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Abstract. Finding the most relevant facts among dynamic and hetero-
geneous data published on the Web of Data is getting a growing attention
in recent years. RDF Stream Processing (RSP) engines offer a baseline
solution to integrate and process streaming data with data distributed
on the Web. Unfortunately, the time to access and fetch the distributed
data can be so high to put the RSP engine at risk of losing reactiveness,
especially when the distributed data is slowly evolving.
State of the art work addressed this problem by proposing an archi-
tectural solution that keeps a local replica of the distributed data and a
baseline maintenance policy to refresh it over time. This doctoral thesis is
investigating advance policies that let RSP engines continuously answer
top-k queries, which require to join data streams with slowly evolving
datasets published on the Web of Data, without violating the reactive-
ness constrains imposed by the users. In particular, it proposes policies
that focus on freshing only the data in the replica that contributes to
the correctness of the top-k results.
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1 Relevancy

Many Web applications require to combine dynamic data streams with data
distributed over the Web to continuously answer queries. Consider the follow-
ing examples. In social content marketing, advertisement agencies may want to
continuously detect influential Social Network users, when they are mentioned
in micro-posts across Social Networks, in order to ask them to endorse their
commercials. In Web applications for financial markets, companies may want to
detect the possible impact of a social media crisis on their stock exchanges. In
Smart Cities domain, user may want to predict the availability of parking slots
based on the information of parking spaces, data detected through smart phone,
sensors, or cameras and descriptions of points of interest and events (Table 1).

High latency and rate limits in accessing the distributed data over the Web
can put the applications at risk of loosing reactiveness, i.e., the results of a
query are no longer useful at the time they are returned. RDF Stream Process-
ing (RSP) Engine is an adequate framework to develop this type of applica-
tions [12, 4]. State-of-the-art RSP engines remain reactive using a local replica
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Table 1. Summary of examples

Data Streams Distributed Data

Social Media Number of mentions Number of followers

Financial Number of mentions/Sentiment/ Social media profiles/Web sites
Market value of the stock

Smart City Number of free parking slots/ Points of interest/Events
Number of people present

of the distributed data, and offer a maintenance process to refresh it over time.
Defining a refresh budget allows the engines to control the number of refreshes
and guarantees the reactiveness of the RSP engine. However, if the refresh bud-
get is not enough to refresh all data in the replica, some elements become stale
and the query evaluation is no longer correct.

This, in general, may be unacceptable, but in some cases, as in the examples
above, approximated results may be acceptable. This is especially true if the
user can control the relevancy of results by ordering them using preference or
top-k queries. For instance, the first example above can be formulated in the
following continuous query: return every minute the top 3 most popular users
who are most mentioned on Social Networks in the last 10 minutes. Listing 1.1
shows how the query can be encoded as a top-k RSP continuous query using the
syntax proposed in [5]. At each query evaluation, the WHERE clause at lines 4-5
is matched against the data in a window W open on the stream of micro-posts
and in the remote SPARQL service BKG that contains the number of followers.
Function F computes the score as the sum of the inputs normalized in [0...1].
The users are ordered by their scores, and the number of results is limited to 3.

1 REGISTER STREAM <:TopkUsersToContact > AS

2 SELECT ?user F(? mentionCount ,? followerCount) as ?score

3 FROM NAMED WINDOW W ON S [RANGE 10m STEP 1m]

4 WHERE{ WINDOW W {?user :hasMentions ?mentionCount}

5 SERVICE BKG {?user :hasFollowers ?followerCount } }

6 ORDER BY DESC (? score)

7 LIMIT 3

Listing 1.1. Sketch of the query studied in the problem

2 Problem Statement and Research Question

As stated in Section 1, in continuous query answering, being reactive and re-
sponding in timely fashion is one of the most important requirements, however,
in query processing that try to join stream data with distributed data on Web,
the time to access and fetch the distributed data can be so high that applications
may lose their reactiveness.

In retrieving the most relevant facts from data streams and distributed data,
low query latency and high relevancy of the first coming results are essential,
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but completeness has little importance, hence approximation for less relevant
results are acceptable.

Attacking the problem in the context of RDF Stream Processing, I defined
my research question as follows: Given an information need formulated as a top-k
continuous conjunctive query over an ontology (which describes dynamic, dis-
tributed, and heterogeneous data sources published on Web using Linked Data
technology) is it possible to optimize query evaluation in order to continuously
obtain the top-k combinations of streaming and distributed resources that an-
swer the information need?

3 Related Work

The top-k query answering problem has been studied in the database com-
munity to go beyond the näıve materialize then sort query execution schema
where all the results are materialized before sorting them according to the rank-
ing function and returning the top-k ones. The key idea is to consider ranking
as a first-class construct and interleave the computation of intermediate results
with their ordering. Ilyas et al. in [8] presented a survey on top-k query pro-
cessing techniques in relational databases. Some initial works on top-k query
answering are also available in the Semantic Web community [11, 16, 10, 15], but
none of them focuses on continuous and federated queries.

Continuous top-k query evaluation also has been studied in literatures.
Yi et al. [18] introduce an approach considering top − k′ results where k′ is
between k and parameter Kmax. Mouratidis et al. [13] proposed a k-skyband
based algorithm for top-k monitoring over sliding window. Yang et al. [17] studied
continuous top-k query answering and proposed an optimal algorithm in both
CPU and memory utilization for continuous top-k query monitoring. All these
works process top-k queries over data streams, but did not take into account
joining distributed data.

Data sources replication is used by many systems to decrease time to
access, and to improve their performance and availability. To get accurate an-
swers and reduce inconsistencies, a maintenance process is needed to keep the
local replicas fresh. Extensive studies exist about optimization and maintenance
process in database community [7, 2, 9, 14]. However, those works still do not
consider the problem of combing streaming data with distributed data.

Federated query answering provides a uniform user interface, enabling
users and clients to store and retrieve data with a single query even if the con-
stituent databases are heterogeneous. In the Semantic Web domain, federation is
currently supported in SPARQL 1.1 [1]. As mentioned in Section 2 RSP engines
can retrieve data from streams and distributed data using federated SPARQL
extension, but the time to access and fetch the distributed data can be so high
to put the RSP engine at risk of violating the reactiveness requirement.

The state of the art work addressed this problem and offered solutions for
RSP engines. [3] started investigating approximate continuous query answering
over streams and dynamic Linked Data sets (shortly named ACQUA in the
remainder of this paper). The ACQUA approach proposed to keep a replica of
the distributed data. Having a local view lets RSP processor remains reactive,
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but it requires a maintenance process to keep the local view fresh. Defining a
refresh budget can guarantee reactiveness of RSP engines.

The maintenance process introduced in [3] is composed of three elements: a
proposer, a ranker and a maintainer. The proposer selects a set of candidates
for the maintenance. Using some relevancy criteria, the ranker orders them and
gives the top γ elements (named elected set) to the maintainer for refreshing.
Finally, the join operation is performed after the maintenance of replica.

To the best of my knowledge, I’m the first to explore the evaluation of
top-k continuous query in RSP engines for processing data streams and
data distributed on the Web.

4 Approach

As the first step, I started an analysis of the state of the art. I reviewed the works
done in the domain of top-k query processing in database community, Semantic
Web, and stream processing. Then, I focused my study in RSP engines and try
to extend the state of the work in this domain.

In my thesis, exploiting ACQUA framework, I am investigating the contin-
uous top-k query evaluation in RSP engines by keeping the replica of the
slowly evolving datasets and using maintenance policies to refresh replica. My
contribution is proposing maintenance policies, which try to refresh only the
part of the replica what contributes in top-k answering.

As an intermediate step, I consider the class of queries that contains FIL-
TER clauses as a rough approximation of the scoring function. Indeed, if the
filter conditions constraint the values of the variables, which appear in the scor-
ing function, above (below) a given Filtering Thresholds, then they can return
approximately the same results of the top-k query that maximize (minimize) the
scoring function. As a result, I proposed different maintenance policies:

– Filter Update Policy has the following intuition: it is better to focus on
a band around the filtering condition, as these data items are likely to pass
the filter condition and may affects the future evaluation. The Filter Update
Policy computes how close is the value associate to the variable ?x in the
mapping to the Filtering Threshold to order the candidate set. In this policy
Filtering Distance Threshold FDT parameter is used to define the band
around the filtering condition.

– ACQUA.F Policies proposed a combination of the Filter Update Policy
with ACQUA policies, namely the WBM.F, LRU.F, and RND.F policies. In
the maintenance process Filtering Distance Threshold (FDT ) parameter is
used to define data items around the filtering condition and keep them in
candidate set, then the ACQUA policies apply on the limited candidate set.

– Rank Aggregation Policies lets each policy to rank data items according
to its criterion to express its opinion, and then, aggregates them to take into
account all opinions [6]. The parameter α lets to wight different opinions
in rank aggregation algorithm. In rank aggregation approach, I proposed
algorithms to combine Filter Update policy with ACQUA (LRU and WBM)
policies, respectively, named LRU.F+, WBM.F+, and WBM.F ∗ (improved
version of WBM.F+).
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In the next step, I will focus on continuous top-k queries and propose new
approaches to continuously obtain the top-k best combinations of streaming data
and slowly evolving distributed data.

5 Hypothesis

The space, in which I formulate my hypothesis, has various dimensions:

1. The class of the query (join query with filtering condition, top-k query);
2. The policies proposed to maintain the replica (Filter Update policy, WBM.F,

LRU.F, RND.F, LRU.F+, WBM.F+, and WBM.F ∗);
3. The policies that we have to compare with, i.e, state of the art policies;
4. The selectivity of the filtering condition (10%, 20%, ..., 90%, and 75%);
5. The refresh budget available to the policies ( γ equals to 1 to 7); and
6. The predefine parameters related to the proposed policy which are needed to

rank candidate set. (Filtering Distance Threshold (FDT ) ACQUA.F poli-
cies, and α in rank aggregation policies)

In order to explore this vast space, for each class of query and evaluation,
I first fixed the budget to a value, which is not enough to refresh all data, and
tested hypotheses 1 to 3. In a second stage of the evaluation, I fixed the selectivity
and tested hypotheses 4 to 6:

Hp.1 For every selectivity the proposed policy can make the replica fresher and
give more accurate results comparing to the state of the art policies.

Hp.2 For every selectivity the combination of the proposed policies with the state
of the art policies have better or at least the same accuracy of the corre-
sponding policies.

Hp.3 For every selectivity the proposed policy are not sensible to its parameters.
Hp.4 For every budget the proposed policy can make the replica fresher and give

more accurate results comparing to the state of the art policies.
Hp.5 For every budget the combination of the proposed policies with the state of

the art policies have better or at least the same accuracy of the corresponding
policies.

Hp.6 For every budget the proposed policy are not sensible to its parameters.

6 Evaluation Plan

An evaluation framework is needed to compare the results of my investigations
with the existing and probably appearing solutions. I consider the following
evaluation metrics: i) to evaluate the relevancy of the results, I use the cumulative
Jaccard distance for queries with FILTER clause, and the normalized Discounted
Cumulative Gain (nDCG) which is widely used in information retrieval for top-k
queries. ii) I also aim to control the overall latency by using refresh budget which
lets the application to remain reactive.

I carry out the experiments by extending the experimental setting presented
in [3]. The experimental datasets are composed of streaming and background
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data. The streaming data is a collection of tweets from 400 verified users for
three hours and the background data consists of a time-series that records the
number of followers every minute for each user.

To control the selectivity of the filtering condition, I designed a set of trans-
formations of the background data and randomly translated the time-series of
specified percentage of the users to crosses the Filtering Threshold at least once
during the experiment, and to reduce the risk of bias, 10 different datasets are
generated for each percentage of the selectivity. The notation DSx% refers to
the test case that contains 10 datasets whose selectivity is x%.

I also created six synthetic test cases, each contains 10 different datasets,
namely DEC40%, DEC70%, INC40%, INC70%, MIX40% and MIX70%. The
INC, DEC and MIX refers to how number of followers of each user evolves over
time. In DEC the number of followers decreasing when time passes. In INC, it
always increases. In MIX, it randomly increases and decreases over time.

As a test query, I generate two different queries and for each policy I run
various iterations of the query evaluation. To investigate the hypotheses, I set
up an Oracle that provides correct answers and I compare its answers with the
possibly erroneous ones of the query. For evaluation of the query with FILTER
clause, I use Jaccard distance to measure diversity of the set generated by the
query and the one generated by the Oracle. The cumulative Jaccard distance
defined as the summation of Jaccard distances over all iterations.

7 Preliminary Results

In order to check the sensitivity of the proposed policies to the filter selectivity, I
Keep the refresh budget γ equal to 3, and ran experiments on both synthetic and
real test cases for every selectivity. To check the sensitivity to the budget, I ran
experiments for refresh budget 3 and 5 over synthetic data (DEC70%, INC70%,
and MIX70% test cases), and the refresh budget from to 1 to 7 over realistic
data (DS75% test case). Hereafter, I list the experiments that I ran and the
conclusion I draw from them. Table 2 reports the summary of the verification of
hypotheses. More detailed results can be find in [19, 20].

– Experiment 1: In this experiment I tested hypotheses Hp.1 and Hp.4 by
checking the sensitivity to the filter selectivity and budget for Filter Up-
date Policy. The result shows that Filter Update Policy is the best policy
comparing to the ACQUA policies for high selectivity.

– Experiment 2: In this experiment I tested Hp.2 and Hp.5 by investigat-
ing the sensitivity to the filter selectivity and budget for combined policies
(LRU.F, RND.F, and WBM.F). The result shows that WBM.F is the best
policy for low selectivity, while LRU.F is the best for the rest.

– Experiment 3: In this experiment I tested Hp.2 and Hp.5 by investigat-
ing the sensitivity to the filter selectivity and budget for rank aggrega-
tion policies(LRU.F+, WBM.F+, and WBM.F ∗). The result shows that
LRU.F+ has the same accuracy of LRU.F for all selectivity and budget.
WBM.F ∗ policy is comparable to WBM.F policy for low selectivity, and
WBM.F+ policy is comparable to WBM.F policy for high value of budget.
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Table 2. Summary of the verification of the hypotheses

Hp.1 Hp.2 Hp.3 Hp.4 Hp.5 Hp.6

measuring accuracy accuracy sensitivity to α accuracy accuracy sensitivity to α
varying selectivity selectivity selectivity budget budget budget

Filter Update > 60% 3
LRU
WBM < 60%
RND
LRU.F > 40% 3
WBM.F < 40%
RND.F
LRU.F+ 3 3 3 3
WBM.F+ 3 > 5 3
WBM.F ∗ < 60% 3 3

– Experiment 4: In this experiment I tested Hp.3 and Hp.6 by investigating
the sensitivity to parameter α for the rank aggregation policies and for differ-
ent values of α (α ∈ {0.167, 0.2, 0.333, 0.5, 0.0667, and 0.833}). The result
shows that the proposed policies are not sensible to α and α ∈ [0.167, 0.5] is
acceptable for every selectivity and budget.

8 Reflections

RDF Stream Processing (RSP) engine is an adequate framework to study con-
tinuously query answering over dynamic data streams and data distributed over
the Web. The state of the art proposed an architectural approach that keeps a
replica of distributed data and uses several maintenance policies to refresh such
a replica.

In this thesis, I exploit this architectural approach for top-k continuously
query answering. My contributions are various maintenance policies optimized
for top-k continuous query evaluation over stream data and slowly evolving dis-
tributed data. The results of preliminary experiments show that in this specific
setting, the proposed policies could keep the replica fresher and provides more
accurate results comparing to the state of the art.

However, my proposed approach has different limitations: in this thesis, I
focus on specific type of query which contain a 1:1 join relationship between
streaming and background data. Queries with an N:M join relationship, or those
with other SPARQL clauses such as OPTIONAL are considered as future work.
The other limitation of this work is defining a static refresh budget to control
RSP engine’s reactiveness in each query evaluation. Further investigations can
be done on dynamic use of refresh budgets. Keeping the replica of distributed
data may not be a feasible solution in case of high volume datasets. Using cache
instead of replica can be an alternative solution, which also needs more investi-
gation.
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