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Abstract. In the framework of density functional theory (DFT) we computed the spectral
properties of a total of about 20 polycyclic aromatic hydrocarbons (PAHs) in different charge
states. From our complete atlas of PAHs, ranging in size from naphthalene (C10H8) to
dicoronylene (C48H20), we present here a sample of results concerning both ground–state and
excited–state properties. Our theoretical results are in reasonable agreement with the available
experimental data. This makes them particularly precious when the latter are not easily
obtainable, as is often the case for the highly reactive radicals and ions of such species. In
another paper (Mulas et al., same volume) we show that our theoretical results can be reliably
used to model the behaviour of these molecules in astrophysical environments.

1. Introduction
Free gas–phase polycyclic aromatic hydrocarbons (PAHs) in different charge and hydrogenation
states are commonly thought to be an important component of the interstellar medium [1]. Such
molecules have been hypothesized to absorb in the Vis/UV spectral range, producing at least a
subset of the diffuse interstellar bands [2, 3] and contributing to the interstellar extinction curve
[4], and to efficiently convert the absorbed energy in IR emission in the so–called unidentifed
infrared bands [5].

Large PAHs are an intermediate stage between the gas and dust phases of the interstellar
matter and they are included in some form in all interstellar dust models [6]. However, despite
intensive searches and some promising candidates, no single interstellar PAH has been identified
unambiguously to date. In our ongoing effort to produce detailed simulations of the photophysics
of specific PAHs [7], we are building a database of molecular properties obtained in a uniform
way using available quantum–chemical techniques [8, 9], and using them as a basis to run
Monte–Carlo models of their behaviour [10, 11].

The most relevant molecular parameters needed to model the photophysics of interstellar
PAHs are: a) electron affinities and ionization energies; b) structural parameters and vibrational
analysis; c) photo–absorption cross–sections up to the Lyman limit. The set of PAHs for which
all of these data are simultaneously available is small. We studied a first sample of about
20 different PAHs covering an ample range of structures [8, 9]. Although non–compact PAHs
are expected to be less stable than compact ones with the same number of benzenoid rings, we
extended our study to non–compact species and radicals. While some studies predict interstellar
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PAHs to be on average larger than these species, we began with PAHs containing less than ∼50
carbon atoms, since computational costs steeply increase for larger species.

In Sect. 2 we describe our computational approach and compare some of our data with
available experimental results. In Sect. 3 we discuss their implications in the astrophysical
context. Our conclusions are presented in Sect. 4.

2. Computational approach and results
2.1. Ground–state properties
Several works showed that the Density Functional Theory (DFT) [12] can be successfully used
to obtain electronic ground–state properties of PAHs. Following well–established theoretical
prescriptions [13] we used the hybrid exchange–correlation functional B3LYP and the 4–31G
Gaussian basis set as implemented in the NWCHEM computer code [14]. Although basis–set
convergence is not expected at this level, this approach is known to provide accurate results for
vibrational frequencies, after appropriately scaling them by an empirical factor.

To calculate electron affinities and ionization energies, the use of larger basis sets to expand
the molecular orbitals is needed. This is particularly true for anions, which require the inclusion
of diffuse functions. Dessent showed the B3LYP/6–31+G� level of theory to yield quite an
accurate result for anthracene (C14H10) [15]. We extended this same approach to a large
sample of PAHs [9]. As shown in Table 1, our results are in good agreement with the available
experimental data as well as with previous theoretical calculations. Table 1 lists both the
adiabatic and the zero–point energy (ZPE)–corrected electron affinities. We calculated the ZPE
corrections in the plain harmonic approximation, without scaling, since appropriate scaling
factors for the anions are uncertain [15].

2.2. Excited–state properties
Starting from the optimised ground–state geometries, we used the Time–Dependent DFT [23] to
obtain the photo–absorption cross–section of each PAH, in different charge states [8, 9]. Given
the lack of quantitative laboratory experiments on the VUV photo–absorption properties of
PAHs up to the energy range excitable in the ISM, the use of theoretical quantum–chemistry
appears to be the next best alternative [11]. TD–DFT calculations were shown to be a powerful
tool to calculate electronic excitation properties for neutral PAHs [24] as well as radical ions up to
large species [25, 26]. These calculations were performed using frequency–space implementations
of TD–DFT, for which computational costs scale steeply with the number of required transitions,
and were limited to the low–energy part of the spectrum. We used the real–time real–space
implementation of TD–DFT in the OCTOPUS code [27]. As shown in Fig. 1 from [8], our
results are in good agreement with available experimental data [4]. Concerning the low–lying
π → π� transitions occurring in the near–IR, visible and near–UV spectral ranges, Table 2 shows
OCTOPUS to yield as accurate results as previously published theoretical ones, compared to
available experimental data. Computed vertical excitation energies are precise to within a few
tenths of an eV, which is indeed the typical accuracy of TD–DFT [25]. The main drawback of
this approach is that one does not obtain independent information for each excited state, such
as the symmetry and description of the excited states, but only the direction of its transition
dipole moment. Technical details can be found in [8, 9].

3. Discussion
Concerning the calulations of electron affinities, the values obitained lie in the range 0.4–2.0 eV,
showing the molecules under study to be able to accept an additional electron in their lowest
unoccupied molecular orbital (LUMO). These values can be used for astrophysical modelling
purposes, such as in approximate formulae for the ionisation equilibrium of PAHs in interstellar
environments (see e. g. [28]).

179



Table 1. Calculated electron affinities (in eV) of ten PAH in our sample. For comparison,
previous theoretical results and available experimental measurements are also listed.

PAH This work Published theoretical Published
molecule adiabatic ZPE–corrected adiabatic ZPE–corrected experimental

Azulene (C10H8) 0.63 0.75a/0.72b — — 0.7900 ± 0.0080 c

C13H9 radical 1.25 1.33a/1.35b 1.29d 1.36d 1.07 ± 0.10 e

Anthracene (C14H10) 0.53 0.66a/0.64b 0.58d 0.72d 0.5300 ± 0.0050f

Tetracene (C18H12) 1.08 1.19a 1.13d 1.24d 1.067 ± 0.043g

C19H11 radical 1.55 1.62a — — —

Perylene (C20H12) 0.96 1.08a — — 0.9730 ± 0.0050h

Pentacene (C22H14) 1.48 1.58a — — 1.392 ± 0.043g

Coronene (C24H12) 0.47 0.49a — — 0.470 ± 0.090i

Terrylene (C30H16) 1.55 1.66a — — —

Quaterrylene (C40H20) 1.91 2.00a — — —

Dicoronylene (C48H20) 1.50 1.60a — — —

a B3LYP/4–31G value in this work.
b B3LYP/6–31+G* value in this work.
c Photodetachment photoelectron spectroscopy [16].
d B3LYP/DZP++ value from [17].
e Laser threshold detachment [18].
f Photodetachment photoelectron spectroscopy [19].
g Estimated from ion–molecule reaction equilibria [20].
h Photodetachment photoelectron spectroscopy [21].
i Photodetachment photoelectron spectroscopy [22].

With respect to the excited–state properties calulations, the spectral range covering the
near–IR, visible and near–UV, it is obvious that with more than 300 DIBs in this window the
accuracy of about 0.3 eV achieved by current TD–DFT methods on the position of the bands
cannot be used alone for a firm spectral identification. Still, theoretical spectra in this range are
an useful tool both to guide future experiments [26] and to interpret laboratory spectra as they
become available [29]. Since there is already an ample literature about low–energy transitions
of neutral and cationic PAHs (see e. g. [30, 3]), a thorough description of the low–lying spectral
transitions is beyond the scope of this paper.

We henceforth concentrate our discussion on the UV range since our most important new
results are the electronic absorption properties of small to medium–sized PAHs in this spectral
domain. In the past, several authors noted that if neutral PAHs were to be responsible for the
AIBs, their UV spectroscopic signatures ought to be detectable on the interstellar extinction
curve (see e. g. the discussion in [31]). This was not taken as a serious drawback of the PAH
hypothesis, since PAHs were expected to be mostly ionised in the diffuse ISM and their cations
were assumed to have no sharp features in the near–UV [32]. Several works [33, 26] subsequently
cast some doubt on the general validity of the above assumption. Our results further show that
any singly charged PAH ions generally appear to display almost as strong near–UV bands as
their parent neutrals and, therefore, ought to be just as detectable if they were to account for
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Figure 1. Comparison between the the
computed photoabsorption cross–sections of
ovalene (C32H14) in neutral (top panel),
cationic (middle panel) and anionic (bottom
panel) charge states. The top panel also shows
the comparison between the calculated (solid
line) and experimental (dotted line, from [4])
gas–phase absorption spectra.

Figure 2. Comparison between the weighted
sum of our computed spectra for both
PAH neutrals (top panel), the corresponding
cations (middle) and anions (bottom). Statis-
tical weights are assumed to be proportional
to the inverse of the total number of carbon
atoms NC of each molecule. In the upper
panel we also reproduce (crosses) the exper-
imental result obtained by [4] for a natural
mixture of neutral PAHs with average NC =
24, very close to our sample of molecules.

AIBs. On the other hand, it is known that PAH mixtures might not exhibit sharp features in
the near–UV because their bands would blend in a broad peak contributing to the well–known
extinction bump at 2175 Å and to the far–UV rise [4].

To address this point, we performed a weighted sum of the single spectra we computed,
assuming statistical weights to be simply inversely proportional to the total number of carbon
atoms NC of each molecule, i. e. we just made a straight average of the cross–sections normalized
per carbon atom. Figure 2 displays the overall expected spectra for our mixture of 20 different
neutral, cationic and anionic PAHs. An inspection of the upper panel, corresponding to neutrals,
shows that, despite the relatively small number of different species considered, together with the
simplistic assumption of statistical weights of the form 1/NC, our results agree surprisingly well
with the general trend observed for a natural mixture of PAHs and derivatives with NC = 24
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Table 2. Singlet π� → π excitations of a subset of PAHs in our sample. Excitation energies
(in eV) and oscillator strengths (in parentheses) are compared to published experimental and
TD–DFT results. The direction of the transition dipole for each band is given according to the
molecular geometries sketched.

Dipole This Published Published
orientation work theoretical experimental

Perylene cation (C20H+
12)

x 1.89(0.034) 1.92(0.029)a /
y 2.38(0.326) 2.44(0.348)a 2.36(/)a

Perylene anion (C20H12
−)

x 1.66 (0.035) 1.64 (0.035)a —
y 2.32 (0.381) 2.26 (0.333)a 2.23 (/)a

Terrylene cation (C30H+
16)

x 1.82 (0.019) 1.83 (0.014) a /
y 1.88 (0.667) 1.93 (0.706) a 1.80(/)a

Terrylene anion (C30H16
−)

x 1.61 (0.035) 1.59 (0.029)a —
y 1.79 (0.665) 1.76 (0.605)a 1.67 (/)a

Quaterrylene cation (C40H+
20)

y 1.58 (1.044) 1.62 (1.028) a 1.48(/) a

x 1.79 (0.021) 1.81 (0.018) a /
Quaterrylene anion (C40H20

−)
y 1.51 (1.074) 1.50 (0.972)a 1.41 (/)a

x 1.52 (0.029) 1.56 (0.025)a —

z

y

x

a TD–DFT calculations (BLYP/6–31G�) and Neon matrix isolation spectroscopy data [29].

[4]. The effect of coadding single spectra is to wash out near–UV band structures and, at the
same time, to produce two distinct features:

• a collective broad absorption peak, resulting from the sum of the π� → π transitions, at
6 eV, which ought to contribute to the short–wavelength side (about 207 nm) of the UV
extinction bump, and

• a smooth far–UV rise.

The coadding leaves some discernible structure on the low–energy side of the main peak, in
particular two peaks which appear at 4.2 and 4.8 eV. They are not due to a single molecule, but
instead to a casual near coincidence of relatively strong bands in different molecules. A different
sample of molecules would display similar near coincidences at different energies, therefore we
expect such structure to be more and more washed out considering a larger and larger sample,
and conversely to be only visible in a sample dominated by a relatively small number of species.

There is to date no available experimental study on the overall UV spectrum of mixtures of
PAH ions; however, the good agreement we obtained for neutrals between the weighted sum of
our synthetic spectra and the data from [4] leads us to infer a similar validity for the weighted
sum of synthetic spectra of cations and anions. As expected, due to the similarity of their UV
spectra to those of their parent neutrals, the discussion above still holds and can be transported
unchanged to ions. From the astrophysical point of view, the main lesson to be learned from
Fig. 2 seems to be that if any PAHs of small to medium size, be they neutral or ionised, are to
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account for the far–UV rise of the interstellar extinction curve they must also contribute to the
short–wavelength side of the extinction bump at 2175 Å.

4. Conclusions
Detailed information about ground and excited–state properties of PAHs enable one to model
in a quantitative way the overall photophysics and ionisation balance of specific PAHs in many
interstellar environments. The individual data we have obtained for an increasingly large sample
of PAHs will enable the astrophysical community to significantly improve on such models.
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