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Abstract

Significance: The incidence of cardiovascular events (CVEs) increases with age, representing the main cause of
death in an elderly population. Aging is associated with overproduction of reactive oxygen species (ROS),
which may affect clotting and platelet activation, and impair endothelial function, thus predisposing elderly
patients to thrombotic complications.

Recent Advances: There is increasing evidence to suggest that aging is associated with an imbalance between
oxidative stress and antioxidant status. Thus, upregulation of ROS-producing enzymes such as nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase and myeloperoxidase, along with downregulation of anti-
oxidant enzymes, such as superoxide dismutase and glutathione peroxidase, occurs during aging. This imbal-
ance may predispose to thrombosis by enhancing platelet and clotting activation and eliciting endothelial
dysfunction. Recently, gut-derived products, such as trimethylamine N-oxide (TMAQ) and lipopolysaccharide,
are emerging as novel atherosclerotic risk factors, and gut microbiota composition has been shown to change by
aging, and may concur with the increased cardiovascular risk in the elderly.

Critical Issues: Antioxidant treatment is ineffective in patients at risk or with cardiovascular disease. Further,
anti-thrombotic treatment seems to work less in the elderly population.

Future Directions: Interventional trials with antioxidants targeting enzymes implicated in aging-related
atherothrombosis are warranted to explore whether modulation of redox status is effective in lowering CVEs in
the elderly. Antioxid. Redox Signal. 27, 1083—-1124.
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I. Introduction

CARDIOVASCULAR DISEASES (CVD) occurring in arterial
and venous circulation, such as myocardial infarction
(MI), ischemic stroke, and venous thromboembolism, are the
main cause of morbidity and mortality in Western countries.
Their incidence rates increase with age, representing the main
cause of death in the elderly population (90). As a further
increase in the number of elderly people is expected in the
next two to three decades, the management of CVD in this
population has a relevant socioeconomic impact.

Progressive development of the atherosclerotic process
during aging and its late thrombotic complications are two
key phases contributing to artery occlusion in coronary and
cerebral districts. Among factors predisposing to MI and
stroke, platelets play a pivotal role as they contribute to acute
artery occlusion occurring at the site of plaque rupture/ero-
sion by adhering to the exposed sub-endothelium. Then, they
concur to thrombus growth via platelet aggregation propa-
gation (75). Clotting system activation and endothelial dys-
function are other important mechanisms implicated in the
occurrence of CVD, as they represent a backbone for both
artery and venous thrombosis (76). Experimental and clinical
studies documented a progressive increase of platelet func-
tion, clotting activation, and endothelial dysfunction in the
elderly population, supporting their role in the progression of
atherothrombosis.

Another age-related process is the imbalance between
oxidative stress and antioxidant status. Thus, an increased
function of the enzymes responsible for the production of
reactive oxygen species (ROS) by aging was reported, along
with a parallel decrease of antioxidant pathways, ultimately
leading to a pro-oxidant phenotype in elderly subjects. These
modifications may also negatively influence platelet and

clotting activation and endothelial function, eventually con-
curring to cardiovascular complications.

In this comprehensive review, we analyzed the mecha-
nisms of atherothrombosis in the aging process focusing on:
(i) imbalance between oxidative stress and antioxidant sta-
tus as factors favoring atherosclerosis and thrombosis in an
elderly population, (ii) alterations in platelet and clotting
activation and endothelial function in relation to oxidative
stress modifications by aging, and (iii) current and future
therapeutic antioxidant and anti-thrombotic strategies in
the elderly.

Il. Oxidative Stress and Aging

The main biological consequence of aging is a functional
decline in cells, tissues, and organs functions (319). Under
normal conditions, cells can go through a limited number of
divisions on reaching the end of their replicative lifespan
(137). This phenomenon is defined as replicative senescence
(RS) and largely depends on alterations in DNA replication
that eventually affect chromosomal stability and genome
function (187). The RS is mediated by several signaling
cascades that are linked to the activation of tumor suppres-
sing proteins, such as p53/p21, and results in shortening of
telomeres (316) that are located at chromosome ends to
prevent DNA damage (316). Moreover, cell exposition to
different agents damaging DNA, such as ROS, UVA, and
UVB, results in reduced mitotic ability and increased signs of
senescence. This second phenomenon is termed as stress-
induced premature senescence (SIPS) (316).

Thus, the aging process is the result of physiological RS and
external SIPS that concur together in accelerating the natural
progression of aging (187). In accordance, senescent markers,
including Discoidin Domain Receptor family member 1 kinases,
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senescence-associated [f-galactosidase, p53/p21, and telomere
dysfunction, were detected in various tissues from elderly indi-
viduals (316).

Although a unique comprehensive theory for the initiation
and progression of cell senescence and aging is far from being
elaborated, several systems, including mitochondrial dys-
function, protein glycation, deregulation of immune system,
hormonal changes, gene modifications, dysfunction telomere
attrition, and redox stress, have been identified so far (111).

Oxidative damage represents the most well-documented
subset among aging-associated damage. Although its impact
on cellular function is only one of the proposed mechanisms
of senescence, it seems to be an attractive one as it connects
several different mechanisms such as modifications in the
regulation of gene expression and mitochondrial dysfunction
(50, 122).

The theory of ROS overproduction as the main mechanism
involved in aging by inducing cumulative damage was first
proposed in 1956 (135). According to this hypothesis, an
increase in pro-oxidant pathways would promote the aging
process, which conversely would be delayed by an im-
provement in antioxidant defenses.

The validity of this hypothesis was explored in experi-
mental models where the effect of endogenous antioxidant
enzymes, such as superoxide dismutase (SOD), catalase,
glutathione peroxidase (GPx), and thioredoxin, was investi-
gated. An increase in lifespan was observed in flies over-
expressing copper-zinc SOD (CuZnSOD), an enzyme that
converts superoxide anion (O,") into hydrogen peroxide
(H,0,), and catalase, which changes H,0O, into water (262,
363). Moreover, reduced levels of GPx, an enzyme that re-
duces lipid hydroperoxides to their corresponding alcohols
and H,0, to water, and of thioredoxin that possesses a similar
activity, were observed in an animal model of aging (64).
Transgenic and knockout mouse models of antioxidants
provided conflicting evidence (328). For example, knockout
mice models of GPx1 and SOD were associated to reduced
lifespan (79, 96), whereas transgenic mice overexpressing
SOD and catalase showed an unmodified lifespan (275).

Growing evidence suggests a role for pro-oxidant systems
in the aging process. Pro-oxidant enzymes producing ROS,
such as nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase (Nox), myeloperoxidase (MPO), and un-
coupled nitric oxide synthase (NOS), mediate important bi-
ological functions by regulating the activity of several
intracellular pathways involved in cell growth, apoptosis,
survival, metabolism, and migration, all of which are altered
during the aging process.

Among ROS, O, plays a fundamental role, as it reacts
with nitric oxide (NO), thus lowering its activity and/or
concentration (199). Reduced NO bioavailability influences
migration and proliferation of vascular smooth muscle cells
(VSMCs), which is one of the early atherosclerotic changes
(199). Moreover, O, upregulates the nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-xB), which, in
turn, induces the production of atherogenic cytokines such as
tumor necrosis factor o (TNFo), interleukin 6, monocyte
chemoattractant protein (MCP)-1, and adhesion molecules
(254).

A specific interplay between ROS, gene transcription, and
subsequent signal transduction seems to be implicated in
aging. Thus, ROS induce phosphorylation of the redox-
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sensitive transcription factor p53 by activating p38 mitogen-
activated protein kinase (MAPK) (34) and Polo-like kinase 3
(409). The p53 factor enhances ROS signaling, presumably
via upregulation of the p67°"°* subunit of the Nox system
(154). Once activated, p53 is able to modulate RS by con-
trolling some specific genes involved in cell cycle arrest. The
role of p53 in premature aging has been demonstrated
by several mouse models where persistent pS3 activation
promoted senescence or irreversible cell cycle arrest (372).
Interestingly, human endothelial cells undergo p53/p21cip-
dependent cell cycle arrest via Nox2-derived O, production
(201).

Other oxidative-linked effectors of longevity, such as
Klotho gene, may influence aging-related atherosclerotic
process. Thus, Klotho-null mice phenotypes display simi-
larities with premature human aging, including accelerated
atherosclerosis (188). Once activated, Klotho protein induces
MnSOD and SOD?2 biosynthesis, thereby increasing the an-
tioxidant cell defense (176, 303, 412). Moreover, Klotho
influences the intracellular signaling pathways involved in
oxidative stress responses and aging via inhibition of p53/
p2lcip (81).

The gene regulator histone deacetylase sirtuin (SIRT) is also
implicated in the aging process. SIRT is present in seven iso-
forms and encompasses a nicotinamide adenine dinucleotide-
dependent enzymatic activity associated with aging (92). In
particular, the isoform SIRTI is localized in the nucleus and
plays an important role in preserving vascular health; Sirt1-Tg/
ApoE*? mice showed upregulated endothelial NOS (eNOS)
activity and reduced atherosclerotic plaque formation as
compared with wild type (421). In support of this, treatment of
ApoE*? mice with a specific SIRTI activator resulted in a
significant reduction of oxidized low-density lipoprotein (ox-
LDL) concentration and plaque formation (350).

ROS are also involved in the activation of mitochondrial-
mediated patterns that are implicated in reducing lifespan and
accelerating atherosclerosis progression. Thus, ROS elicit
mitochondrial adaptor protein p66shc phosphorylation,
which, in turn, regulates intracellular pathways that are in-
volved in ROS production and apoptosis (236). In particular,
H,0, induces serine phosphorylation on p66shc through
protein kinase C, resulting in increased apoptosis (290).
Thus, animals on a chronic high-fat diet disclosed an aortic
cumulative early lesion area by ~21% in wild-type mice and
only by 3% in p66shc™™ mice. Further, in p66shc™™ mice,
a significant reduction of systemic and tissue oxidative stress
along with a 30% prolongation in lifespan was observed (236,
253).

A synthetic scheme of the mechanisms reported earlier is
reported in Figure 1.

lll. Atherothrombosis in Elderly: Clinical Studies

Observational studies in the general population or in pa-
tients with CVD documented a progressive increased inci-
dence of acute vascular events by aging (90). In the elderly,
a higher prevalence of atherosclerotic risk factors, including
arterial hypertension, diabetes mellitus (DM), and metabolic
syndrome (MetS), might partly account for this phenomenon
(50). Of note is that there is no standardized definition of ‘‘old
population,” as changes occurring by aging are not linear
and often depend on several factors, including environment,
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FIG. 1. Schematic representation of oxidative stress role in the aging process. ROS, gene transcription, and subse-

quent signal are implicated in the aging process. ROS can induce phosphorylation of the redox-sensitive transcription factor
pS3 by activating p38 MAPK and Protein-chinase C (PKC). p53, in turn, enhances ROS signaling via upregulation of the
p67phox subunit of the Nox system. ROS are also involved in the activation of mitochondrial-mediated patterns implicated
in reducing lifespan and accelerating atherosclerosis progression. Thus, ROS elicit mitochondrial adaptor protein p66shc
phosphorylation, which, in turn, regulates intracellular pathways that are involved in ROS production and apoptosis.
Oxidative-linked effectors of longevity, such as Klotho gene, protect from the aging process. Klotho protein activation
induces MnSOD and SOD2 biosynthesis, thereby increasing the antioxidant cell defense; it influences the intracellular
signaling pathways involved in oxidative stress responses and aging via inhibition of p53/p21cip. The gene regulator histone
deacetylase SIRT is also implicated in the aging process. The isoform SIRT1, localized in the nucleus, plays an important
role in preserving vascular functions, by upregulating eNOS and NO. eNOS, endothelial NOS; MAPK, mitogen-activated
protein kinase; NO, nitric oxide; Nox, NADPH oxidase; ROS, reactive oxygen species; SIRT, sirtuin; SOD, superoxide
dismutase. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars

individual behaviors, social position, and ethnicity. The
“WHO World report on ageing and health’ states that ‘‘by
age 60, the major burdens of disability and death arise from
age-related losses in hearing, seeing and moving, and non-
communicable diseases, including heart disease, stroke,
chronic respiratory disorders, cancer and dementia’ (26).
However, chronological age with a cut-off set at 65 and 75
years is the most used method to define old age, but the need
for ““multidimensional/functional’’ definition remains (341).

A. Hypertension

The prevalence of hypertension increases with age, rang-
ing from 7.3% in people aged 18-39 years, to 65.0% among
those 260 years in the United States (257). Further, about one
third of U.S. adults aged >80 years are treated with >3 classes
of antihypertensive medication (247), suggesting a more se-
vere phenotype of hypertension in elderly patients.

B. Diabetes mellitus

The overall prevalence of DM in the United States is
progressively increasing from 8.4% (1988-1994) to 12.1%

(2005-2010). The corresponding figures for subjects aged
265 years are 18.6% and 28.5%, respectively (62). Similarly,
in European countries, DM prevalence is 10% and 15-20% in
subjects <60 and >70 years, respectively (11, 126).

C. Metabolic syndrome

MetS is characterized by the coexistence of at least three of
the following atherosclerotic risk factors: (i) central obesity,
(ii) atherogenic dyslipidemia (i.e., low high-density lipo-
protein [HDL] and high triglycerides), (iii) hypertension, and
(iv) elevated fasting glucose (4). The prevalence of MetS
among U.S. men ranges from 20.3% in subjects 20-39 years
of age to 51.5% for subjects 260 years of age in the NHANES
2003-2006. Among U.S. women, prevalence ranges from
15.6% in subjects 20-39 years of age to 54.4% for those 260
years of age (98).

D. Atrial fibrillation

Aging is associated with an increased prevalence and in-
cidence of atrial fibrillation (AF) that is expected to increase
in the next years worldwide. Age is not only a predictor of AF
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but also an established risk factor for CVD and cerebrovas-
cular disease (CD) (266, 267, 343, 386) in patients with
paroxysmal or persistent/permanent AF. Thus, by the seventh
decade of life, the incidence of athero-thromboembolism in
AF patients sharply increases compared with the younger
population (205).

E. Peripheral artery disease

Peripheral artery disease (PAD) is an uncommon finding in
people <50 years, but its prevalence sharply rises with aging.
In the Heinz Nixdorf recall study, which included 4814
subjects, the prevalence of symptomatic/asymptomatic PAD
in men aged 45-49 years was 3.0%, rising to 18.2% in those
aged 70-75 years. In women, the percentage rose from 2.7%
to 10.8% in the same age categories (181). Similarly, in the
Framingham Heart Study, the incidence of intermittent
claudication rose from 0.4 per 1000 in men aged 35-45 years
to 6.0 per 1000 in those aged =65 years (170).

F. Interaction between cardiovascular risk
factors in the elderly

The presence of multiple risk factors is common in elderly
patients (403) and contributes to the aging-related athero-
thrombosis burden. The prevalence of multimorbidity, de-
fined as >2 concomitant chronic diseases, significantly
increases by aging and may be detected in >70% of patients
275 years (28). For instance, DM is associated with other
atherosclerotic risk factors; in particular, hypertension, ele-
vated LDL, and obesity may coexist in 75-85%, 70-80%,
and 60-70% of diabetic patients, respectively (152). The
cumulative risk of experiencing a cardiovascular outcome in
multimorbidity patients overcomes the risk conferred by each
condition alone (97). Taking into account the frequent
combination of multiple risk factors in the elderly, this could
be considered one of the important factors contributing to the
high risk of CVD in the elderly (129).

IV. Gut Microbiota and Atherothrombosis

Gut microbiota is emerging as a novel player in the process
of atherosclerosis as it is implicated in the development of
atherosclerotic risk factors such as diabetes and hypertension
(166). However, there is also mounting evidence that prod-
ucts of intestinal microbiota may cross the intestinal barrier,
reach the circulatory system, and directly contribute to
atherothrombosis. For instance, recent studies on this topic
discovered that intestinal microbiota produces trimethyla-
mine N-oxide (TMAO), which may be implicated in the
process of atherosclerosis and thrombosis (300, 360).

Other products of gut microbiota such as lipopolysaccha-
ride (LPS) may concur to atherosclerosis, possibly via
chronic inflammation and thrombosis (235). About 100 tril-
lion of gut bacteria contribute to an enteric reservoir of >1 g
of LPS, which can be found in human circulation from
healthy subjects in a range of 15-200 pg/ml (313). A recent
prospective study showed that circulating LPS was predictive
of cardiovascular events (CVEs) in a population affected by
AF (265).

An important but not-yet-solved issue is whether changes
of gut microbiota occurring with aging may be potentially
implicated in atherothrombosis. Indeed, from newborns to
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elderly gut, microbiota is characterized by continuous mod-
ifications, which alter its metabolism. From a phase of in-
stability and low complexity, which characterizes newborns
until the age of 3 years, gut microbiota gets more stable in
adults with essentially saccharolytic bacteria activity (317).
Conversely, in the elderly population, gut microbiota gets
again unstable with an activity shifted toward a prevalent
proteolytic metabolism. It is unclear, however, whether these
changes are due to different dietary patterns or to intrinsic
changes of gut microbiota of the elderly population. What-
ever is the mechanism, it would be interesting to appreciate
whether in the elderly gut microbiota is more prone to deliver
metabolic molecules, such as TMAO or LPS, which are
implicated in atherothrombosis (Fig. 2).

V. Atherosclerosis and Oxidative Stress
in Animals and Humans

Retention and accumulation of LDL particles within the
vessel wall is a critical step of the early atherosclerotic pro-
cess. In fact, LDL accumulation causes migration of in-
flammatory cells such as monocytes/macrophages, which
then uptake and oxidize LDL via an oxidative stress-
mediated mechanism (109). In this regard, kinetic analysis of
LDL across the artery wall demonstrated that retention of
LDLs in the sub-intima space depends on LDL permeability
and on the ability of LDL to leave (efflux) the artery wall
(358). Concentration of LDL in the circulation is likely to be
an important element contributing to LDL permeability and
degradation in the artery wall. Bartels et al. (21) studied this
issue in cholesterol-fed, LDL receptor (LDLR)-deficient
mice treated with an anti-ApoB antisense oligonucleotide
versus mismatch control antisense oligonucleotide for 1-4
weeks before an injection of iodinated LDL particles. Ani-
mals treated with an anti-ApoB antisense oligonucleotide
showed ~90% reduction of plasma LDL, which was asso-
ciated with 50% and 85% reduction of aortic permeability
and degradation, respectively, of newly entered LDL parti-
cles after 1 week of treatment. Conversely, 4 weeks of
treatment were necessary to observe a reduction in foam cell
content, plaque size, and aortic LDL pool size. Interestingly,
plasma LDL cholesterol lowering was associated with 70%
reduction of sub-luminal foam cells and ~90% reduction of
messenger RNA (mRNA) expression of inflammatory genes.
The enhanced permeability of LDL into atherosclerotic pla-
que is almost evident in the elderly population with estab-
lished atherosclerosis. This was documented by an injection
of iodinated autologous LDL in elderly patients 24 h before
undergoing endoarterectomy for critical carotid stenosis. The
analysis of carotid specimens demonstrated that LDL local-
ized into macrophages and that this phenomenon was pre-
vented by pre-treatment with vitamin E, suggesting that LDL
is rapidly uptaken and oxidized by foam cells of atheroscle-
rotic plaque (155).

Chronic deposition and accumulation of LDL causes an
injury response, which results in the recruitment of macro-
phages, dendritic cells, and lymphocytes at the site of ath-
erosclerotic lesion. As for sterile inflammation, this process
may undergo resolution with classical tissue repair or, in
case of defective resolution, progress to advanced lesion
(330). Advanced atherosclerotic plaque is characterized
by a central necrotic core, composed by macrophages and
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FIG. 2. Gut microbiota and atherothrombosis. The products of intestinal microbiota may across the intestinal barrier,
reach the circulatory system, and contribute to atherothrombosis. For instance, trimethylamine (TMA) is oxidized by the
liver in TMAO, which increases platelet aggregation and thrombus growth. Other products of gut microbiota such as LPS
may also be involved in the atherothrombotic process via chronic inflammation and thrombosis mediated by binding TLR4
on the platelet surface. LPS, lipopolysaccharide; TMAO, trimethylamine N-oxide. To see this illustration in color, the
reader is referred to the web version of this article at www.liebertpub.com/ars

VSMC. Impaired clearance of necrotic cells, a process called
efferocytosis, causes accumulation of inflammatory material
that further exacerbates atherosclerotic lesion, eventually
leading to its rupture or erosion (358). Persistent inflamma-
tory stimulus due to continuous accumulation of LDL in the
sub-intima coupled with impaired efferocytosis and presence
of an inflammatory phenotypes leads to progression of in-
flammation and the atherosclerotic process (358).

In this context, oxidative stress has an important role as it is
a stimulus for further macrophage accumulation and activa-
tion, and for the production of oxidant products that perpet-
uate tissue damage (345). For instance, isoprostanes, which
were found in human atherosclerotic plaque (294), in-
duce mitogenesis of VSMCs, proliferation of fibroblasts and
endothelial cells, and overexpression of endothelin 1 in
mouse aortic endothelial cells (293). Moreover, blockade of
thromboxane (Tx) receptor improves the anti-atherogenic
effect of Tx inhibition in LDLR-deficient mice (71). Other
effects of oxidative stress include expression of adhesion
molecules such as vascular cell adhesion molecule (VCAM)-
1, intercellular adhesion molecule ICAM)-1 and E-selectin,
and the MCP-1, which promote monocyte adhesion, migra-
tion, and accumulation in the sub-endothelium (68) and ac-
tivation of inflammatory cytokines such as TNFa. In this
regard, it is interesting that in p47°™* knockout mice, TNFo
failed to induce expression of ICAM-1 in coronary micro-
vascular endothelial cells (200). In other studies, ROS eli-
cited expression of VCAM-1, which serves as a scaffold for
leukocyte migration and a trigger for endothelial signaling
via inducing Nox2 activation (67). Oxidative stress is closely
related to activation of pro-oxidant pathways such as Nox,
MPO, uncoupled eNOS, and lipoxygenases (LOXs) and is
counteracted by antioxidant enzymes, including SOD, cata-
lase, GPx, paraoxonase (PON), and NOS. These endogenous
antioxidants protect against athero-genesis by scavenging

ROS, facilitating endothelium-dependent vasorelaxation,
inhibiting inflammatory cell adhesion to the endothelium,
and altering vascular cellular responses, such as VSMC and
endothelial cell apoptosis, VSMC proliferation, hypertrophy,
and migration (114) (Table 1 and Fig. 3).

Defective tissue repair with impaired damage resolution is
a relevant key element for atherosclerotic progression that is
not yet poorly understood (124, 171). Clearance of inflam-
matory cells and necrotic materials along with vascular re-
generation are hampered in atherosclerosis and, more in
particular, in aging-related atherosclerosis. Lesion resolution
depends on several factors, including formation of (i) bio-
active lipids such as lipoxins, resolvins, protectins, and
maresins, called specialized pro-resolvin proteins; (ii) pro-
teins such as interleukin 10, transforming growth factor-beta,
and annexin Al; and (iii) bioactive gas such as NO, hydrogen
sulfide (H,S), and carbon monoxide (357). The presence of
cell phenotypes with resolving capacity such as regulatory T
cells and resolving-type macrophages is also relevant (357).

An important role in vascular tissue repair seems to be
played by mononuclear cells with a specific phenotype,
namely progenitor cells (PCs), which originate primarily
from bone marrow (BM) and differentiate into hematopoietic
stem cells, including endothelial progenitor cells (EPCs).
Several age-related modifications of BM have been described
(311). Thus, the hematopoietic active BM (red BM) gradually
undergoes adipose replacement (yellow BM), becoming less
active during the aging process. Also, BM cellularity is
strictly correlated with age (123), together with a reduced
availability and ability to migrate of EPCs, and possibly other
BM cells that are necessary for successful arterial repair in
the elderly (218). Thus, in 123 women with nonobstructive
coronary artery disease (CAD), the number of circulating PC
(CD34*, CD34%/CD133*, and CD34"/CXCR4") was in-
versely correlated with age (233).
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TABLE 1. ANIMAL MODELS OF INTERPLAY BETWEEN OXIDATIVE STRESS AND ATHEROSCLEROSIS

Genetic model/pharmacologic agent Phenotype References
Oxidant enzymatic systems
MPO Humanized MPO-knockout mice (mice Reduction in lipid peroxidation (38, 423)
express human MPO-463G/A alleles) Accelerated atherosclerosis (58)
iNOS ApoE_ “/eNOS™/~ Decreased atherosclerosis (182, 242)
LOX 12/15- LO " /ApoE an Decreased atherosclerosis
Nox2 ApoE ~/Nox2¥"~ Decreased vascular ROS levels, (168)
increased NO bioavailability, and
decreased atherosclerosis
p47°"°* (Nox1/2 NADPH ~ ApoE "~ /p47Phox~/~ Decreased vascular ROS levels and  (20)
oxidase activity) atherosclerosis
Antioxidant enzymatic systems
eNOS ApoE ~/eNOS™~ Accelerated atherosclerosis, aortic (183)
aneurysm, and ischemic heart
disease
nNOS nNOS- deﬁ01ent APOE mice Accelerated atherosclerosis (184)
Catalase ApoE™"/hCatTg" Decreased lipid peroxidation and (413)
SOD1 and catalase ApoE”~ _/hSODng0/+/hCatTg0/+ atherosclerosis
SOD2 ApoE™ ~/SOD2""~ Increased mitochondrial ROS levels (18)
and mitochondrial DNA damage;
increased atherosclerosis
GPx1 ApoE_/_/GPx_/ - Increased vascular ROS levels and  (365)
atherosclerosis
GPx4 hGPx4Tg/ApoE_/_ Decreased eicosanoids and (130)
atherosclerosis
PON1 PON17~ ApoE_/_/PONl_/_ Increased atherosclerosis (331, 332)
PON2 PON2-deficient ApoE™ = Increased mitochondrial oxidative (85)
stress
PON3 hPON3Tg”*; ApoE ™ /hPON3Tg"* Decreased atherosclerosis (333)

eNOS, endothelial NOS; GPx, glutathione peroxidase; iNOS, inducible NOS; LOX, lipoxygenase; MPO, myeloperoxidase; NADPH,
nicotinamide adenine dinucleotide phosphate; nNOS, neuronal NOS; NO, nitric oxide; Nox, NADPH oxidase; PON, paraoxonase; ROS,
reactive oxygen species; SOD, superoxide dismutase.

FIG. 3. Change of pro-
oxidant and anti-oxidant
molecules and enzymes
during aging. Pro-oxidant
and antioxidant enzymes/
molecules implicated in ath-
erosclerotic plaque formation
and their modification by
aging. VSMCs, vascular
smooth muscles cells. To see
this illustration in color, the
reader is referred to the web
version of this article at www
Jiebertpub.com/ars
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Indirect evidence of the potential role played by PC in
vascular disease has been provided by Hill et al., who showed
lower circulating PC in patients at risk of CVD with an in-
verse correlation between PC and artery dysfunction (144).
Other reports in patients at risk of CVD supported these
findings and also underscored that PC lowering is more
marked in an elderly population with concomitant athero-
sclerotic risk factors than in apparently healthy subjects in
whom such PC decline by aging is not evident (136). Ex-
perimental studies are in agreement with this negative in-
terplay between PC and aging as depicted by experiments
reporting lower BM-derived PC in aging ApoE " mice,
along with a positive impact of chronic treatment with
BM-derived PC in the atherosclerosis progression (301).
However, the clinical relevance of these findings in human
atherosclerosis is still speculative and needs to be further
investigated. In particular, prospective studies are necessary
to assess whether BM-derived PC are actually decreasing
by aging independently or not by classic atherosclerotic
risk factors, and their potential role to halt atherosclerotic
progression.

In contrast with this hypothesis, a recent work showed that
clonal hematopoiesis of indeterminate potential (CHIP),
which is a common aging-related phenomenon characterized
by the presence of an expanded somatic blood-cell clone in
people without hematologic disease, which may lead to an
increase in circulating myeloid cells, was significantly asso-
ciated with the risk of coronary events in 4726 participants
with coronary heart disease (CHD) and 3529 controls, and
with accelerated atherogenesis in a murine model of athero-
sclerosis (159).

VI. Pro-Oxidant Pathways
A. Myeloperoxidase

MPO is an enzyme belonging to the mammalian heme
peroxidase superfamily, which is detectable in neutrophils,
monocytes, and macrophages. MPO produces various com-
pounds with pro-oxidant properties, such as hypochlorous
acid, chloramine, tyrosyl radicals, and nitrogen dioxide,
contributing to oxidative stress by oxidizing LDL and low-
ering NO activity and biosynthesis (57, 423). Moreover,
MPO activation generates eicosanoids and bioactive lipids
and atherogenic forms of both LDL and HDL. Indeed, studies
using MPO knockout mice demonstrated that this enzyme
plays an important role in the formation of products derived
from the oxidation of arachidonic acid (AA) that are involved
in the inflammatory response (423) and in lipid peroxidation
(38, 423).

Although the role of MPO as a pro-oxidant and pro-
inflammatory enzyme is well demonstrated, its contribution
to atheroma progression is a matter of debate. In fact, in
ApoE™™ mice, genetic deletion of MPO had no impact on
atherosclerotic lesion (37), whereas specimens from human
aortic plaques expressed increased MPO (219) and MPO-
derived compounds (404). Interestingly, ‘‘humanized”
MPO/atherosclerosis animal models demonstrated an accel-
erated plaque development in LDLR™™ transgenic mice
expressing human MPO-463G/A alleles (58, 396).

Clinical studies performed in patients with CHD (143, 234,
361, 422) or PAD (6, 40) showed a predictive role for ele-
vated MPO. Conversely, few data regarding its role in aging
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have been reported. Son et al. found that in rats MPO activity
increases by 70% and 85% at 18 and 24 months, respectively,
compared with the 6-month-old rats (344). MPO was also
more elevated in cardiac tissue after 24 h from myocardial
injury in old compared with young rats (101). Data from the
prospective cohort study Aging and Longevity Study in the
Sirente Geographic Area (SIRENTE Study), which included
363 people aged >80 years, showed an enhanced mortality
risk in individuals in the highest MPO tertile as compared
with the lowest one (145).

A recent study in patients with acute MI reported an in-
creased MPO activity along with a reduced glutathione
(GSH) concentration in 45 patients aged =65 years compared
with 34 patients aged <65 years.

B. Lipoxygenases

LOXs are non-heme iron-containing dioxygenases that
oxidize polyunsaturated fatty acids released from the cell
membrane under inflammatory conditions into hydroperoxy
fatty acid derivatives (88). LOXs form a heterogeneous class
of lipid peroxidizing enzymes that seem to be involved in the
pathogenesis of atherosclerosis (115). LOXs, in particular 5-
LOX and 12/15 LOX, were found to be overexpressed in
advanced atherosclerotic lesions (17, 120), where they can
contribute to leukocyte recruitment through the generation of
two classes of AA-derived lipid mediators, namely leuko-
trienes and lipoxins (141). In particular, 5-LOX catalyzes the
transformation of free AA into leukotriene B4, a potent
chemo-attractant and leukocyte activator. However, in-
conclusive data were obtained with respect to the patho-
physiological relevance of this leukotriene signaling in
atherosclerosis. Thus, leukotriene B4 antagonist was able to
decrease monocyte-derived foam cell translocation into the
plaque (3), in a double knockout mice model BLT™™ and
ApoE(_/_), whereas deletion of BLTI, the leukotriene B4
receptor, was associated to reduced lesion formation during
the early stages of plaque development, but was not effective
at more advanced stages (352).

12/15-LOX catalyzes the oxidation of AA, resulting in the
formation of the pro-oxidant 12-/15-hydroxyeicosatetraenoic
acids. Moreover, 12/15-LOX oxidizes polyunsaturated acyl
chains in phospholipids and cholesteryl esters, two relevant
LDL components (27, 134). Experiments in knockout models
supported the relevance of 12/15-LOX in the atherosclerotic
process. Thus, 12/15-LOX™"™ mice on a high-fat diet dis-
closed reduced ox-LDL, plasma, and urinary isoprostanes
levels, and atherosclerotic lesion initiation was signifi-
cantly delayed in the double-knockout mice compared with
ApoE™™ mice (70). Consistent with this, overexpression of
human 15-LOX in the vascular endothelium of LDLR™"
mice was associated with increased early atherosclerosis
(133).

Although data on animal models are promising, there are
only few studies regarding the involvement of LOX in human
CVD. Only recently, in a case-cohort study including 57,053
participants aged 50-64 years, polymorphisms of 5-LOX
pathway, resulting in LOXS gain of function, were associated
with incident MI (117).

LOXs seem also to be affected by animal and human
aging. Thus, 5-LOX mRNA and protein levels were sig-
nificantly increased in the cerebral nervous system of 25
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month- compared with 3 month-old mice (216). Similarly,
in humans, expression of the 5-LOX gene and the activity of
5-LOX were increased in elderly subjects, suggesting a role
for this enzyme in neurological diseases associated with
aging (104).

C. NADPH oxidase

Nox is an enzymatic system composed by several subunits,
and different isoforms have been described so far. Nox is
responsible for the formation of O, (383) that induces LDL
oxidation, expression of VCAM-1, MCP-1, and endothelial
monocyte adhesion and infiltration (118).

The impact of the different Nox isoforms in human ath-
erosclerosis is still a matter of debate (379). Thus, Nox1 and
Nox5 are known to essentially elicit O,  formation and to
contribute to proliferation of humans VSMC (379). Nox4
yields H,O, formation and only scarcely stimulates O,
production (379); Nox4 also possesses vasodilating proper-
ties via eNOS activation (323). Among ROS generated by
Nox2, O,~ and H,0, seem to play a relevant role in redox
signaling of atherogenic processes. These two molecules
appear to have different impact on vascular function as O, is
devoted to controlling endothelial dilatation whereas H,O,
may have not only vasodilation but also pro-inflammatory
properties (114). Thus, in a model of carotid ligation, over-
expression of the Nox2 subunit p22P"* was associated with
a marked increase of atheroma and a concomitant overpro-
duction of H,O, (173). This finding was confirmed in ex-
periments in which the use of an H,O, scavenger, such as
catalase, reduced the formation of atheroma (173).

An experimental study demonstrated that atheroscle-
rotic plaque formation was significantly mitigated in animals
treated with apocynin, a molecule that reduces subunit
p47P"°* translocation to the membrane catalytic Nox2 (206,
298). Apocynin dose dependently decreased total monocyte
accumulation, platelet adhesion, and atherosclerotic pro-
gression (206). The relationship between Nox2 and athero-
sclerotic lesion progression has been supported by Judkins
et al., who studied a double knockout model of accelerated
atherosclerosis represented by Nox2™"*/ApoE™™ mice
(168). They found a significantly lower vascular ROS pro-
duction, increased NO bioavailability, and reduced early le-
sion development compared with ApoE” mice (168).
Similar results were also obtained in ApoE™/p47Phox™
mice (20). These data were further confirmed by Quesada
et al., who found a significant regression of atherosclerotic
plaque in mice fed with a high-fat diet and given a specific
Nox2 inhibitor (298). Finally, in mice overexpressing endo-
thelial Nox2, an early increase of endothelial activation and
macrophage accumulation within the sub-endothelium were
observed compared with controls, whereas aged animals
showed similar atherosclerotic burden and progression (89).

In human, overexpression of some Nox subunits was as-
sociated with a marked increase of atheroma (173). Azumi
et al. demonstrated that p22P"°* subunit was overexpressed in
the vessel wall of atherosclerotic coronary arteries using
coronary sections from autoptic specimens (15). This ob-
servation was confirmed by Guzik et al. (131), who found
enhanced superoxide production in coronary arteries from
patients with CHD in association with upregulation of
p22P"* and Nox2, suggesting that both these subunits con-
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tribute to oxidative stress in human coronary atherosclerotic
lesions (131).

Experiments performed in subjects affected by chronic
granulomatous disease (CGD), which is characterized by
hereditary deficiency of Nox2 subunits, allowed to investi-
gate the role of this Nox in human atherosclerosis. The most
common form of CGD is related to Nox2 hereditary defi-
ciency, but other subunits such as p47°"°* may be lacking. To
investigate the role of Nox2 in the physiology and patho-
physiology of cardiovascular system, we developed an
immuno-assay that measures the extra membrane peptide of
the enzyme released in the medium on Nox2 activation,
called soluble Nox2-derived peptide (sNox2-dp) (278).
Blood analysis demonstrated that ~90% of sNox2-dp stems
from activation of leukocytes, lymphocytes/monocytes, and
platelets (278).

The interplay between Nox and atherosclerosis was also
investigated in female carriers of Nox2 deficiency (384). The
study showed a significant reduction of the carotid intima-
media thickness (IMT), which is another surrogate marker
of atherosclerosis, in carriers compared with controls (215).
Using a more sophisticated diagnostic approach, that is,
magnetic resonance imaging and computed tomography,
Sibley et al. (337) supported these preliminary reports by
demonstrating that CGD patients, compared with control
subjects, had a 22% lower internal carotid artery wall volume
with a similar reduction detected in both the p47°"*~ and
gp91P"°*_deficient subtypes (337).

The relationship between Nox2 and aging has been in-
vestigated in ApoE”"™ mice, which showed an upregulation
of Nox2 in atherosclerotic plaque compared with controls;
Nox2 was upregulated in endothelial cells and macrophages
of atherosclerotic lesion and associated with elevated ROS
levels. Of particular interest was the fact that upregulation of
Nox2 and elevation of ROS were age dependent, with a
significant increase from 12 to 19 weeks (168).

The relationship between aging and Nox2 has been pro-
spectively investigated in AF, who were followed up for
about 40 months; Nox2 activity increased coincidentally,
with aging-related GPx3 downregulation suggesting an im-
balance between oxidant and antioxidant status (268); and the
imbalance between Nox2 and GPx3 was significantly evident
at the age of 75 years, coincidentally with an abrupt risk of
CVEs.

VII. Oxidative Products
A. F2-isoprostanes

F2-isoprostanes are a family of eicosanoids with pro-
atherogenic and pro-thrombotic properties. The eicosanoid
8-iso-prostaglandin F,, (8-iso-PGF,,) derives from the non-
enzymatic oxidation of AA, and it is involved in the late
phase of platelet activation and thrombus growth (280). The
production of 8-iso-PGF,,, is partly a result of activation of
Nox2 (53), as shown by impaired formation of 8-iso-PGF,, in
CGD patients (384). Urinary excretion of 8-iso-PGF,, is a
validated and accepted reliable biomarker of in vivo oxidative
stress, which has been investigated in healthy subjects and in
patients at risk or with CVD (53). Increased values of urinary
8-i150-PGF,,, (23) and serum sNox2-dp levels have been de-
tected in subjects with CHD, hypertension, type 2 DM, MetS,
AF, and PAD. Plasma or urinary excretion of 8-iso-PGF,, has
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been extensively investigated in patients with acute or
chronic CAD and, with very few exceptions, the levels have
been found to be elevated in patients compared with controls
(Table 2). Production of 8-iso-PGF,, was more pronounced
in patients with acute versus stable CHD and correlated with
the number of affected vessels, suggesting a relationship
between oxidative stress and coronary atherosclerotic burden
(65, 392).

The predictive role of 8-iso-PGF,, levels has been tested in
a nested case-cohort study including 141 CHD cases, 109
stroke cases, and 142 controls (306). The highest quartile of
urinary 8-iso-PGF,, compared with the lowest ones had an
odds ratio of 1.8 to develop fatal CVD in a median 10-year
follow-up.

LeLeiko et al. (197) measured serum F2-isoprostanes in
108 patients presenting with acute coronary syndrome (ACS)
and in 101 control patients. ACS patients had higher serum
F2-isoprostanes compared with controls and were predictive
of cardiovascular recurrences.
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More recently, in 1002 anticoagulated elderly AF patients
followed up for about 3 years, median levels of urinary 8-iso-
PGF,, (160 vs. 100 pg/mg creatinine, p <0.001) and sNox2-
dp (13 vs. 9pg/ml, p<0.001) were significantly higher in
patients with CVEs compared with those without CVEs
during the follow-up (284).

The relationship between F2-isoprostanes and aging has been
scarcely investigated. Apparently, the production of 8-iso-PGF,,,
increases with age as a significant positive correlation was found
between age and 8-iso-PGF,, (247). Even if this would be
consistent with an overproduction of isoprostanes in the elderly,
further studies are necessary to support this single finding.

B. Oxidized LDL

ox-LDLs play a pivotal role in the process of atheroscle-
rosis. On reaching the sub-endothelium, LDL undergo oxi-
dation via ROS produced by pro-oxidant enzymes such as
Nox2, MPO, or xanthine-oxidase and are taken up by

TABLE 2. CLINICAL STUDIES INVESTIGATING F2-ISOPROSTANES IN CARDIOVASCULAR AND CEREBROVASCULAR DISEASE

Author/year Setting/patients’ typology

Biomarker

Main results

Cipollone et al./ Unstable angina (n=232);

2000 (65) stable angina (n=32);
variant angina (n=4);
healthy subjects (n=40).

Schwedhelm CHD (n=93); controls
et al./2004 (n=93).

(324)

Shishehbor et al./ CAD, n=54; controls

Urinary 8-iso-PGF,,

Urinary 8-iso-PGF,, and
2,3-dinor-5,6-dihydro-
8-1s0-PGF,,,

Plasma F2-isoprostanes

Unstable angina (339 pg/mg creatinine);
stable angina (236 pg/mg creatinine,
p<0.001); control subjects (192 pg/mg
creatinine, p <0.0001).

Urinary 8-iso-PGF,, and 2,3-dinor-5,6-
dihydro-8-iso-PGF,, differed, from 77
to 139 pmol/mmol creatinine and from
120 to 193 pmol/mmol in controls and
cases, respectively, p<0.001.

CAD 9.0 vs. controls 6.0 umol/mol,

2006 (336) (n=50). p<0.001.
Woodward et al./ CHD (n=227); controls Plasma F2-isoprostanes CHD=1146 pM,
2009 (405) (n=420). controls = 1250 pM, p=NS.
Kim et al./2008 CAD (n="799); controls Urinary 8-epi-PGF,, CAD=1332.9 vs. controls=1123.6 pg/mg
(175) (n=925). creatinine, p <0.001.
Vassalle et al./ CAD (n=38); controls Plasma levels of 8- CAD=351.1 vs. controls =194.2 pg/ml,
2004 (376) (n=30). epiPGF,, p<0.001. Plasma of 8-epiPGF,,
correlated with the number of affected
vessels (one vessel 288.3 vs. multi
vessels 380 pg/ml, p <0.001).
Wang et al./ 241 Consecutive patients Plasma levels of 8-iso- 8-is0-PGF,, levels were higher in patients
2006 (392) undergoing coronary an- PGF,, with (n=169) than those without

giography.

Gross et al./2005
(125)

2850 Young healthy adults.

Tuliano et al./
2001 (157)

12 CAD patients undergoing
coronary angiography.

Ward et al./2011
(397)

44 Acute ischemic stroke
patients and 44 matched
controls

Plasma-free F2-
isoprostanes

Plasma F2-isoprostanes

Plasma F2-isoprostanes

(n=172) CAD (337.7 vs. 263.8 pg/ml,
respectively <0.001). 8-iso-PGF,,
levels were correlated with age
(r=0.29, p<0.001) and the numbers
of affected vessels (p<0.001).

The odds ratio for the presence of coro-
nary artery calcification was 1.24 per
92.2 pM (32.7ng/L) of F2-isoprostanes
(1 SD).

After PTCA, iso-PGF2o-111 increased,
from 40 to 125 pg/ml (p <0.001) and
1s0-PGF20-VI from 115 to 295 pg/ml
(p<0.001).

3754 Compared with 1947 pM, p <0.02.

8-150-PGF,,, 8-iso-prostaglandin F,,; CAD, coronary artery disease; CHD, coronary heart disease; NS, not significant; SD, standard

deviation.



ATHEROTHROMBOSIS IN ELDERLY

macrophages via scavenger receptors, thus promoting the
formation of foam cells (351). Ox-LDL have been evaluated
in several studies, including patients with different degrees
of CHD. A cross-sectional study (148), which included 63
patients with ACS, 35 nontransplanted patients with angio-
graphic stable angina, 28 heart transplant patients with post-
transplant CAD, 79 heart transplant patients without CAD,
and 65 control subjects, showed that ox-LDL levels were
significantly higher in patients with CAD compared with
those without. The association between ox-LDL levels and
CAD severity was also corroborated in patients with ACS,
who displayed higher levels of ox-LDL compared with pa-
tients with stable CAD. Prospective studies investigating the
prognostic role of ox-LDL provided positive (147, 163, 302,
334, 370, 406) and negative (2, 36, 177, 402) results.
Holvoet ef al. (147) studied 3033 subjects, 1147 with and
1886 without MetS, and found elevated values of ox-LDL in
patients with MetS (1.45%0.82 mg/dl) compared with those
without MetS (1.23 £0.67 mg/dl, p <0.0001). ox-LDL levels
were associated with an increased rate of MI during the
follow-up (relative risk 2.25 for the highest quintile). The
incidence of CHD events was registered in a 6-year follow-up
among 18,140 men from the HPFS (Health Professionals
Follow-up Study) and in an 8 year follow-up among 32,826
women from the Nurses’ Health Study. Subjects experienc-
ing CHD showed higher values of ox-LDL compared with
controls in both men and women. The highest quintile of
ox-LDL was significantly associated with an increased risk
of CHD in a multivariate model (406). In the prospective
case-control study in which 44,725 men and women from
the World Health Organization Multinational MONICA
(Monitoring of Trends and Determinants in Cardiovascular
Disease) project and the Visterbotten Intervention Program
were enrolled, there was no difference in the levels of

—

process. Antioxidant mole-
cules are classified into direct
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IgG, IgA, and IgM autoantibodies against copper-ox-LDL or
malonaldehyde-LDL between patients experiencing CD and
controls (2). In the Framingham offspring study, IgG anti-
bodies to ox-LDL were measured in 1192 men and 1427
women who were followed for 8 years for the occurrence of
CHD and CVEs (402). Although IgG were significantly
correlated with age in both men and women, no association
with events was found. Finally, in 36 patients undergoing
carotid endoarterectomy, ox-LDL levels were higher in
comparison with 20 controls and were significantly higher in
unstable versus stable carotid plaques (338).

Different methodology used in the earlier reported clinical
studies may account for these conflicting results. Indeed,
some studies used antibodies against ox-LDL, whereas some
others made a direct measurement of ox-LDL, with or
without adjustment for lipid profile. A more reliable meth-
odology to measure ox-LDL is likely necessary to further
investigate the role of ox-LDL in atherothrombosis.

VIIl. Atherosclerosis and Antioxidant Status

Cellular protection against oxidative products is provided
by a complex network of antioxidant systems, which can be
classified according to their activity (i.e., enzymatic and
nonenzymatic antioxidants) or to their behavior into redox
reactions (i.e., direct and indirect antioxidants) (Fig. 4) (87,
295). However, it should be noted that this classification does
not reflect the more complicated functional interplay existing
between direct and indirect antioxidants. For instance, some
antioxidants are both direct and indirect and can be referred to
as “‘bifunctional.”” Moreover, cytoprotective proteins may
participate in the synthesis/regeneration of direct antioxi-
dants, which are, in turn, required for the catalytic functions
of cytoprotective proteins (87, 295).
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B. Antioxidant enzymes

1. NO synthase. The NOS family generates NO from
conversion of L-arginine to L-citrulline; it includes homo-
dimeric oxidoreductases in which the heme-containing oxy-
genase domain is linked via a calmodulin-binding linker
peptide to an NADPH cytochrome P450 reductase-like di-
flavin domain (224). On activation, the FAD unit of the fla-
voprotein domain transfers electrons from NADPH to the
Flavin Mono Nucleotide, which reduces heme iron and re-
sults in O, activation followed by oxidation of the guanidino
N atom of L-arginine, forming at last NO and citrulline.
There are three NOS isoforms in the cardiovascular system,
one inducible NOS (iNOS) and two constitutive, namely
eNOS and neuronal NOS (nNOS). Under normal conditions,
eNOS exerts antiatherogenic effects in the vascular wall
by inhibiting cell growth, leukocyte adhesion, and platelet
aggregation. Thus, in eNOS-deficient ApoE™™ mice on a
Western-type diet, an increased coronary atherosclerosis was
observed (183). Conversely, in several CVD, such as DM and
hypercholesterolemia, eNOS can produce the oxidant species
O, instead of NO (307, 312) because of absence/reduction of
its substrate L-arginine by arginase 1 upregulation. The shift
from NO to O, production is named NOS uncoupling (61).
The role of arginase 1 in uncoupled eNOS-related ath-
erosclerosis was investigated in an animal model where
administration of arginase 1 inhibitor, S-(2-boronoethyl)-1-
cysteine, increased circulating NO, inhibited O, generation,
and attenuated plaque development (312). Similarly, nNOS is
protective against atherosclerosis as documented by Kuh-
lencordt et al. (184), who reported increased atherosclerotic
plaque formation and decreased survival in nNOS-deficient
ApoE™"™ mice.

The iNOS isoform is synthesized in response to pro-
inflammatory agonists such as cytokines and, differently
from eNOS and nNOS, seems to play a pro-atherogenic role.
Thus, iNOS activation leads to a sustained production of NO,
which corresponds to ~ 100-fold the amount produced by
constitutive eNOS. Large quantities of NO could combine
with O, to form peroxynitrite, an adduct with enhanced
oxidizing capability. iNOS is detectable in human athero-
sclerotic lesions (46), where it contributes to peroxynitrite
formation and, eventually, LDL oxidation. In fact, LDL
isolated from aortic atherosclerotic intima had 90-fold higher
levels of peroxynitrite compared with healthy subjects. The
pro-atherogenic role of iNOS was documented in ApoE"™"/
iNOS™™ mice, which showed a significantly reduced ath-
erosclerotic lesion area and lipid peroxidation compared with
ApoE™"™ mice (182, 242).

The activity of NOS profile seems to be modified in the
elderly. Thus, a recent study, evaluating age-related pro-
gressive organ dysfunction in 338 healthy subjects (age
ranging from 3 to 92 years), demonstrated that eNOS protein
level was significantly decreased in elderly people as com-
pared with adults (174). However, the impact of this change
on atherosclerosis progression and CVEs is still unknown.

2. Superoxide dismutase. SOD family encompasses
three isoforms, namely SOD1, SOD2, and SOD3, which are
cytoplasmic, mitochondrial, and extracellular isoforms, re-
spectively. All isoforms seem to protect against atheroscle-
rosis. Thus, overexpression of SOD1 and catalase or catalase
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alone decreased plasma and aortic F2-isoprostane levels and
retarded atherosclerotic lesion development in ApoE""”
mice (413). On the contrary, SOD2 deficiency induced mi-
tochondrial DNA damage and accelerated atherosclerosis in
ApoE(_/ ~ mice (18). SOD1 and SOD?2 deficiency resulted in
VSMC hyperplasia and hypertrophy mediated by different
kinases (217). Previous studies showed that SOD1™"™ mice
are prone to develop various aging-related pathologies,
concomitantly with an increase of oxidative damage in or-
gans (398). In accordance with this, SOD1 and SOD2 pre-
vented DNA damage during aging in experimental models.
Of note, in aging mice, damage related to SOD down-
regulation was counteracted by atorvastatin treatment, re-
sulting in delayed age-related cardiac alterations (i.e., cardiac
hypertrophy) and inhibition of inflammatory cytokines (132).
The relationship between SOD activity and aging was also
investigated in humans. In lymphocytes from healthy sub-
jects, a progressive decrease across decades of age of anti-
oxidant enzyme activity such as SOD, catalase, and GPx has
been reported (119). Further, in samples of human brain
tissues, a significant decrease in SOD and GPx activities with
increasing age was detected, suggesting a role for impaired
antioxidant status in the onset of neurologic disorders such as
Parkinson and Alzheimer diseases (377). SOD3 seems to be
involved in protecting LDL particles from oxidation. Thus, in
rabbit as well as human endothelial cells, recombinant SOD3
decreases LDL oxidation (196, 359). In patients with CAD,
low levels of plasma SOD3 were independently associated
with a history of MI (394).

3. Glutathione peroxidase. Even if there is a growing
body of evidence to suggest that GPx has anti-atherosclerotic
property (308), differences among the eight isoforms be-
longing to the GPx family do exist. However, all GPx iso-
forms share the ability to detoxify peroxides, with GSH
acting as an electron donor in the reduction reaction, pro-
ducing GSH disulfide (110). GPx1 is prevalently localized in
red blood cells, GPx2 is in the gastrointestinal tract, and
GPx3 is the only circulating isoform. GPx4 exists as a cy-
tosolic, mitochondrial, and nuclear isoform derived from
alternative splicing of a single gene. In human, GPx4 acts as
a phospholipid hydroperoxidase protecting cells from lipid
peroxidation. It also plays a role in primary T cell response to
infections by protecting T cells from ferroptosis, a cell death
secondary to an iron-dependent accumulation of lipid ROS.
Finally, GPx4 serves as a structural function in mature sperm
cells. The isoforms 5-8 are less characterized.

GPx1 and GPx4 play a role in preventing atherosclerosis
progression, and GPx1 seems to also possess antithrombotic
properties (308). Thus, in ApoE”"™ GPxl-deficient mice,
increased aortic ROS, decreased NO, and increased athero-
sclerosis burden were observed (365). In accordance with
experimental studies, GPx1 activity is either decreased or
absent in human carotid atherosclerotic lesions, and its ab-
sence is associated with lesion severity (195). In another
human study that investigated platelet activity in two brothers
with cerebral vein thrombosis, Freedman et al. found a de-
creased activity of GPx3 along with an increased platelet re-
activity compared with controls (113). The addition of
exogenous GPx restored NO-mediated platelet function. Fur-
ther, overexpression of GPx4 reduced aortic F2-isoprostane
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levels, lowered IL1-induced VCAM-1 expression, and delayed
lesion progression in experimental animal models (19, 130).
The relationship between GPx isoforms and CVEs has
been investigated in few studies. In a cohort of 636 patients
with suspected CHD, an inverse relationship between GPx1
activity and risk of CVEs during a follow-up of 4.7 years was
reported (33). Further, a recent prospective cohort study that
included 909 AF patients reported a significantly lower value
of GPx3 and SOD in patients experiencing a CVE in a mean
follow-up of 43.4 months (268). The same study also reported
that GPx3 was the antioxidant enzyme that progressively
decreased by aging, with an abrupt reduction at age of 70
years. Of note, such a reduction was associated with an
overproduction of TxB, suggesting an interplay between
impaired detoxification of ROS and platelet activation (268).

4. Paraoxonase. PON is an antioxidant enzyme that
exists in three isoforms (PON1, PON2, PON3) and possesses
atheroprotective effects. The antioxidant activity of PON1
has been detected in vitro, where it inhibited LDL and HDL
oxidation (12, 13), and in PON1-knockout mice, which dis-
played higher levels of oxidized phospholipids and increased
aortic atherosclerosis compared with wild type (331, 332).
Two common polymorphisms of PON1 (i.e., 55 and 192)
were shown to be associated with human atherosclerosis and
heart disease.

PON?2 attenuated triglyceride accumulation into macro-
phages and foam cell formation via the inhibition of redox-
sensitive microsomal diacylglycerol acyltransferase 1 (310).
PON2-deficient ApoE“"~ mice developed enhanced mito-
chondrial oxidative stress and exacerbated atherosclerosis
when fed with chow and Western diet (85).

Similar to PON1, PON-3 prevents oxidative modification
of LDL; humanized PON3 transgenic mice fed with an ath-
erogenic diet exhibited decreased atherosclerotic lesion areas
compared with nontransgenic animals (333).

Serum PON1 concentration decreased in the atheroscle-
rotic ApoE™™ mice during aging and was inversely corre-
lated to the development of atherosclerotic lesions (13). This
finding was corroborated by a human study demonstrating
that PON1 concentration was lower in old (60-89 years)
compared with young (20-30 years) subjects (63). Similarly,
Milochevitch and Khalil found that plasma PON1 was in-
versely correlated to age in a group of subjects ranging 2677
years (238). Increased age was also negatively correlated
with PON activities, specifically with the PON1-192 variant.
In the same study, higher expression of this polymorphism
was found in centenaries, suggesting a role for PONI in
successful aging (223).

5. Heme-oxygenase. Heme-oxygenase (HO) is a mi-
crosomal enzymatic system involved in the degradation of
heme (186, 248, 368). The HO system regulates heme-
protein levels and protects cells from the deleterious heme-
induced iron-dependent reactions, leading to ROS generation
and lipid peroxidation (186, 417). HO reduces cellular free
heme by splitting the tetrapyrrole heme ring to biliverdin,
free ferrous iron, and carbon monoxide. Biliverdin is subse-
quently metabolized to the antioxidant molecule bilirubin by
biliverdin reductase (248). The mechanism by which biliru-
bin reacts with ROS is not completely understood, although
its hydrophobic tetrapyrrole structure has been reported to
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inhibit the activation of Nox (189). Recently, bilirubin was
reported to suppress atherosclerotic plaque formation in
LDLR-deficient mice by disrupting endothelial VCAM-1 and
ICAM-1-mediated leukocyte migration through its ROS-
scavenging property (389).

Of the two HO isoforms described, HO-1 is involved in the
atherosclerotic process whereas HO-2 seems to play a pro-
tective role against anoxic processes at neuronal and cardiac
level (186, 248). HO-1 has a broad spectrum of inducers such
as ROS, cytokines, PGs, and endotoxin (84). HO-1 is highly
expressed in macrophages, especially in those contained in the
intra-plaque hemorrhage where it plays an athero-protective
role. Thus, HO-1" macrophage population is significantly
expanded in atherosclerotic plaques in the heme-rich regions
(261). When HO-1-deficient macrophages are treated with
ox-LDL, generation of ROS is amplified and the secretion of
pro-inflammatory IL-6, MCP-1, and the IL-8 homologue is
increased (261). Thus, HO-1 expression in macrophages
makes them resistant to foam cell formation and pro-
inflammatory mediators that exacerbate atherogenesis and
plaque progression (150).

The importance of HO-1 in vascular biology was high-
lighted in a child with HO-1 deficiency, in whom endothelial
cells were more susceptible to oxidative insults and heme-
mediated LDL oxidation (410). Further, Exner et al. carried
out a cohort study to evaluate the relationship between HO-1
gene promoter polymorphisms associated to higher HO-1
expression and the risk for arterial restenosis after percuta-
neous transluminal angioplasty (100). Patients with short
(<25 GT) dinucleotide repeats in the HO-1 gene promoter had
significantly less restenosis than patients with longer (=25
GT) dinucleotide repeats (100). This finding was corrobo-
rated in a large cohort of 812 subjects from the Bruneck
Study, which described an inverse association between low
HO-1 and atherosclerotic progression along with a trend to-
ward higher levels of oxidized phospholipids on ApoB-100
(272). The behavior of this antioxidant enzyme in the elderly
population is still unknown.

B. Direct antioxidants

Several low-molecular-weight compounds belong to di-
rect antioxidants such as ascorbate, GSH, and tocopherols.
They are all involved in redox reactions by scavenging ROS
and nitrogen species. Direct antioxidants have peculiar
features such as being redox active, consumed or chemically
modified on antioxidant reaction, and needing reloading or
regeneration.

1. Glutathione. The non-protein thiol GSH (L-y-
glutamyl-L-cysteinyl-glycine; GSH) is a tripeptide molecule
synthesized in most cells by human glutamate-cysteine ligase
(GCL) and GSH synthase. In particular, GCL is composed by
catalytic (GCLC) and modifier (GCLM) units and is the
limiting phase in the production of GSH. GSH can exist in an
oxidized or reduced state (367), and it is used as an enzyme
substrate for the GPx, where it is the reductant of hydroper-
oxides, and for GSH S-transferases, responsible for the
conjugation of GSH with electrophilic molecules (110).

GSH levels may vary significantly among different organs,
with some of them being responsible for GSH synthesis,
whereas some others are essentially exporters. In human
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tissues, GSH levels range from 0.1 to 10 mm, being most
concentrated in the liver (up to 10 mm) (258).

Although cells have relatively high concentrations of
GSH, an increase in synthesis of GSH is clearly part of the
adaptive response to oxidative stress (367). Several evi-
dences support the role of GSH in atherosclerotic progres-
sion. The GSH content in mice aorta is reduced before and
during lesion development (30), and GSH-dependent ex-
pression of GPx1 is reduced in ApoE-deficient mice treated
with an atherogenic diet (356). Modulation of GSH levels
by treating ApoE-deficient mice with L-2-0x0-4-thiazolidin
carboxylate, which supplies cysteine residues, resulted in a
25% increase in macrophages’ GSH and a 25% decrement
in atherosclerotic lesion size (309). To confirm the role of
GSH in atherosclerotic lesion progression, a ApoE""/
GCLM“"™ knockout mouse model, resulting in an impaired
GCL synthesis, was associated with low GSH levels and
more rapidly with the development of complex atheroscle-
rotic lesions (49).

A few data associated GSH levels in plasma or red blood cells
with CHD. In a case-control study, patients with angio-
graphically proven CAD or awaiting coronary artery bypass
graft (CABG) presented significantly lower red blood cell GSH
levels compared with controls (41, 127). More recently, an
analysis among 134 CVD cases and 435 age- and sex-matched
healthy control subjects from the Hisayama Study demonstrated
that plasma GSH concentrations were lower in all CVD cases
than in controls, particularly in patients affected by severe ce-
rebral infarction (335). Data on the role of GSH in preventing
CVD stem from genetic studies involved the GCLC and GCLM
units of GCL, as GSH biosynthesis is paralleled by GCL gene
expression. Thus, the CT polymorphism of the GCLM gene was
associated with an increased risk of MI (251). Similarly, the
129T polymorphism of the GCLC gene was associated to re-
duced levels of GSH and endothelial dysfunction in MI patients
compared with controls (178). These data are in contrast with a
recent study that did not show significant difference in plasma
GSH comparing PAD patients with controls (339).

Two prospective studies investigated whether GSH pre-
dicts CVD. GSH appeared independently and inversely as-
sociated with recurrent atherothrombotic events in a cohort of
375 survivors admitted for an ACS, followed for a median
duration of 2.7 years (108). Similarly, in a sample from the
Hunter Community Study free of CVEs, 5-year absolute
cardiovascular risk score calculated using the Framingham
Risk Equation was independently and inversely associated to
plasma GSH levels (220).

GSH concentration appears to decline with advancing age.
Thus, in healthy subjects aged 19-85 years, plasma ratio
between reduced and oxidized GSH in plasma did not change
before 45 years, but later on GSH was oxidized at a nearly
linear rate of 0.7 mV/year, suggesting that after 45 years GSH
declines rapidly (165). Although these data could be ques-
tioned as plasma GSH accounts for only 1% of total GSH,
similar results were obtained while studying GSH from other
sources such as erythrocytes and lymphocytes. Thus, in
healthy individuals, GSH levels were significantly lower
in the erythrocytes of “‘old” (60-79 years) compared with
“mature’” group (40-59 years) and with the young reference
group (20-39 years), which expressed the highest GSH
content (193). Similarly, human lymphocytes display a pro-
gressive decrease of GSH by advancing age, with 60-80

VIOLI ET AL.

year-old subjects having about 50% less of GSH lymphocyte
content compared with 20-40 year ones (375).

The decline of GSH by aging may also have an impact on
extracellular levels of other antioxidants, such as alpha to-
copherol and ascorbic acid, as GSH is involved in their res-
toration cycle. Thus, cycles of regeneration of these three
antioxidants are strictly correlated (374). For example, in
human erythrocytes, ascorbate regeneration from dehy-
droascorbate is largely dependent on GSH (232), and oxi-
dized vitamin E radical is reduced by both GSH and ascorbic
acid, giving formation to the ascorbyl radical (374).

Of note, the bio-availability of cysteine appears to be the
rate-limiting factor for synthesis of GSH, which is a sulfur-
containing metabolite. The reduced dietary protein intake
occurring by aging could be an additional detrimental factor
concurring to age-related GSH decrease (153, 255). Food,
such as garlic, onions, and brussels sprouts, contain signifi-
cant amounts of sulfur, and could be considered as part of a
nutritional approach for elderly patients.

2. Vitamin E. Natural vitamin E consists of a family of
eight different compounds, four tocopherols and four toco-
trienols. All tocopherols and tocotrienols are potent antioxi-
dants with lipoperoxyl radical-scavenging activities, which
consist of donating hydrogen atoms from the phenol group on
the chromanol ring. Animal studies provided evidence of a
role for a-tocopherol in modulating arterial lipid content, li-
pid oxidation, and eventually plaque evolution. Verlangieri
and Bush (378) reported a 35% inhibition of atherosclerotic
lesion in cholesterol-fed macaques supplemented with o-
tocopherol over a 3-year period of follow-up (378). In rabbits
with established experimental atherosclerosis undergoing
angioplasty, a reduced restenosis and IMT after angioplasty
was observed after «-tocopherol supplementation (190).
Similarly, a-tocopherol supplementation inhibited aortic in-
timal thickening as well as lipid peroxidation in a chicken
model (342). Further, in ApoE™"™ mice, a-tocopherol sup-
plementation was able to reduce aortic lesions in 4- to 10-
week-old ApoE™™ mice, when fatty streaks are absent or
very sparse (274). Similar results were obtained in older
animals with established aortic lesion (273). Finally, diet o-
tocopherol intake led to a reduced deposition of cholesterol in
arterial plaques from rabbits fed with atherogenic diet (325),
and ex-vivo copper mediated oxidative modification of
LDL in the same animal model (401). a-tocopherol also
possesses anti-inflammatory effect as depicted by its capacity
of slowing cell mi%ration into the lesion site. Thus, in aortic
lesions of ApoE™"™ mice treated with o-tocopherol, a re-
duced level of MCP-1 was observed (274). In addition, o-
tocopherol can affect the atherothrombotic evolution by
modulating platelet activation; thus, intravenously adminis-
tered tocotrienols induced a fourfold increase in a-tocopherol
concentration and inhibited acute platelet-mediated thrombus
and agonist-induced platelet aggregation in stenotic canine
coronary arteries (299).

The relationship between aging and o-tocopherol con-
centration is controversial. Serum and visceral levels of
a-tocopherol were found to be decreased by aging in rats
(169), whereas another study failed to confirm this relation-
ship (252). In accordance with this last finding, decreased
levels of ascorbic acid and GSH, but no differences of a-
tocopherol by aging, have been reported (292).
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3. Vitamin C. Ascorbic acid (vitamin C) is a hydrophilic
vitamin that interferes with several mechanisms involved in
the atherosclerotic process mostly by preventing NO degra-
dation (399) and LDL oxidation (161). Ascorbic acid may
preserve NO by several mechanisms, including direct re-
duction of nitrite to NO, release of NO from nitrosothiols,
scavenging O, (231), and sparing endothelial cell-derived
NO by recycling tetrahydrobiopterin (139, 231). Ascorbic
acid plays a protective role against atherosclerotic burden by
decreasing endothelial cells’ ability to oxidase LDL (225).
This effect is also achieved by influencing o-tocopherol
metabolism as depicted by in vitro experiments where
ascorbic acid restored the reduced form of «-tocopherol in
human monocyte/macrophages, ultimately preventing LDL
oxidation (161). Combined deficiency of vitamin E and C
increased lipid peroxidation, doubled plaque size, and in-
creased plaque macrophage content by two- to threefold in
ApoE"™™ mice (16). The progression of the atherosclerotic
plaque was also higher in ApoE™"™ and gulonolactone oxi-
dase™ mice that prevented animals from synthesizing their
own vitamin C (16). Ascorbic acid concentration seems to be
affected by the aging process. In animals, serum vitamin C
content was inversely related to age (252). Similarly, in hu-
mans, a progressive decrease in serum concentration of
ascorbic acid by aging has been described (292).

C. Indirect antioxidants

Indirect antioxidants include small-molecule inducers of
cytoprotective proteins such as H,S and polyphenols. Dif-
ferently from direct ones, indirect antioxidants may be redox
active and can also activate the NF-E2-related factor 2
(Nrf2)/antioxidant-responsive element (ARE) pathway, re-
sulting in transcriptional induction of a battery of cytopro-
tective proteins (also known as phase 2 enzymes); the latter
act catalytically, are not consumed in their antioxidant action,
have longer half-lives, and catalyze several chemical reac-
tions, ultimately leading to detoxification (87, 295).

1. Hydrogen sulfide. H,S is a ‘“‘gaseous signaling mol-
ecule,” which freely diffuses through cell membranes,
targeting proteins, enzymes, transcription factors, and
membrane ion channels (295). In mammals, cysteine and
methionine, the only two sulfur-containing amino acids,
represent the major source of H,S (295), which is generated
on the activity of four main enzymes, that is, cystathionine y-
lyase, cystathionine f-synthase, cysteine aminotransferase,
and 3-mercaptopyruvate sulfurtransferase (222) [reviewed in
detail in Caliendo et al. (48)]. H,S has important functions in
cardiovascular and immune systems (418). In CVD, H,S acts
by (i) promoting endothelial cells’ proliferation and migra-
tion, (ii) favoring vasodilatation (via interaction or less with
NO), and (iii) as an anti-inflammatory molecule by the NF-
kB pathway. At immune level, H,S seems to be involved in
the regulation of T cells (418).

Recent evidence indicated, in fact, that H,S inhibits LDL
oxidation via scavenging hypochlorite and H,O, and in-
hibiting MPO activity (191). H,S can modulate atheroscle-
rotic plaque evolution by suppressing monocytes’ adhesion
to activated endothelium and reducing plaque volume, as
demonstrated in ApoE”"™ mice treated with H,S donor so-
dium hydrosulfide (395). Consistent with this, cystathionine
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y-lyase-knockout mice displayed decreased endogenous H,S
level, elevated plasma levels of LDL, increased oxidative
stress and adhesion molecule expression, and early fatty
streak lesions in the aortic root (221).

H>S is also demonstrated to interfere with the atheroscle-
rotic process by diminishing the tissue injury induced by
LPS-mediated neutrophil activation via induction of apo-
ptosis and/or scavenging neutrophil-derived hypochlorite
(400). H,S also acts by downregulating several pro-
atherogenic cytokines, including NF-xB, TNF«, IL-1b, IL-6,
and IL-8, as demonstrated by in vitro studies (295).

Decreased levels of H,S have been found in different
CVD, such as hypertension, heart failure, and type 2 diabetes
[see also Wallace et al. (390)].

Aging is associated to reduced levels of H,S in animal
models, but data on humans are lacking (42).

2. Polyphenols. Polyphenols are a class of natural, syn-
thetic, and semisynthetic substances characterized by large
multiples of phenol units. Polyphenols, in the form of fla-
vonoids, are broadly classified into (i) anthocyanins, namely
cyanidin, delphinidin, malvidin contained in raspberry; (ii)
flavanols, namely catechin, epicatechin contained in cocoa,
red wine, green tea; (iii) flavonols, namely quercetin, fisetin
contained in onion, blueberry, red apple, many fruits and
vegetables; (iv) flavanones, namely hesperidin; and (v) fla-
vones luteolin in citrus fruits (369).

In addition, resveratrol (3,5,4’-trihydroxy-trans-stilbene) is
a non-flavonoid phytoalexin polyphenol mostly contained in
plants and red wine [reviewed in detail in Xia et al. (408)].

Antioxidant ability of polyphenols to scavenge free radi-
cals has not been fully elucidated (146). However, polyphe-
nols exert an indirect antioxidant activity by inhibiting Nox,
thus increasing NO availability (211). Moreover, polyphe-
nols seem to exert a cytoprotective action; for instance, at
neuronal level, polyphenols may be neuroprotective by
modulation of the Nrf2/ARE pathway, which regulates phase
Il antioxidant responses, triggering the simultaneous ex-
pression of numerous protective enzymes and scavengers
including HO-1 (321). Polyphenols may also have a cardio-
protective effect due to their uncoupling properties. En-
dogenous uncoupling is a physiologic mechanism to lower
mitochondrial ROS production, and it is regulated by specific
inducible uncoupling proteins. According to the ‘‘uncoupling
to survive” theory, this mechanism could be important in
minimizing oxidative damage to DNA and in slowing aging
(35). Thus, ““mild mitochondrial uncoupling’’ has been pro-
posed as a mechanism to reduce upstream ROS production; it
has been suggested that ‘“‘“mild mitochondrial uncoupling”
could be a more effective therapeutic strategy than removing
ROS once they are formed (69).

IX. Clotting Activation

The risk of thrombosis in the artery and venous circulation
typically increases with aging, and it is responsible for an
enhanced incidence of CVD and venous thromboembolism in
the elderly population (180). Activation of the clotting sys-
tem is relevant for thrombus growth for both arterial and
venous thrombosis. As depicted in Figure 5, the clotting
system includes several proteases, which are activated as a
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Several studies analyzed modification of the clotting sys-
tem by aging using different global coagulation assays or
markers of clotting activation (1, 103). Analysis of global
tests, which were performed prevalently in healthy volun-
teers, consistently showed a more rapid clotting activation in
the elderly compared with the younger population regardless
of the assay used. In accordance with these reports, mea-
surement of markers of clotting activation such as the pro-
thrombin fragment F1 + 2 demonstrated a significant increase
of thrombin generation in the elderly compared with the
younger population (24). This was also evident when ana-
lyzing activation of specific clotting factors, such as factor IX
and X activation peptides, which were more elevated by aging
(103). It should be underscored, however, that the sample size
of these studies was small and, hence, it is difficult to ade-
quately appreciate the change of clotting activation across
decades of age. Moreover, studies demonstrating that changes
of the clotting system by aging are associated with an en-
hanced thrombotic risk are lacking.

Increased activation of the clotting system by aging might
be attributed to changes of coagulation factors, anticoagu-
lants, and the fibrinolytic system. One factor potentially
contributing to enhanced clotting activation by aging is the
increased concentration of some coagulation factors, such as
FV, FVII, FVIII, FIX, and fibrinogen, which, in fact, increase
by aging (112). For some of them such as factor VIII and
fibrinogen, prospective studies documented an increased risk
of thrombosis related to their blood concentration, but it is
difficult to draw definite conclusions from these studies as
both factor VIII and fibrinogen are acute-phase reactant
proteins, which may largely vary depending on the timing of
blood sampling. Reduction of natural anticoagulants by aging

tivation but data regarding this point are unclear and con-
flicting. Clinical studies investigated whether the activity of
some anticoagulants such as antithrombin III (ATIII), protein
C, S, and tissue factor (TF) pathway inhibitor may decrease
by aging. However, the clinical impact of these reports is
unclear as some studies showed no differences in anticoag-
ulant proteins in elderly compared with younger subjects,
whereas some others reported an increase of these antico-
agulants in the elderly population (112).

Changes in the activity of the fibrinolytic system may also
concur to increase the thrombotic risk by aging but also in this
case, results are inconclusive. Using global tests of fibrino-
lysis activation, such as plasmin-alpha2-antiplasmin com-
plex, it was demonstrated that the fibrinolytic system would
be activated by aging in 800 elderly subjects free of clinical
CVD in the Cardiovascular Health Study and the Honolulu
Heart Program cohort (315). Conversely, plasminogen acti-
vator inhibitor 1 (PAI-1) has been shown to increase by aging
(411) but, as for factor VIII and fibrinogen, PAI-1 is an acute-
phase reactant and may not be the expression of an actual
inhibition of the fibrinolytic system.

ROS are important promoters of clotting activation as they
upregulate TF in leucocytes (47). The role of ROS and, more
importantly, the role of Nox in the activation of the clotting
system has been investigated in endothelial cells, where TF
activation is modulated by ROS formation. Accordingly, an
experimental study demonstrated a crucial role for Nox-derived
ROS in upregulating endothelial-dependent TF activation, an
effect significantly inhibited by cell incubation with antioxi-
dants (140). Further, an experimental study demonstrated that
oxidant molecules such as H,O, produced by activated leuco-
cytes induced thrombomodulin oxidation and eventually im-
paired protein C activation (140). This effect was prevented by
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cell incubation with diphenylene iodonium, which is an inhib-
itor of Nox (140). The effect of antioxidants on thrombus for-
mation has been further investigated in a murine model of
genetic deficiency of SOD, where susceptibility of carotid
thrombosis was investigated in response to photochemical
injury. Thus, animals deficient of SOD displayed faster and
larger thrombotic occlusion in artery and venous vessels
compared with wild type (77). This effect was dependent on
impaired protein C activation and was restored by treatment
with antioxidants such as SOD and catalase. Impaired protein
C activation was attributed to ROS formation, which deter-
mined thrombomodulin oxidation with 40% reduction in
thrombomodulin-dependent protein C activation (77).

Finally, oxidative stress may also promote thrombosis by
acting on the fibrinolytic system, where ROS can upregulate
PAI-1 in endothelial cells, thus favoring the thrombotic
process in animals prone to atherosclerosis (355).

The role of oxidative stress as clotting activation promoter
has been investigated both in vitro and in vivo with vitamin E,
which has been shown to negatively interfere with intrinsic
and extrinsic coagulation pathways and to promote fibrino-
lysis. This vitamin possesses anticoagulant property via in-
hibiting oxidation of vitamin K, which serves to activate the
prothrombinase complex, that is, factors II, VII, IX, and X
(263). Further, an in vitro study demonstrated that vitamin E
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downregulates the monocyte expression of TF, indicating
that it can interfere with the extrinsic coagulation pathway
(105). Finally, in patients with coronary spastic angina,
Miyamoto et al. showed that 400 mg/day vitamin E signifi-
cantly reduced PAI-1 activity after 1-month treatment (241).

X. Platelet Activation

Platelets have been long recognized as crucial players for
primary hemostasis at sites of vascular injury. The activity of
platelets at sites of plaque rupture consists of three different
phases: platelet adhesion, platelet activation, and platelet
recruitment (Fig. 6).

The initial step of primary hemostasis is platelet adhesion
to the extracellular matrix. In particular, platelets roll, adhere,
and spread on collagen matrix to form an activated platelet
monolayer. This process is mediated by platelet receptors that
bind extracellular matrix components, such as von Will-
ebrand factor, collagen, fibronectin, thrombospondin, and
laminin, which are exposed to blood on vascular injury. Once
firmly adherent, platelets spread and release the content of their
granules that contain pro-aggregating and pro-inflammatory
molecules. Then, interaction of several agonists with the spe-
cific receptors expressed on platelets induces the propagation of
platelet activation.
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FIG. 6. Platelet activation in aging process. The role of platelets at site of plaque rupture consists of three different

phases: platelet adhesion, activation, and platelet recruitment.

The initial step of primary hemostasis consists of platelet

adhesion to the extracellular matrix. The adhesion of platelets to the damaged vasculature is mediated by platelet receptors
that bind extracellular matrix components, such as vWF, collagen, fibronectin, and thrombospondin, which are exposed to
blood on vascular injury. In the second phase, platelets spread and release the content of their granules that contain pro-
aggregating and pro-inflammatory molecules. In the third phase, the interaction of several agonists with the specific
receptors expressed on platelets induces the propagation of platelet recruitment. During aging, progression is observed in

elevated markers of platelet activation such as platelet factor 4

(PF4) and f-thromboglobulin along with an increase of pro-

aggregating molecules such as F2-Isoprostanes and TxA,. TxA,, thromboxane A,; VWF, von Willebrand factor. To see this
illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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Platelet eicosanoids are important mediators of platelet
aggregation and propagation. Once produced by adherent
platelets, TxA, amplifies platelet adhesion response by
binding to TPo and TP receptors (the effects in platelets are
mediated primarily through the o form) (260). TxA, is syn-
thetized from AA through phospholipase A, (PLA;) and
cyclooxygenase (COX)-1, and it can activate phospholipase
C. This enzyme induces formation of second messenger
inositol triphosphate and diacylglycerol that activate intra-
cellular protein kinase C. The production of inositol tri-
phosphate increases cytosolic levels of calcium. Peroxidation
of membrane phospholipids leads to the generation of another
eicosanoid family named F,-isoprostanes, which modulate
platelet activation via TxA, receptors (246). F,-isoprostanes
are produced from AA by a free radical-mediated mechanism
(246) that is likely dependent on Nox2 activation (280). Thus,
reduced F,-isoprostanes platelet formation was detected in
patients with CGD (280). In this clinical model, the reduced
production of platelet F2-isoprostanes was associated to
impaired platelet activation that was restored by adding ex-
ogenous F2-isoprostanes (280).

The recruitment phase depends on the release of several
pro-aggregating substances such as adenosine diphosphate,
eicosanoids, or ROS, which spread platelet activation at the
site of thrombus growth.

Previous studies consistently showed that platelet activa-
tion is enhanced in the elderly population (243). Cross-
sectional studies demonstrated an enhanced platelet response
to common agonists as documented by a lower concentration
needed to aggregate platelets in the elderly compared with the
younger population (243). In accordance, Sverdlov et al.
demonstrated a progressive increase of platelet sensitivity to
common agonists in 204 subjects followed for 4 years (353).
Further, proteins released by activated platelets such as Beta-
thromboglobulin and platelet factor 4 were elevated in the
elderly population compared with the younger one (243).
Finally, bleeding time, which explores platelet activation
in vivo, was found to be shorter in elderly patients (167).
However, a limitation of these studies is that bleeding time
reflects not only in vivo platelet activation but also vascular
reactivity (112). Urinary excretion of 11-dehydro-TxB, is
among the most reliable tests of platelet activation in vivo. It
is the stable metabolite of TxA,, and urinary excretion of 11-
dehydro-TxB, has been used for clinical purpose in patients
with atherosclerotic risk factors such as DM, hypertension,
and hypercholesterolemia (66, 128, 318), and in patients with
acute and chronic CVD. In these clinical settings, urinary 11-
dehydro-TxB, was elevated, suggesting an increased platelet
activation in patients at risk or with overt atherosclerosis (93).
In a small cross-sectional study performed in 20 healthy
subjects, Reilly and FitzGerald found increased urinary ex-
cretion of 2,3-donor-TxB, in elderly (>65 years) compared
with younger (<65 years) subjects (304). Differently from
previous reports, ex vivo and in vivo tests of platelet function
were similar in elderly and young patients. This finding is
apparently in contrast with a previous study, which measured
serum TxB, in 177 patients with atherosclerotic risk factors
and found no difference according to aging; however, small
sample size and number of elderly patients limit data inter-
pretation (5). To address the relationship between platelet
activation and aging, we measured 11-dehydro-TxB, in 833
patients affected by AF, which is associated with several
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atherosclerotic risk factors and poor vascular outcomes, such
as thromboembolic stroke and MI (269). A cross-sectional
analysis of life decades demonstrated that urinary 11-dehydro-
TxB, increased by aging with a significant elevation at the age
of 74 years (269). Of note, during a follow-up of ~5 years,
patients with elevated TxB, experienced more CVEs compared
with those with lower TxB,. Thus, platelet age-dependent ROS
production could represent an important mechanism account-
ing for atherothrombosis in the elderly.

The relationship between ROS and platelet activation was
originally demonstrated by Del Principe ef al. (83), who
found increased platelet calcium mobilization by adding
in vitro exogenous H,O, to platelets. This finding was later
confirmed by another in vitro study where sample treat-
ment with catalase resulted in inhibition of agonist-induced
platelet activation and calcium mobilization (286). This
finding suggested that also antioxidant compounds or en-
zymes may modulate platelet function. Thus, direct antioxi-
dants such as vitamin C and E significantly inhibited platelet
aggregation (287, 289). Among the enzymatic pathways
implicated in platelet ROS formation and aggregation, Nox2
has a prominent role as shown by the anti-platelet effects
elicited by inhibition of Nox2 activity, which resulted in
impaired production of platelet O,, lower calcium mobili-
zation and GPIIb/IIla activation, and, eventually, inhibition
of platelet aggregation. The role of Nox2 was further inves-
tigated (288) in CGD patients, whose platelets displayed
impaired platelet activation and thrombus growth (280).
Nox2 is able to influence platelet activation through at least
three different mechanisms that are relevant in platelet aging,
including (i) O,  dismutation to the more stable and pro-
aggregating molecule H,O,, (ii) inhibition of the antiplatelet
activity NO by O, ", and (iii) nonenzymatic transformation of
AA into F2-isoprostanes.

Analysis of platelet H,O,, which is implicated in platelet
aggregation, via calcium mobilization, COX1 activation, and
MTORCI, demonstrated an important role for these oxidant
species in aging-related platelet aggregation (286, 414).
Thus, prospective analysis in animals demonstrated that
platelet H,O, increases by aging coincidentally with an en-
hanced risk of thrombosis (78). A key factor for platelet H,O,
overexpression was activation of Nox2, which was, in fact,
upregulated in elderly animals. In accordance, animals trea-
ted with apocynin, which inhibits p47P"* translocation to
Nox2, disclosed reduced platelet H,O, formation and age-
related thrombosis (78).

It is still to be determined, however, whether overpro-
duction of platelet ROS by aging is a result of upregulation of
enzymes producing ROS or reduction of antioxidant status.
Recent studies support this latter hypothesis. As mentioned
earlier, vasodilating properties by NO are rapidly lost on its
interaction with O, to give formation of peroxynitrite (52,
382). Peroxynitrite rapidly induces tyrosine nitration of
proteins with the same pattern of tyrosine phosphorylation,
thus inducing platelet activation (244) Impaired NO gen-
eration by inactivation and/or reduced biosynthesis is as-
sociated with enhanced platelet aggregation (280). In a
prospective study performed in 204 subjects followed up for
4 years, platelet responsiveness to NO was significantly re-
duced compared with baseline coincidentally with a pro-
gressive increase in plasma asymmetric dimethylarginine,
which is an inhibitor of NOS (353). Alternatively, reduced
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platelet response to NO may be related to an impaired de-
toxification of intracellular ROS. The relevance of this phe-
nomenon has been documented in previous reports in animals
(162) and humans (78, 297) in which the deficiency of GPx
was associated with serious thrombotic complications. In
support of this, in animals overexpressing GPxI1, platelet
activation as well as platelet-related thrombosis were sig-
nificantly inhibited, further reinforcing the hypothesis that
impaired H,0, detoxification favors occurrence of throm-
botic process (78). The role of GPx in aging-related platelet
activation has been documented by an observational study in
patients with AF followed up for ~40 months; thus, the
activity of GPx3 progressively decreased by aging with a
significant decline at the age of 75 (268). The decline of GPx3
was coincident with upregulation of Nox2 and enhanced
platelet activation, suggesting that impaired H,O, breakdown
could result in enhanced Nox2-derived ROS formation and
platelet Tx production (268).

Taken together, these data can lead us to hypothesize that
aging is associated with platelet activation via an oxidative-
stress-mediated mechanism. Reduction of GPx activity and
increase of Nox2 upregulation seem to be important factors
promoting platelet-derived thrombus formation. Thus, both
may contribute with different mechanisms to enhance
platelet eicosanoid formation and lower NO generation via its
enhanced degradation or impaired biosynthesis (Fig. 7).
Consequently, upregulation of GPx activity and/or down-

SOD.

Reduced
GPx3 activity
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regulation of Nox2 may represent a potentially important tool
to reduce aging-related platelet activation and, eventually,
thrombosis-related CVD.

So far, there are few interventional studies investigating the
effect of antioxidants on platelet function, and results are not
univocal. Jain et al. demonstrated that 100 IU/day of vitamin E
significantly reduced blood TxB, in patients with type 1 DM,
suggesting that vitamin E exerts an antiplatelet activity via
inhibition of platelet AA metabolism (158). This finding has
been confirmed and extended by Davi et al., who administered
600 mg/day of vitamin E to 85 type 2 DM patients for 2 weeks
(74); the authors found a significant decrease of urinary ex-
cretion of 11-dehydro-TxB, in patients compared with con-
trols. Conversely, Patrignani et al. reported no effect of vitamin
E supplementation on urinary 8-iso-PGF,, or 11-dehydro-TxB,
excretion in 46 moderate cigarette smokers (271).

XI. Endothelial Dysfunction

Endothelium integrity/function has been classically iden-
tified as one major determinant factor to maintain vascular
homeostasis. Under physiologic conditions, eNOS is re-
sponsible for maintaining vasodilation by producing NO;
NO activates soluble guanylyl cyclase, which converts
guanosine-5’-triphosphate to cyclic guanosine monopho-
sphate and, eventually, decreases smooth muscle tension,
causing vasodilatation (116).

> NO —> ONOO-

= io% —> HO

GPx3 / GPx1
Catalase

F2-Isoprostanes —> (7 receptor> —> Ca,*—> GPIIb/llla —):'hmmbus

‘ormation

Increased
Nox2-derived ROS, F2-isoprostanes and TxB,

FIG.7. ROS production and thrombus formation in aging process. Nox2 activation results in platelet O, production,
with a consequent increased phosphorylation of PLA,, AA release, and TxB, formation. Platelet O, also mediates F2-
isoprostanes and H,O, formation that, together with TxB,, induce calcium mobilization, GPIIb/IlIla activation, and,
eventually, thrombus formation. Conversely, catalase and GPx3 break down H,0,. A decrease of GPx3 and an increase of
Nox2-derived ROS together with enhanced platelet eicosanoids occur by aging. AA, arachidonic acid; GPx3, glutathione
peroxidase 3; H,0,, hydrogen peroxide; O, , superoxide anion; PLA,, phospholipase A,; TxB,, thromboxane B,. To see
this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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The eNOS may be activated by changes in shear forces or
by binding of some molecules (such as acetylcholine, aden-
osine, bradikinine) to membrane receptors, which cause an
increase in calcium levels in endothelial cells (240). In-
creased calcium levels also activate PLA,, which generates
AA from membrane-bound phospholipid and, eventually,
prostacyclin, a powerful anti-aggregating and vasodilating
molecule, via COX2 activation (Fig. 6).

In addition to NO, endothelial cells produce small oxidant
vasoactive molecules, such as O, (vasoconstrictive) and
H,0, (vasodilating). Laminar shear stress promotes H,O,
generation, which, in turn, activates p38 MAPK and, ulti-
mately, NOS, leading to vasodilation (39). As mentioned
earlier, the balance between NO and O, is crucial, as an
increase in O, has a detrimental effect on NO bioactivity/
biosynthesis or elicits eNOS uncoupling.

Endothelial cells produce O,  prevalently via several Nox
isoforms such as Nox1, Nox2, Nox4, and Nox5, which may
contribute toward modulating arterial dilatation with differ-
ent mechanisms (43, 179) (Fig. 8). In this regard, we mea-
sured flow-mediated dilatation (FMD), which is dependent
on endothelial release of NO and is a surrogate marker of
atherosclerosis (364), in CGD patients with Nox2 (X-linked)
(385) or p47°"* hereditary deficiency (209). CGD patients
showed enhanced FMD, which, however, was more marked
in Nox2-deficient patients, suggesting a relationship between
the degree of ROS formation and artery vasoconstriction
(209, 385). The mechanism accounting for enhanced artery
dilatation was attributed to heightened NO generation, which
was also suggested to account for enhanced vasodilation
detected in knockout animals for Nox2 (59, 229). The close
relationship between endothelial dysfunction and Nox2 has

Resting
platelets

Monocytes

Nox2-derived ROS, platelet activation and
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been studied in several conditions such as dyslipidemia,
obesity, smoking (208), hypertension, MetS, DM, PAD
(207), and obstructive sleep apnea (82). These classic car-
diovascular risk factors provoke endothelial dysfunction
since childhood, and the coexistence of Nox2 upregulation
suggests this enzyme as a potential trigger (210, 214, 226).
Indeed, children with hypercholesterolemia, obesity, or ob-
structive sleep apnea displayed Nox2 upregulation coinci-
dentally with a reduced FMD (210).

Nox4 plays a peculiar role as this isoform produces H,O,
rather than O, ; hence, differently from Nox2, Nox4 has
vasodilating property via eNOS activation (323). Animal
studies showed that genetic deficiency of Nox4 was associ-
ated with endothelial dysfunction and increased atheroscle-
rosis burden (194).

Other Nox isoforms, such as Nox1 and Nox5, may concur
to vasodilation. Nox 1 is mainly located in VSMC where it
enhances production of O,~, causing eNOS uncoupling and
consequent impaired vasorelaxation (86). The effect of Nox1
on endothelial function was evaluated by studies in mice with
genetic deficiency of Nox1 that showed an increased vaso-
dilatory response to acetylcholine (229). In endothelial cells,
Nox5 directly produces O, in response to an intracellular
increase of calcium levels, without requiring the activation of
other subunits (91). The biological role of Nox5 in vasodi-
lation remains unclear, but O,  produced by Nox5 contrib-
utes to determining endothelial dysfunction by inhibition of
extracellular NO (245) and, paradoxically, activates eNOS,
increasing NO generation (420).

Natural antioxidants such as SOD, catalase, and GPx serve
to counteract oxidative stress in the endothelium (114). In
particular, SOD3 prevents inactivation of NO by O, in the

FIG. 8. Endothelial dys-
function in aging process.
Endothelial function may be
influenced by redox status
ADP changes occurring by aging.
Endothelial cells produce O,"
prevalently via several Nox
isoforms such as Nox1, Nox2,
Nox4, and Nox5. The balance
between NO and O, is cru-
cial, as an increase in O,
has a detrimental effect on
NO bioactivity/biosynthesis or
elicits eNOS uncoupling. Im-
paired inactivation of oxidant
species by downregulation of
catalase, SOD, and GPx ac-
tivity can contribute to artery
dysfunction. A decrease in
NO bioavailability, GPx and
SOD activity and an increase
in Nox2-derived ROS, platelet
activation may favor thrombus
formation in elderly patients.
To see this illustration in col-
or, the reader is referred to the
web version of this article at
www liebertpub.com/ars
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extracellular space; SODI1 preserves NO levels within the
endothelium; and SOD2 protects against oxidative stress-
mediated mitochondrial dysfunction (114).

Aging is characterized by a progressive arterial loss of
function and structural changes, which may strongly concur
to atherothrombosis. Thus, several studies showed that,
compared with young healthy adults, artery dilation is im-
paired in elderly people (60, 256, 326). Classic cardiovas-
cular risk factors can accelerate the age-related modifications
of the artery, favoring the onset and progression of athero-
sclerosis and CVD (250). A large cross-sectional study
conducted in 5314 Japanese adults showed that endothelial
function decreases with age decades (20-70 years) in close
relationship with cumulative cardiovascular risk factors
(227). In particular, the study found that age, body mass in-
dex, systolic blood pressure, DM, smoking and baseline
brachial artery diameter were independent predictors of
FMD (206).

Functional impairment of age-related artery dilatation may
be related to an imbalance between ROS formation and de-
toxification, which eventually results in vascular oxidative
stress. For instance, as Nox2 is upregulated by aging, it would
be arguably an implication of this enzyme in favoring artery
dysfunction. Experimental studies are in support of this as
evidenced in cholesterol-fed animals knockout for Nox2,
which displayed enhanced artery dilation compared with wild
type (237). Conversely, antioxidant status seems to be im-
plicated in age-related endothelial dysfunction. Thus, Barton
et al. (22) found that plasma endothelin-1 levels increased
whereas plasma SOD activity decreased with aging coinci-
dentally with impaired endothelium-dependent artery dila-
tation and NO release by rat aortic endothelial cells (22).
Interestingly, they also found that SOD activity and relaxa-
tions to acetylcholine were preserved in femoral arteries,
indicating a heterogeneity in endothelial function and oxi-
dative stress related to size and sites of the arteries (22).
Further support to the pivotal role of SOD in aging was
provided by animal studies showing that SOD mimetics re-
stored endothelial function in elderly mice (198, 362). En-
dothelial dysfunction by aging can also be dependent on GPx
regulation (138) as shown in animals knockout for GPx,
which displayed impaired NO bioavailability in elderly
compared with younger animals and, eventually, vascular
dysfunction (259).

Others factors potentially contributing to endothelial dys-
function by aging are related to a link among short length of
telomeres, senescence, and endothelial dysfunction (415).
The exact mechanism through which telomeres would de-
termine endothelial dysfunction and CVD remains unclear.
However, it was suggested that cardiovascular risk factors
may accelerate telomere shortening through increased oxi-
dative stress (415). Also, the human abdominal aorta (14)
displays typical alterations of senescent cells such as age-
dependent telomere erosion and consequent reduction of
telomere length (14).

Doppler ultrasonography is a first-level examination to
assess the atherosclerotic burden; one surrogate marker of
atherosclerosis is the carotid artery IMT, which was directly
correlated with the occurrence of CVEs, such as stroke and
MI (215). There is evidence that carotid IMT increases by
aging (228, 373, 393) as reported by the Bogalusa study,
which compared the progression of IMT in childhood and
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adults with cardiovascular risk factors (202). Autoptic studies
showed that aortic IMT increased with aging even in popu-
lations at a low risk of atherosclerosis (387) and, in accor-
dance with this, the Baltimore Longitudinal Study on Aging
demonstrated a two- to threefold carotid IMT increase from
20 to 90 years of age (106, 192). An increase of aging-related
carotid IMT in the general population was also confirmed by
other studies that estimated a rate of IMT growing >0.01 mm/
year (102, 149, 366).

There is evidence that an imbalance between ROS for-
mation and detoxification (10, 416) is associated with IMT
increase. Thus, a recent nested case-control study by Yoon
et al. showed that IMT was associated with oxidative stress
markers such as urinary 8-hydroxy-20-deoxyquuanosine,
malondialdehyde, and 8-iso-PGF,, (416). Further, Ashfaq
et al. (10) reported that the ratio between reduced/oxidized
form of GSH was an independent predictor of IMT. Upre-
gulation of Nox2 could be another potential mechanism ac-
counting for a progressive increase of IMT. In patients with
CGD, a reduced carotid thickness was detected by ultraso-
nography and magnetic resonance imaging (337). Further, in
children with obesity and hypercholesterolemia or in subjects
without clinically overt atherosclerotic disease, Nox2 acti-
vation was significantly associated with carotid IMT (210,
419). However, prospective studies are needed to substantiate
the role of Nox2 as a predictor of IMT progression.

Aging is also associated with arterial structural changes
such as an increase of luminal enlargement and wall stiffness
(192). Pulse wave velocity (PWYV), the velocity of pulse
propagation through the arteries, is considered a noninvasive
index of vascular stiffness. Cardiovascular risk factors, such
as DM, smoking, and hypertension, increase PWV, particu-
larly in the elderly population (151, 204). The structural
changes of the artery wall, which accounts for increased
PWYV, are probably dependent on an increase of collagen
content, reduction of elastin, and calcification by aging. Thus,
an impaired synthesis and accelerated degradation of elastin
(250), and a higher deposition of collagen fibrils were ob-
served in aged arteries (250). Changes in the content of col-
lagen fibrils and elastin were studied in the human thoracic
aorta by cross-link products (250). From 0-19 to 80 years, an
increase of about 100% of collagen cross-link product and a
decrease of about 50% of elastin cross-link products were
observed, confirming a loss of elasticity during aging (250).
These changes can be detected in large- and medium-size
arteries that become less distensible, with luminal dilatation
and being somewhat hypertrophic (320).

Oxidative stress may be implicated in impaired arterial
elasticity (270, 407) as it directly correlates with enhanced
arterial stiffness in healthy subjects (270, 407). Further, Nox2
deficiency is associated with reduced impairment of age-
dependent neovascularization in mice (371).

Taken together, these data suggest that aging is associated
with important alterations of endothelial homeostasis (94),
which are shifted toward loss of dilatation function and
elasticity and enhanced vasoconstriction. Due to the relevant
role of oxidative stress in endothelial homeostasis, antioxi-
dants might favorably influence endothelial function. Anto-
niades et al. demonstrated, for example, that 2-week
administration of 2 g vitamin C and 800IU vitamin E im-
proved forearm blood flow in chronic smokers; this effect
seemed to be mediated by an upregulation of NOS (8).
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Similar effects have been detected by polyphenol adminis-
tration, which increased FMD (203) via Nox2 downregulation
and, eventually, enhanced NO bioavailability (211).

Experimental studies with other antioxidants such as
polyphenol supported the potential usefulness of these mol-
ecules to counteract age-related artery dysfunction. Thus, a
chronic intake of polyphenols protected against aging-
induced endothelial dysfunction and decline of physical
performance via Nox inhibition and upregulation of eNOS in
rats (72, 73). No human study has so far analyzed the effect of
polyphenols on aging and endothelial function.

XIl. Antiplatelet and Anticoagulant Treatments

The modifications induced by aging in platelet function
may have clinical and therapeutic consequences, as the in-
creased platelet activation may result in a lower efficacy of
antiplatelet in elderly patients compared with younger ones.
The effect of aspirin, which inhibits COX1, thus preventing the
formation of TxA,, has been investigated in a meta-analysis of
randomized clinical trials (7). Despite an apparent similar ef-
ficacy of aspirin in the young (—=13%) and elderly (—12%)
population, it was speculated that aspirin could be even more
effective in the elderly population because the younger pop-
ulation are at a lower absolute risk (7). However, data analysis
is not consistent with this interpretation as aspirin efficacy was
significant only in patients <65 years (hazard ratio [HR] 0.87,
95% confidence interval [CI] 0.78-0.98) compared with those
aged 265 years (HR: 0.88, 95% CI 0.77-1.01) (7). This dif-
ferent efficacy seems to be also evident for thienopyridines,
which are reversible (ticagrelor) or irreversible (clopidogrel
and prasugrel) inhibitors of the platelet receptor P2Y12
(Table 3). The Dual Antiplatelet Therapy (DAPT) trial in-
cluded 9961 patients who underwent a coronary stent place-
ment and were randomly assigned to continue thienopyridine
treatment or to receive a placebo in addition to aspirin. The
study showed a lower efficacy of antiplatelet therapy in re-
ducing CVEs and CD in patients <75 (n=28929) versus =75
years (n=1032) (230). Similarly, the CLARITY-TIMI 28 trial
(314), which included 1752 ACS patients with ST-segment
elevation, showed that clopidogrel was less effective in 1015
patients =65 years than in 2466 patients <65 years (314).

Similar results were obtained by three recent studies,
which explored the clinical efficacy of ticagrelor (Table 3).
The PLATO study (391) included 18,624 patients with ACS
without ST segment elevation, to compare the efficacy of
ticagrelor versus clopidogrel during a follow-up of 30 days.
The study showed a favorable effect of ticagrelor in patients
<75 years (n=15744) in reducing the composite endpoint of
CV death, MI, and stroke, which was not significant in those
aged 275 years (n=2878).

This different efficacy was also observed in the SO-
CRATES trial (164), which included 13,199 patients with
nonsevere ischemic stroke or high-risk transient ischemic
attack treated with ticagrelor versus aspirin in a 90-day
follow-up. Patients treated with ticagrelor had significantly
lower CVEs, but this positive effect was age related; thus,
the trial reported a lower efficacy of ticagrelor in patients
>75 years (n=2995) versus those <65 years (n=6028).
Together, these data seem to indicate a sort of ‘‘antiplatelet
resistance’’ in the elderly population, which needs to be
further investigated.

VIOLI ET AL.

In addition to antiplatelet drugs, elderly patients are often
treated with oral anticoagulants such as vitamin K antago-
nists or non-vitamin K oral anticoagulants (NOACs), which
inhibit thrombin or factor Xa. The efficacy and safety of
NOAC:Ss have been investigated in patients with deep venous
thrombosis, AF and ACS with an efficacy at least comparable
to warfarin, along with a better safety profile. Such beneficial
effects seem to be independent from age and may be ex-
plained by the fact that NOACS, in particular the Xa inhibi-
tors, possess not only an anticoagulant but also an antiplatelet
effect, which may turn useful in patients with upregulation of
platelet and clotting activation as detected in the elderly AF
population (283).

Xlll. Observational and Interventional Trials
with Antioxidants in Humans

The efficacy of antioxidants for the prevention of CVEs
and atherosclerosis progression was largely investigated.
Vitamin E was the most studied molecule among the anti-
oxidant vitamins (vitamins A, C, E, and f-carotene). The
strong interest for vitamin E was based on observational
studies reporting an inverse association between vitamin E
plasma levels, CHD, and incidence of CVEs (380). The
WHO/MONICA project found an inverse correlation be-
tween CHD mortality and vitamin E plasma levels (121).
Conversely, no association was observed between CHD and
other vitamins (vitamin A, C, and f-carotene). Similarly,
Singh et al. found that in a population of 595 urban Indians,
plasma levels of vitamins C and E were inversely related to
CAD (340). Finally, blood vitamin E levels predicted CVEs
in 1012 elderly AF patients during 27 months of follow-up
(51). In addition to vitamin E, low blood vitamin C levels
were found to be predictive of cardiovascular mortality in an
elderly British population (107).

At variance with this, meta-analyses of interventional trials
with vitamin C and E provided equivocal results (249) and,
paradoxically, potentially harmful effects as enhanced risk of
all-cause mortality (31, 32) or hemorrhagic stroke (322).
However, in many trials, a combination of antioxidant vita-
mins was used on the assumption that more antioxidants
could synergically enhance the antioxidant status potentially
achievable by a single antioxidant (296). Actually, a com-
bination of antioxidants may negatively influence the activity
of a single antioxidant. For instance, a combination of vita-
min E with vitamin C was shown to be not effective for
cardiovascular prevention in The Physicians’ Health Study II
(329); this negative effect might depend on the fact that vi-
tamin C may exert a pro-oxidant activity when orally ad-
ministered to humans, thus impairing vitamin E antioxidant
property (291, 296). A harmful effect was even detected by
combining vitamin E with beta-carotene, which was, in fact,
associated with enhanced risk of total mortality (388). The
fact that vitamin E could be useful when given alone is
suggested by a more recent meta-analysis, where vitamin E
supplementation seemed to be associated to a reduction of
MI (212).

Other reasons for inconsistency of interventional trials
with antioxidant vitamins rely on methodological issues.
Thus, potential bias of the interventional studies with vitamin
E could be dependent on the concomitant use of statins,
which were given in association with vitamin E in about one
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out of three patients (388). Thus, an experimental study
demonstrated that statins reduce oxidative stress and improve
circulating levels of vitamin E, thus minimizing its putative
antioxidant benefit (388). Further, interventional trials did not
take into account that vitamin E is poorly absorbed if not
assumed with meals (156). This issue has never been con-
sidered by interventional trials as scarce data regarding vi-
tamin E bioavailability have been reported. In the absence of
such information, it cannot be excluded that a poor bio-
availability of vitamin E may represent another explanation
for its lack of efficacy. Finally, none of the interventional
trials measured the antioxidant status at baseline; therefore, it
could not be appreciated whether patients included in the
studies disclosed low levels of vitamins and actually needed
antioxidant supplementation.

Several epidemiological studies showed that a diet rich in
polyphenols reduces CVEs and cardiovascular mortality (9,
25, 44, 45). These beneficial effects have been observed
particularly with the Mediterranean Diet (Med-Diet), which
is rich in polyphenols for its high content of fruit, vegetables,
extra-virgin olive oil (EVOO), and moderate red wine con-
sumption. Thus, in the Seven Countries study (172), Ancel
Keys described for the first time that people from the Medi-
terranean area (Greece, Italy) experienced a lower mortality
rate for CVD, when compared with populations living in
Northern Europe (172). The Lyon Diet Heart Study, which
was the first interventional trial that studied the effect of Med-
Diet on CVD in patients affected by MI, showed that Med-
Diet reduced cardiovascular complications by 50% (80).
Recently, the PREDIMED trial investigated the effect of
Med-Diet on CVEs (99) by randomizing 7447 people at high
vascular risk to Med-Diet supplemented with EVOO, mixed
nuts, or control diet (99). Med-Diet reduced the risk of CVD
complications by 30% over a follow-up of about 5 years in
the two arms supplemented with EVOO or nuts (99). Of note,
a subgroup analysis of PREDIMED showed that, compared
with control diet, Med-Diet was particularly effective in
preventing major CVESs in people >70 years (99). Consistent
with this finding, we recently demonstrated that adherence to
Med-Diet reduced the risk of CVE in an elderly population
affected by AF (264).

Cocoa is another polyphenol-rich nutrient that seems to
possess beneficial effects on the cardiovascular system (213).
The Iowa Women’s Health Study reported an inverse rela-
tionship between chocolate intake and CHD mortality in
postmenopausal women (239). Accordingly, the European
Prospective Investigation into Cancer and Nutrition (45)
showed a lower rate of MI and stroke in subjects with the
highest chocolate consumption. Moreover, an observational
trial in elderly people, the Zutphen Study, showed that cocoa
intake was inversely related to cardiovascular mortality (44).
Finally, the Stockholm Heart Epidemiology Program (160)
reported a reduction of cardiovascular mortality in a popu-
lation of nondiabetic subjects with previous MI taking a high
amount of chocolate. However, due the observational nature
of these findings, the effect of polyphenols contained in cocoa
on cardiovascular protection needs further evaluation by in-
terventional randomized trials (213).

Another polyphenol largely studied for its antioxidant
property is resveratrol, which is mostly contained in red wine.
The “‘French paradox” ascribed to resveratrol the beneficial
cardiovascular effects provided by red wine (305). However,
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this hypothesis was not confirmed in elderly people by the
“Invecchiare In Chianti (inChianti) Study”’ that did not find
any effect on mortality risk and CVD in 783 subjects who
regularly drink red wine (327). Further investigation on the
possible beneficial effect of resveratrol on CVD is, however,
needed considering that, as for other antioxidants, interven-
tional trials provided likely inconsistent results for several
reasons, including study methodology, dosage, and subjects’
selection (29).

Green and black tea are other polyphenol-rich nutrients
that are believed to exert cardiovascular protection (346).
Epidemiological studies in the elderly showed that tea con-
sumption reduces the risk of CVD and total mortality (142,
347). However, a meta-analysis of 17 studies by Peters et al.
did not find an association between tea intake and CVD (277).
Large prospective and interventional studies are necessary to
evaluate the effect of tea on the cardiovascular system.

XIV. Future Perspectives and Conclusions

Data here reported suggest that platelet and clotting acti-
vation along with endothelial dysfunction are typical features
of the elderly population, which contribute toward enhancing
the risk of cardiac and cerebral ischemic complications. Even
if the modern approach to treat or prevent thrombosis with
single or dual antiplatelet agents or with NOACs achieved
positive results in terms of reduction of CVD, an elevated
residual risk still remains. In this context, experimental and
clinical data are in favor of the hypothesis that systemic in-
flammation and oxidative stress tends to worsen with ad-
vancing age and can precipitate acute events via activation of
the platelet and clotting system. As classic atherosclerotic
risk factors are recognized as the most important triggers of
systemic inflammation and oxidative stress and, considering
that they frequently overlap in the elderly population, careful
attention should be given to optimize adherence to anti-
atherosclerotic treatments. This issue deserves careful at-
tention as the drug’s compliance is drastically reduced in case
of multiple treatments as shown; for instance, adherence to
aspirin prescription was significantly lowered when patients
were treated with >5 pills/day (282).

Gut microbiota is another emergent risk factor that was
recently proposed as contributing to systemic inflammation
and oxidative stress with at least two different mechanisms:
(i) gastrointestinal colonization of bacteria-producing in-
flammatory molecules; (ii) enhanced gut permeability due to
abnormal changes of local circulation with ensuing translo-
cation into systemic circulation of pro-inflammatory and pro-
oxidant molecules such as TMAO or LPS. Although changes
of gut microbiota occurring in the elderly have been de-
scribed, no data regarding blood levels of TMAO or LPS in
the elderly population have been reported. Due to the rele-
vance of diet and changes of gut composition by advancing
age, these data would be of particular interest also in view of
developing new approaches to lower the risk of CVD in the
elderly population.

Systemic inflammation and oxidative stress could also be
counteracted by targeting specific oxidant pathways that are
potentially implicated in atherothrombosis. Among them, an
intriguing attractive approach is represented by the inhibition
of Nox2, which is upregulated and is associated with platelet
activation in the elderly (Fig. 9). Thus, experimental studies
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demonstrated that inhibition of Nox2 results in delayed
thrombus growth, suggesting Nox2 as a target to modulate
platelet function. A matter of concern is represented, how-
ever, by the role played by Nox2 in the innate system, as a
complete suppression of Nox2 activity is associated to seri-
ous life-threatening infection disease as depicted by clinical
history of patients with Nox2 hereditary deficiency (280). It is
interesting, however, that in case of 50% reduction of Nox2
activity, as observed in Nox2 deficiency carriers, platelet
inhibition was similar to that found in patients with complete
Nox2 absence, in the absence of serious infection compli-
cations. Thus, it might be possible that 50% Nox2 inhibition
would be appropriate to achieve effective platelet inhibition
and be clinically safe (55).

Among drugs modulating platelet function by interfering
with Nox2, statins represent a promising candidate as these
drugs inhibit the activity of the Nox2 subunit RAC1 (281).
Thus, in a randomized study in hypercolesterolemic patients,
40 mg atorvastatin ingestion was associated to immediate
downregulation of Nox2, along with inhibition of platelet
isoprostanes (281). Similar results were obtained by using
rosuvastatin, another powerful lipid-lowering molecule
(279). However, prospective studies are needed to investigate
whether the protective effects of statins against CVD are also
attributable to Nox2 inhibition. Another therapeutic option
could be represented by apocynin, a molecule that reduces
p47P"°* translocation to the catalytic site of Nox2. This ap-
proach would have less negative impact on the innate immune
system as indicated by the more favorable clinical history of
patients with hereditary deficiency of p47°P™* (185). Few
studies analyzed the effects of apocynin in humans. In these
studies, apocynin was nebulized and administered by inhala-
tion to healthy subjects or asthmatics to examine its effect on

Nox2, MPO, uncoupled eNOS, LOX

Antiplatelet
Anticoagulants
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To be increased:
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ROS levels in exhaled breath condensate (276, 348, 349). In
each study, apocynin administration for a few hours was well
tolerated, and it effectively reduced exhaled ROS levels (276,
348, 349). Up to now, chronic systemic administration of
apocynin in human has never been tested.

Another factor contributing to atherothrombosis in the
elderly is the continuous decline of antioxidant status. The-
oretically, increasing antioxidant status may represent a no-
vel therapeutic option but, as reported earlier, data on
supplementation with antioxidant vitamins are equivocal.
However, other potential therapeutic options include sup-
plementation with GSH precursors, which is reduced in the
elderly and is predictive of CVEs. In this regard, a potential
therapeutic approach is represented by N-acetylcysteine
(NAC), a direct precursor to GSH synthesis frequently pro-
posed as a cardio-protective agent (95, 381). This compound
is a nutritional supplement that acts by raising the intra-
cellular concentration of cysteine/GSH, and by scavenging
oxidant species (95). Its pharmacological actions include
restoration of cellular antioxidant potential by replenishing
GSH depleted by ROS scavenging and inhibition of neu-
trophil activity and TNFo production (95). Preliminary data
suggest a potential role of NAC in preventing postsurgery
AF (381), but further data are necessary to explore the effect
of NAC on CVEs. An alternative approach would consider
upregulation of specific enzymatic pathways that exert an-
tioxidant effects by scavenging intracellular oxidant species
(78). In this regard, an experimental study provided inter-
esting data, as GPx1 overexpression resulted in impaired
platelet activation and thrombus growth (78). Therefore,
upregulating GPx or other antioxidant enzymes such as
PONI1, NOS, or HO may represent an option to be consid-
ered in future.
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We have interesting information, however, on the effect
of an antioxidant-rich diet such as Med-Diet on oxidative
stress and platelet function. Indeed, adherence to Med-Diet
was associated with an antioxidant effect in a large pro-
spective cohort study including elderly AF patients, by re-
duced Nox2 activity and urinary 8-iso-PGF,,, levels (264).
Of note, adherence to Med-Diet was also associated to im-
paired production of TxB,, suggesting that downregulating
Nox2-derived oxidative stress would result in impaired
platelet activation (285). Taking into account that Nox2
upregulation and platelet overactivation are coincident in
the elderly population, this diet could be advised particu-
larly in the elderly population. It is still unclear, however,
whether such beneficial effects may be attributed to the
Med-Diet per se, or to its specific nutrients. EVOO could be
effective through several mechanisms, including an anti-
diabetic, antioxidant, or antiplatelet effect. Regarding the
first point, intake of EVOO has been shown to improve
postprandial glycemic control with a mechanism involving
upregulation of glucagon-like peptide 1 and insulin secre-
tion (54). Further, we found that EVOO exerts an antioxi-
dant activity by downregulating Nox2-derived oxidative
stress and that its intake is associated with impaired platelet
activation (56). Thus, identification of EVOO components
implicated in this antioxidant effect could lead to discov-
ering new molecules to be used for anti-anti-atherosclerotic
purposes.

Finally, considering the reduced availability and ability to
migrate of EPCs in elderly with CVD, EPC cell therapy may
be a promising approach for the treatment of CVDs. How-
ever, trials performed so far provided inconclusive results;
this may be dependent on the age-dependent functional
impairment in terms of proliferation, migration, and sur-
vival capacity of EPCs, which limits the efficacy of autol-
ogous EPCs in the treatment of CVDs. To overcome these
limitations, several EPC enhancement strategies have been
tested in experimental models [reviewed in detail in Rurali
et al. (311)]. These approaches aim at enhancing prolifer-
ation, migration/homing, and/or differentiation of EPCs.
They can be broadly classified into (i) strategies that can
improve EPC function, operating at the ischemic tissue
levels (namely in vivo conditioning), and (ii) approaches
acting directly on EPCs before their in vivo administration
(namely ex vivo priming). Despite the potential interest for
this approach, clinical studies are needed to support the
beneficial effects.

In conclusion, the elderly population is characterized by a
pro-thrombotic phenotype that is dependent on platelet and
clotting activation and artery dysfunction. An imbalance
between ROS formation and antioxidant status occurs by
aging and may contribute to this pro-thrombotic status. Tar-
geting specific pathways implicated in ROS formation or
counteracting age-related decline of specific antioxidant en-
zymes would represent a novel approach to assess whether
oxidative stress is a mere mirror of vascular disease or is
actually implicated in promoting atherosclerosis and throm-
bosis.
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Abbreviations Used
8-i5s0-PGF,, = 8-iso-prostaglandin F,,
AA = arachidonic acid
ACS = acute coronary syndrome
AF = atrial fibrillation
ARE = antioxidant responsive element
AT = antithrombin
BM =bone marrow
CAD = coronary artery disease
CD = cerebrovascular disease
CGD = chronic granulomatous disease
CHD = coronary heart disease
CHIP =clonal hematopoiesis of indeterminate
potential
CI = confidence interval
COX =cyclooxygenase
CVD = cardiovascular disease
CVESs = cardiovascular events
DM = diabetes mellitus
eNOS = endothelial NOS
EPC = endothelial progenitor cell
EVOO = extra-virgin olive oil
FMD = flow-mediated dilatation
GCL = glutamate-cysteine ligase
GCLC = glutamate-cysteine ligase catalytic
GCLM = glutamate-cysteine ligase modifier
GP = glycoprotein
GPx = glutathione peroxidase
GSH = glutathione
H,0, =hydrogen peroxide
H,S = hydrogen sulfide
HDL = high-density lipoprotein
HO = heme-oxygenase
HR =hazard ratio
ICAM-1 = intercellular adhesion molecule 1
IMT = intima-media thickness
iNOS = inducible NOS
LDL = low-density lipoprotein
LDLR =LDL receptor
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Abbreviations Used (Cont.)

LOX = lipoxygenase
LPS =lipopolysaccharide
MAPK = mitogen activated protein kinase
MCP-1 =monocyte chemoattractant protein
Med-Diet = Mediterranean Diet
MetS = metabolic syndrome
MI =myocardial infarction
MONICA = Monitoring of Trends and Determinants
in Cardiovascular Disease
MPO = myeloperoxidase
mRNA = messenger RNA
NAC = N-acetylcysteine
NADPH = nicotinamide adenine dinucleotide
phosphate
NF-kB = nuclear factor kappa-light-chain-
enhancer of activated B cells
nNOS =neuronal NOS
NO = nitric oxide
NOACs =non-vitamin K oral anticoagulants
NOS =NO synthase
Nox =NADPH oxidase

Nrf2 = NF-E2-related factor 2
O, = superoxide anion
ox-LDLs = oxidized LDLs
PAD = peripheral artery disease
PAI-1 = plasminogen activator inhibitor 1
PC = progenitor cell
PG = prostaglandin
PLA, = phospholipase A,
PON = paraoxonase
PWYV = pulse wave velocity
ROS =reactive oxygen species
RS =replicative senescence
SIPS = stress-induced premature senescence
SIRT = ssirtuin
sNox2-dp = soluble Nox2-derived peptide
SOD = superoxide dismutase
TF =tissue factor
TMAO = trimethylamine N-oxide
TNFo = tumor necrosis factor o
Tx = thromboxane
VCAM-1 = vascular cell adhesion molecule 1
VSMCs = vascular smooth muscles cells




