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Abstract: We present an in-vivo characterization performed on 53 subjects in 6 different 

superficial bone tissue locations of human body using a broadband time-resolved diffuse optical 

system, designed specifically for real-time clinical measurements.  
© 2015 Optical Society of America 

OCIS codes: 170.5280; 170.6510; 170.6935. 

 

1. Introduction  

In recent decades, with ageing population, the science has found an increase in demand for bone related diagnosis 

and treatment tools. Noninvasive nature and high penetration depth of diffuse optical methods were applied 

successfully to various domains of life sciences: optical mammography [1], brain oximetry [2], in vivo tissue 

characterization [3] are just few instances. Though there are few optical studies of bone tissues, they lack either the 

broadband nature [4] or number of subjects [5]. The gold standard for bone mineral assessment Dual X-ray 

Absorptiometry (DEXA) [6], cautions its radiation invasiveness by using ionizing x-rays. Few studies even question 

the relevance of bone mineral density to bone related pathologies. Ultrasound imaging [7], provides good 

morphological information, but lags in judging the physiological condition of bone. Bone mineral assessment using 

MRI has been reported [8], but high cost and non-portable bulk nature prevents its successful widespread 

implementation. 

 

Diffuse optical methods have proved to quantify collagen, the dominant connecting tissue in human bones. 

DEXA scans are applied on bones of high porosity (50-90%) called trabecular bones, wherein bone pathological 

changes are reveled earlier. Few of the trabecular bones namely, radius distal (RD), radius proximal (RP), ulna distal 

(UD), ulna proximal (UP), trochanter (T), calcaneus (C) belong to the DEXA compatible spongy bone category. 

Interestingly, the superficial nature of these bones (7-15 mm depth below the skin) makes them ideal candidates for 

diffuse optical studies.  

 

In this work, we present the hemodynamics (oxy, deoxy-hemoglobin, oxygen saturation) and tissue constituents 

(lipid, water, collagen) assessment on the above mentioned 6 bony prominence locations. Except calcaneus all other 

measurements were performed in reflectance geometry with 25 mm as source detector separation to allow maximum 

penetration depth into bone tissues.   

  

2. Methods and Material 

2.1 Instrumentation and Data Analysis 

The Instrumentation consists of supercontinuum fiber laser (SC450, Fianium, UK) which empowers the system with 

the broadband source (450-1750 nm). Light tunability is achieved by a Pellin Broca prism, which disperses the light 

into the source fiber. Two detectors, a SiPM (Silicon Photomultiplier, Hamamatsu, S10362-11-050C with home-

made front-end electronics) and an InGaAs PMT (Photomultiplier Tube, Hamamatsu, mod.H10330A-45), equips the 

system with very high flat broadband (600-1350 nm) responsivity. For this study we limited our measurement range 

to 600 -1200 nm, owing to strong water absorption that strongly affect the signal level above 1200nm. A drift and 

distortion control strategy enabled the real time operation of the system in clinical environment. More details on 

system construction and validation can be found in Ref.[9]. 
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Fig. 1.(a) Diagrammatic view of measured tissue locations, (b) Secondary fit depicting the contribution of each tissue constituent to an 

arbitrary in vivo spectrum. 

Absorption (μa) and reduced scattering coefficients (μs’) were obtained by fitting acquired curves to an analytical 

model of the Diffusion Equation [10]. Homogeneous semi-infinite medium and finite slab thickness models were 

used for reflectance and transmittance geometries, respectively. For better accuracy, extrapolated boundary 

conditions were used. Depth penetrated photons were taken into account by fixing the fit range from 80% of the 

rising edge to 1% of the falling edge. More details on the fitting model are described in Ref: [11]. The scattering 

spectrum was approximated to the empirical power law derived from Mie theory [12]: μs’=a(λ/λ0)-b, in which a and b 

characterize scatterer density and size respectively, with λ0 = 600 nm, the fitting was performed in the range of 600-

850 nm. Key tissue constituents were quantified by fitting the in vivo absorption spectrum with the linear 

combination spectra of major tissue constituents. Fig. 1(b) shows the weighted tissues constituent (Lipid, water, 

collage, oxy-, deoxy-hemoglobin) spectra corresponding to an in vivo spectrum measurement. 

2.2. Measurement Protocol 

Fig 1(a) shows the in-vivo bone locations measured by the protocol. 53 subjects spanning the age of 20-78 years 

were recruited for this study. The protocol and instrumentation was approved by the ethical committee (Comité de 

Ética de la Investigación del Hospital Germans Trias i Pujol, Badalona, Spain). Along with the health questionnaire 

recording the health history of the subject, an informed consent was duly signed before the measurement on the 

subjects. To track the general health status during the protocol period, blood pressure and pulse rate were monitored 

before and after the measurement. Measurement on calcaneus (C) was performed with specially designed custom 

probe in transmittance geometry. Reflectance geometry with 25 mm as source detector separation was used for RD, 

RP, UD, UP and T locations.  

3.  Results and Discussion  

The average broadband absorption spectra of measured locations are shown in Fig 2(a). For readability, only 4 out 

of 6 locations are shown (radius proximal, and ulna distal are not shown).  

 
Fig. 2.(a) Average absorption spectrum with standard deviation of inter subject variation as error bars, (b) Average μs’ spectrum of 4 in vivo 

bone locations: calcaneus, ulna proximal, radius distal, and trochanter.  



Inter-subject variability is seen high for trochanter region, contrary to calcaneus with low variation. Proximal 

locations seem to have comparatively a high average absorption compared to the distal locations. Overall trochanter 

and calcaneus possess a low average absorption compared to other locations, whereas a high value is seen in their 

average μs’ spectrum Fig 2(b). A slight variation is seen among the average scattering spectra of the distal and 

proximal locations, with least value shown by the radius distal location. 

 
Fig. 3 (a) Box plot comparison of hemodynamics parameter, left y-axis corresponds to HbO2 and Hb values while the right to StO2 (%). (b) 

Box plot depiction of tissue constituents, left y-axis corresponds to collagen and right to lipid-water concentration in mg.  

         From Fig. 3, proximal locations show a high blood volume compared to distal locations. Least blood volume 

and high lipid content reveals the adipose nature of trochanter tissue. High collagen content coupled with relatively 

less lipid content of proximal locations suggest the possibility of choosing it for future bone related pathological 

studies. In general, Oxygen saturation lies between 60-80 %. In particular, ulna proximal shows the least average 

value and high inter-subject variability.  

Work is in progress to correlate optically derived information with bone tissue physiology. 
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