3.8, its first derivative and its
fractional derivative of order 0.8 are displayed along with the corresponding collocation matrix.
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Fig. 1. Left panel: the graphs of the approximate solutions yα,h,4 for α = h = 3 (red), α = 3, h = 3.8 (blue), α = 3.2, h = 3.8 (cyan) α = h = 3.8
(black) and of the exact solution y(t), (green). Right panel: the graph of the error y(t) − yα,h,4(t). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Left panel: the graphs of ϕα,h (red), ϕ′

α,h (cyan) and ϕ
(0.8)
α,h (blue) for α = h = 3.8. Right panel: the collocation matrix. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
The error and the numerical rate of convergence when α = h = 4.

j ∥y − y4,4, j ∥0 R j

4 1.22570e−3
5 1.64860e−4 2.81
6 2.47992e−5 2.82
7 3.49323e−6 2.83
8 2.99257e−7 2.81

To check the convergence rate of the method we solved Eq. (5.6) when s = 10 and for increasing values of j .
Then, we evaluated the error ∥y − yα,h, j∥s and the numerical rate of convergence defined as

R j = log
(

∥y − yα,h, j∥s

∥y − yα,h, j+1∥s

)
1

log 2
. (5.7)

Table 1 shows the error ∥y − yα,h, j∥0 and the numerical convergence rate R j when α = h = 4. The numerical
convergence rate is in good agreement with the theoretical rate which is equal to 2.8.
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Fig. 3. Left panel: the graphs of the approximate solutions yα,h,4 for α = h = 4 (red), α = 4, h = 4.5 (cyan), α = 4.2, h = 4.5 (blue) α = h = 4.5
(black) and of the exact solution y(t) (green). Right panel: the graph of the error y(t) − yα,h,4(t). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Left panel: the graphs of ϕα,h (red), ϕ′′

α,h (cyan) and ϕ
(1.5)
α,h (blue) for α = h = 4.5. Right panel: the collocation matrix. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.2. A second order fractional differential problem

We consider the Bagley–Torvik equation [1]{
y′′(t) + D1.5

t y(t) + y(t) =
15
4

√
t +

15
8

√
π t + t2√t, t ∈ [0, 1]

y(0) = y′(0) = 0,
(5.8)

which is a second order multi-term fractional differential problem of type (2.1) with

n = 2, n0 = 0, a0(t) = 1, n1 = 0, γ0 = 1.5, b0(t) = 1.

Its exact solution is y(t) = t2√t [20].
We numerically solve Eq. (5.8) by the multiscale collocation method with s = 8 and j = 4. As approximating

functions we use four different refinable functions: the quartic B-spline ϕ4,4 ≡ B4, the GP refinable function ϕ4,4.5, the
fractional refinable function ϕ4.2,4.5 and the fractional B-spline ϕ4.5,4.5 ≡ B4.5. The corresponding numerical solutions
yα,h,4 and errors y − yα,h,4 are displayed in Fig. 3. In Fig. 4, the refinable function ϕ4.5,4.5, its second derivative and its
fractional derivative of order 1.5 are displayed along with the corresponding collocation matrix.
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Table 2
The error and the numerical rate of convergence when α = h = 5.

j ∥y − y5,5, j ∥1 R j

6 4.45679e−2
7 2.38904e−2 0.90
8 1.07152e−2 1.17
9 3.77161e−3 1.51

10 1.36391e−3 1.48

We check the convergence rate of the method also for Eq. (5.8). Table 2 shows the error ∥y − yα,h, j∥1 and the
numerical convergence rate R j when α = h = 5. As j increases, the numerical convergence rate tends to the
theoretical rate which is equal to 1.5.

6. Conclusion

We constructed a multiscale collocation method suitable to solve a class of multi-term fractional differential
equations. We provided an explicit finite difference formula that allowed us to evaluate the fractional derivatives
of the approximating function in an accurate and easy way. The method is proved to be stable and convergent and can
be implemented efficiently by using standard multiscale techniques. Numerical results displayed in Section 5 show
that the multiscale collocation method is able to approximate with high accuracy the solution of various fractional
differential problems. We point out that the proposed method can be applied to solve other types of fractional
differential problems, such as fractional diffusion equations (cf. [22]) or nonlinear fractional differential equations
(cf. [23]). Moreover, the multiscale collocation method can be generalized to the case of non-uniform nodes using
MRAs generated by refinable functions specially designed for this case (see, for instance, [3,16]).
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