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Abstract 

Dynamic vibration absorbers (DVAs) have received special attention in recent years due to their capability to reduce structural 
vibrations of a primary structure. In this work, a DVA of the Tuned Mass Damper type based on a Shape Memory Alloy (SMA) 
element with pseudoelastic behavior is considered. Owing to their rich thermomechanical response, SMAs can exhibit hysteresis 
loops with rather different features in terms of overall energy dissipation and of pseudoelastic stiffness. As a first step towards the 
comprehensive evaluation of the performances of such a device, the optimization of a TMD based on SMA devices with different 
features is studied. Numerical simulations show that the size and the shape of the pseudoelastic loops can influence in a 
significant way the performances of the DVA. 
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1. Introduction 

Among the various strategies for structural vibrations control, Tuned Mass Dampers (TMDs), also known as 
Dynamic Vibration Absorbers (DVAs), received considerable attention in the recent years.  

The typical setting for DVAs is the so-called linear TMD that consists of a mass connected by an elastic spring 
and a viscous damper to the main structure to be protected (Fig. 1). Vibration damping is then realized through the 
energy transfer from the primary to the secondary structure that takes places in a suitable range of frequencies. 
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The performances of a TMD are usually evaluated by means of two degrees of freedom systems, so that the 

damping of the device is crucial to avoid resonances and to promote the oscillations of the secondary mass at the 
expense of those of the main structure.  

One of the most important aspects related to the design of this type of devices is the tuning of the various 
parameters that define a specific configuration, such as: mass, natural frequency and damping ratios between the 
primary and secondary systems. To this end, various strategies can be used depending on the features of the device 
and the main structure and, in fact, a large number of studies that propose different methods for the optimization of 
the DVAs parameters is available in the literature.  

The classical approach for the tuning of a linear TMD under harmonic forcing is the equal-peak method originally 
presented in [1] for an undamped primary structure. In this classical setting, the optimal damping and frequency 
parameters of the DVA can be expressed as a function of the mass ratio in such a way to get a frequency-response 
curve of the primary structure with two peaks of equal intensity. This approach is closely related to the H  
optimization which minimizes the oscillation amplitude of the main structure [2]. Another tuning strategy is the so 
called 2H optimization which aims to minimize the vibration energy transmitted by the forcing excitation to the main 
structure by optimizing the squared area under its frequency-response curve. Whereas in the case of an undamped 
main structure the solutions of these optimization problems are well-known and available in closed form, the 
corresponding solutions for a TMD attached to a damped structure are less straightforward and the problem is 
usually tackled either by approximate analytical solutions [2,3,5] or by numerical simulations [4,6]. 

Since the performances of TMDs are influenced in a crucial way by the damping of the secondary system, it is 
natural to ask if devices with energy dissipation features different from the basic viscous damping can be useful in 
the development of DVAs. This question leads to the study of nonlinear TMDs based on masses connected to the 
main structure by a restoring force with hysteretic behavior [7]. 

Among the many options available to realize hysteretic TMDs, Shape Memory Alloys (SMAs) offer a promising 
alternative. SMAs are a group of metallic materials that exhibit special functional properties (shape memory effect, 
pseudoelasticity, pseudoplasticity) as a consequence of the occurrence of solid phase transformations at the 
microscopic scale. When SMAs are used to obtain pseudoelastic behavior, the material exhibits hysteresis with high 
damping without residual displacements [8].  

In this paper, the response of a hysteretic TMD based on a pseudoelastic SMA device is investigated. Due to the 
thermomechanical coupling typical of the phase transformations that occur in SMA, significant temperature 
variations arise during mechanical loading and a careful constitutive modeling is necessary. To this end a 
thermomechanical model is utilized to describe the restoring force of the device [8]. Moreover, since the SMA 
model can exhibit hysteresis loops with different features, various combinations of the underlying parameters are 
considered. 

2. The pseudoelastic TMD 

A TMD composed of a main mass m1 connected to a secondary mass m2 via a SMA device with pseudoelastic 
behavior is considered (Fig. 1). The thermomechanical model used to represent the pseudoelastic restoring force is 
described in [8] and has been successfully applied to the study of nonlinear dynamics of SMA oscillators [9,10]. The 
equations of motion of the two-d.o.f. system subject to an harmonic forcing on the main structure are: 
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where:    2 1 2 1- -sgn -SMDf K x x x x     , K is the stiffness of the SMA device which is assumed to be constant 
and equal to the fully austenitic state,  is the maximum transformation displacement and   is the volume fraction 
of Martensite. For the sake of conciseness, in this work, the attention is focused on the isothermal response whereas 
the analysis of the influence of the full thermomechanical coupling will be presented elsewhere. To describe SMA 
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behavior, equations of motion (1) need to be complemented by a transformation kinetics that governs the evolution 
of the phase fraction . While doing this, it turns out to be useful to rewrite (1) in dimensionless form so as to give: 
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where MSx  is the displacement at the onset of the upper pseudoelastic plateau and 1  and 2  are the natural 
frequencies of the primary system and of the absorber. 
 

 
Figure 1: Primary system with SMA dynamical vibration absorber 

 
The features of the SMA behavior are implemented via the function Z in the third one of (2). The explicit 

expression of Z is discussed in [8] where the precise meaning of all the parameters involved is also explained. For 
the purpose of this analysis it suffices to say that Z depends, among the others, on two basic parameters 1 2,q q that 
determine the basic shape of the pseudoelastic loops observed in isothermal conditions. As discussed in [8], 1q and 

2q  influence, respectively, the slopes of the upper and the lower plateaus and physically meaningful ranges can be 
identified with  1 0.7,1.0q   and   2 1.0,1.3q  . Besides the above two SMA parameters, there are two basic 
quantities that influence the behavior of the TMD, namely the mass and natural frequency ratios between the device 

and the main structure: 2
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In order to illustrate the main features of the dynamic response of the TMD, Figure 2 shows a typical Frequency-
Response Curve (FRC). The curve is obtained for a mass ratio 0.05   and a low value for the damping of both the 
absorber and the primary system, namely 1 0.03   and 2 0.03  . This choice is made in order to highlight the 
influence of the sole SMA device dissipation. It is clear that the performances of an actual TMD can be significantly 
increased by additional viscous damping, but this aspect is not discussed here. 

The stiffness of the TMD is determined by the frequency ratio 0.9527linear   which is obtained by using the 
approximate analytic formula    
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proposed in [5], via fixed-point theory, as optimal tuning of a linear TMD attached to a damped primary system. 

Figure 2 shows the FRC of the main structure corresponding to a small forcing amplitude 0.05A  and the 
force-displacement curves of the SMA absorber at some specific points.  It turns out that the use of the frequency 
ratio   given by (3) yields a FRC with peaks that do not have the same level, hence the tuning of this type of TMD 
differs significantly from the one of linear TMDs.  

 

 
Figure 2: Frequency Response Curve of the main structure for excitation amplitude 0.05A   and 1 0.98q   and 

2 1.2q   
 

Since the overall linear damping level is low, the FRC shows the typical shape with two sharp peaks and a valley 
close to zero in the perfect tuning conditions. The two peaks in the main structure response correspond to 
oscillations of the SMA absorbers where significant phase transformations take place. 

An additional phenomenon which is not discussed here in detail but should be remarked is the fact that, for 
higher amplitude levels, the FRC of the absorber tends to exhibit jump phenomena of the type documented for 
example in [8] as a consequence of the occurrence of solutions with complete phase transformations. When the 
SMA undergoes such jumps, a similar behavior can be observed also in the primary structure. This phenomenon can 
be avoided by designing some additional linear damping to be added to the main structure or to the absorber. 

3. TMD optimization strategy  

The previous example showed that the tuning criteria typically used for linear TMD do not work in this case so that 
alternative strategies need to be used. Generally speaking, TMD optimization aims to minimize the oscillations of 
the primary system in the largest possible range of excitation frequency. 

Various aspects of the FRC can be optimized. The H  optimization attempts to minimize the level of the peaks 
of the curve which correspond to the maximum oscillation amplitude in the main structure. This procedure typically 
achieves also the equal-peaks criterion. On the other hand, H2 optimization focuses on the area under the FRC so as 
to minimize the energy transferred to the structure. In this case one can perhaps accept a slightly higher level of the 
peaks but with a flatter curve that ensures a larger frequency tuning range. 

In the following, the H  strategy is applied to the system by solving numerically the following optimization 
problem. If the FRC of the main structure is denoted as a function G  of the dimensionless frequency  , the 
frequency ratio  , and the model parameters 1q  and 2q , namely,  1 2, , ,G q q  , the aim here is minimizing the 

maximum of  1 2, , ,G q q  ,   . The optimization problem proposed in this paper as optimal tuning strategy can 
be formulated as follows: 
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As it will be shown in the next Section, this procedure turns out to be very efficient to optimize the SMA 

hysteretic TMD. 

4. Basic aspects of the TMD performances 

It is well known that SMAs can exhibit hysteresis loops with rather different features, depending on the type of 
alloys used, the metallurgical treatments, as well as on the specific arrangement of the material chosen to realize the 
device that actually produces the restoring force [8]. 

More specifically, it is possible to realize SMA devices with higher or lower hysteresis as well as devices with 
different post-elastic stiffness of the plateaus. It is evident that both the amount of hysteresis and the stiffness of the 
pseudoelastic plateaus will influence in a significant way the performances of the TMD. These two aspects can be 
easily controlled in the constitutive model by the values of the two parameters  1q  and 2q . 

To this end, the optimization and the response of the TMD is now analyzed under two conditions that can be 
considered as limit cases that, in some sense, bound all the other possibilities. Case 1 is characterized by 1 0.98q   
and 2 1.02q   that correspond to a device with hysteresis loop which can be defined as “flat and thin” (Fig. 3a). On 
the other hand, Case 2 is characterized by 1 0.7q   and 2 1.2q   that yield a “steeper and thicker” loop (Fig. 3b).  

The 3D plots of the FRC as a function of the natural frequency ratio  are shown in Figures 4(a) and 5(a) for the 
two types of devices. These three dimensional surface plots provide an overview of the dynamic behavior of the 
system. The optimal value of SMA  is then determined, according to the procedure described in Section 3, by 
minimizing the H - norm of the FRC. Figures 4(b) and 5(b) show the H - norm curves plotted as function of 

1
SMA

 . Both curves present a global minimum corresponding to the optimal solution. In Fig. 4(b) the minimum 

occurs for 0.8SMA  , while in Fig. 5(b) the minimum occurs for 0.9579SMA  . The black lines in the Figs. 4(a) 
and 5(a) highlight the optimal FRCs which are better shown in Figs. 4(c) and 5(c). Figure 6 finally shows the 
comparison between the two cases. This points out that the optimization procedure gives rise to a curve with equal 
peaks as the one which minimizes the maximum level of oscillations in the main structure. As expected, Case 2, 
being characterized by higher damping, gives better performances. Due to the small damping generated by the SMA 
device in Case 1, an additional small peak emerges between the two main ones in the relevant FRC. 

 
5. Conclusions 
 
The basic aspects of the optimization and of the performances of DVAs realized with SMA elements have been 
investigated in two limit cases of hysteresis loops with different dissipative properties. The optimization based on 
the H - norm provides an effective tool to determine the optimal value of the natural frequency of the device in 
both cases. Good performances in terms of vibration attenuation are obtained, showing that SMA can be considered 
as a promising solution for the realization of hysteretic TMDs. Of course, the actual level of performance increases 
with the width of the pseudoelastic loops and could be further improved by the addition of further viscous damping. 
A comprehensive analysis of the performances of the SMA-based TMD, including a comparison with conventional 
linear ones under different excitation amplitudes is under development also taking into account the full 
thermomechanical coupling and will be reported elsewhere. 

 
Figure 3: Force-displacement curves for the two SMA devices considered: (a) Case 1, (b) Case 2. 
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                          (a)                                                               (b)                                                        (c) 

Figure 4: (a) 3D FRC, (b) H - norm vs. SMA and (c) FRC for optimal value SMA  

  
                          (a)                                                        (b)                                                       (c)  

Figure 5: (a) 3D FRC, (b) H - norm vs. SMA and (c) FRC for optimal value of SMA  

 
Figure 6: Comparison of the Frequency Response Curve for Case 1 and Case 2 
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