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Abstract: An 8-channel Silicon PhotoMultiplier (SiPM) probe and Time-to-Digital-Converter (TDC) 

realize a higher-throughput, cheaper and compact detection chain for time-resolved optical 

mammography than photomultiplier tubes (PMTs) and Time Correlated Single Photon Counting 

(TCSPC) boards, providing comparable estimate of optical properties with increased optical 

responsivity. 
OCIS codes: (170.6510) Spectroscopy, tissue diagnostics; (170.3830) Mammography; (170.6920) Time-resolved imaging; 
(170.5280) Photon migration 

 

1. Introduction 

Optical mammography has been largely investigated as a method for breast lesion detection and therapy monitoring. It is 

sensitive to physiological parameters that correlate with the presence and modifications of unhealthy tissue inside the 

breast. Furthermore, the use of non-ionizing radiation opens to monitoring of patient’s therapy response even on a daily 

basis with no risk for health. 

Our group previously developed a 7-wavelength, Time-Resolved (TR) portable instrument for optical mammography 

[1]. 20 MHz picosecond pulsed diode lasers emitted in the “visible” (VIS at 635 nm, 680 nm, 785 nm) and “near-

infrared” (NIR at 905 nm, 930 nm, 975 nm, 1060 nm) spectral ranges. Light pulses at all wavelengths were time-

multiplexed and injected into the compressed breast by means of a single optical fiber. The photons transmitted through 

the breast were collected by a 1-meter-long fiber bundle, with bifurcated distal ends connected to two different 

photomultiplier tubes (PMTs), for VIS and NIR, respectively. A collecting optics focused the light onto the active area of 

the two PMTs. Photon timing was achieved by two separate Time Correlated Single Photon Counting (TCSCP) boards. 

The system was employed in a clinical study on more than 200 patients [2–5]. The main limitations of the instrument 

were related to the low signal level (< 5 x 104 counts/sec), especially for dense breasts and at the 1060 nm wavelength, 

which in some cases may make data interpretation weaker, affecting the accuracy of the results.  

To overcome these limitations and potentially reduce the breast scanning time, here we present novel approaches to 

the detection of transmitted light and to the acquisition of the Distribution of Times of Flight (DTOF) that have led to a 

renewed design of the instrument detection and acquisition sections. Additionally, we present a characterization of the 

new technologies and of the overall instrument performance.  

2. System design 

Recently it has been proven that in most situations Silicon Photomultipliers (SiPMs) could profitably replace PMTs [6] 

and multi-channel Time-to-Digital Converters (TDCs) could replace TCSPC PC boards [7] for high throughput data 

collection. Therefore, we have employed these promising technologies to renew our instrument setup.   

SiPMs are silicon-based single-photon detectors composed by an array of hundreds of microcells, each made up of a 

Single-Photon Avalanche Diode (SPAD) and a resistor for avalanche passive quenching and recovery [8]. They are (i) 

compact and (ii) cheap devices and several can be hosted into a single size-limited probe to be placed in direct contact 

with the sample, thus exploiting the SiPM (iii) high numerical aperture to increase light harvesting. With  (iv) wide 

spectral coverage (from 350 nm up to 1100 nm) and (v) high quantum efficiency [6], an increase in signal level at all 

wavelengths is expected. With these premises our group has developed an 8-channel integrated SiPM probe (3.5 cm x 

3.5 cm overall, SiPM model C30742-11, Excelitas Technologies, USA, each with 1 x 1 mm2 active area, and 51% 

geometrical fill factor) mounted in place of the collecting fiber bundle and PMTs. A thermo-electric cooler element 

lowers the device dark count rate from 150 Kcps to 80 Kcps and the use of a dark shield surrounding the probe limits the 

stray light contribution, creating a probe for TR Diffuse Optics (DO) applications that embeds multiple detectors directly 

collecting remitted photons from the tissue with no need for fiber optics. The total actual active collection area is 4 mm2. 
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The SiPMs output signals are acquired by a commercial 8-channel TDC (SC-TDC-1000/08 S, Surface Concept, 

Germany) to reconstruct the DTOF curve. The device has an overall maximum throughput of 40 million counts per 

second (Mcps), much better than the limit of 5 Mcps of the TCSPC boards used in the previous configuration, at a much 

lower cost per channel (<1 k€/channel for the TDC, 8 k€/channel for the TCSPC board), giving access to multi-channel 

parallel acquisition with an overall higher acquirable signal level.  

The overall renewed system design and the detection probe are depicted in Fig. 1. 

Fig. 1. Left: Upgraded instrument set-up. The laser pulses are sequentially produced at the 7 wavelengths and transmitted light is detected by the 8-
channel SiPM probe. Then the TDC generates the time distribution of transmitted photons. Right: Picture of the head of the 8-channel SiPM probe.  

3. Responsivity

The responsivity evaluates the overall detection efficiency of the instrument as the fraction of the input illumination 

transmitted through a calibration phantom at each wavelength [9]. The results, comparing the old detection chain (PMTs 

and TCSPC boards) and the new one (SiPMs and TDC), are summarized in Fig. 2, and show an increase in responsivity 

of up to 2-3 orders of magnitude, especially at 785 nm and 1060 nm. The low responsivity at these wavelengths for the 

previous detection chain was mainly due to the low quantum efficiency of the PMTs at the edge of their respective 

sensitivity spectral range. 

Fig. 2. Responsivity vs wavelength in the old (red circles) and new (blue squares) instrument set-ups. 

The overall increase is due to (i) the removal of the collecting bifurcated fiber bundle and related dichroic filter, (ii) 

the removal of fiber-coupling and PMT’s optics related losses, (iii) the use of 8 parallel detectors with (iv) high 

Numerical Aperture (NA close to 1 in the new setup vs ~0.37 in the previous setup), (v) in contact with the inferior glass 

of the compression unit, and (vi) with a higher quantum efficiency than PMTs (>20% at 600 nm). The higher 

responsivity is a crucial point in favor of SiPM detectors that potentially gives access to those breast types (dense and 

thick) at long wavelengths previously discarded or giving raise to low quality measures, due to low signal level. The 

reported increase is significant especially for the 1060 nm wavelength that is the collagen fingerprint, a constituent 

whose accumulation is linked to cancer pathogenesis [3]. 

4. TDC characterization

The TDC provides a digital code of the timing measurement without the use of analog timing electronics typical of 

TCSPC boards. It is affected by a strong Differential Non Linearity (DNL), up to 0.8 Least Significant Bit (LSB) peak-
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to-peak, where 1 LSB is 82.3 ps. However, two subsequent time bins are built such that the DNL is nearly compensated, 

thus obtaining a negligible Integral Non Linearity (INL). The DNL degrades the shape of the temporal distribution of the 

time of flight (DTOF) and therefore a compensation of the non-linearity is needed. The implemented correction 

algorithm reduces the DNL to 0.1 LSB at maximum, and improves the otherwise indented curve shape by smoothing it. 

The temporal resolution is lower (~ 150 ps) compared to the TCSPC board (~ 8 ps), yet likely adequate for optical 

mammography as the modifications of the DTOF curve due to tissue absorption and scattering are higher, in the order of 

few nanoseconds. 

The dead time between two following photon acquisitions for the TCSPC board is 150 ns. This limits the useful 

acquisition count rate to 5 Mcps, but count losses due to dead time affect the curve shape already at 2 Mcps, causing 

distortions in the optical parameters retrieval. Instead, the TDC has a 5.5 ns dead time meaning a 185 Mcps maximum 

count rate, but internal electronics limits the actual count rate to 40 Mcps. Therefore, the TDC is expected to be able to 

produce the photons distribution curve with reduced count losses and distortions, giving access to a much higher signal 

level than the TCSPC board. Fig. 3 shows the extracted optical parameters, i.e. the absorption coefficient and scattering 

coefficient (a  0.12 cm-1, s’  8.5 cm-1) for a known phantom, at different count rate levels using both the TCSPC 

board (SPC130, Becker&Hickl, Germany) and the TDC, employing the same 8-channel SiPM probe in both cases. The 

results indicate a positive correlation between the absorption coefficient and the count rate for the TCSPC board due to 

the “first photon arrived” distortion (that produces a loss of late photons, i.e. photons providing more information on the 

absorption coefficient [10]). The trend for the TDC is quite flat, indicating that the device is less sensitive to dead time 

count losses and relative distortions in the experimented count rate range. The trend of the reduced scattering coefficient 

follows the absorption’s one due to positive coupling effect.  

 

  
Fig. 3. Left: Absorption coefficient vs count rate using the TDC (blue squares) and TCSPC board (red circles) as acquisition system. In both cases, 

SiPMs are used as detector and laser repetition rate is 10 MHz. Right: Reduced scattering coefficient vs count rate.  

 The TDC, with its low dead time, shifts the maximum count rate at which significant curve distortions arise (10% 

error on estimation) to a much higher value (20%-25% of laser repetition rate) respect to the TCSPC board (5%-10%), 

giving access to the use of higher signal levels. 

5. Performance assessment 

We made a preliminary assessment of the performances of the new detection chain, in terms of both accuracy and 

linearity of the reconstructed optical parameters of 32 solid phantoms with different reduced scattering (s’ = 5, 10, 15, 

20 cm-1) and absorption properties (from a = 0 cm-1 to 0.35 cm-1, in steps of 0.05 cm-1) as foreseen by the MEDPHOT 

Protocol [11].  

The results show that the overall system has good linearity properties for both reconstructed absorption and scattering 

values. The non-linearity is less than 5% for the absorption coefficient and is around 10% for the scattering.  

The accuracy is expressed as the percentage error of the reconstructed optical parameters with respect to 

conventionally true values. The errors are generally high (>20%), especially for high absorbing media, where the 

theoretical model starts to fail. However, these results are in line with those obtained with the previous detection chain 

used in the clinical trials, and therefore make these cheap and compact technologies suitable for actual use.  

6. Scan procedure improvement 

The PMTs are extremely sensible to excessive light illumination. This aspect forced in the previous set-up to make a pre-

scan of the compressed breast aimed at getting the actual scan area size. Still, the scan area for the NIR PMT was smaller 
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than the VIS PMT one due to its higher sensibility to excess light illumination near the breast border. SiPMs, instead, are 

not damaged by excessive light exposure. Hence, there is no need for a pre-scan procedure, thus reducing the overall 

image acquisition time, and the actual size of the compressed breast can be fully scanned at all the wavelengths.    

7. Conclusions

We have upgraded our instrument for optical mammography employing attractive technologies as SiPMs and TDC, 

aimed at getting a higher signal level, yielding high quality data in a short measurement time. The characterization has 

shown an increase in the responsivity of the detection chain and comparable performances in the retrieval of the optical 

parameters. These technologies are therefore a promising alternative to the expensive and bulky previous detection 

chain, overcoming its main limits. Moreover, their characteristics make them interesting also for other applications 

where a high throughput, multi-channel acquisition system is needed, like brain activation monitoring or tomography 

[12–14]. Considering the encouraging results obtained so far, we are planning preliminary sessions of in-vivo imaging in 

view of an upcoming clinical study on the monitoring of neoadjuvant chemotherapy. 

8. Acknowledgements

We acknowledge financial support from the European Union’s Horizon 2020 research and innovation program under 

Grant Agreement No. 731877 “SOLUS - Smart OpticaL and UltraSound diagnostics of breast cancer”. 

9. References

[1]  Taroni, P., Pifferi, A., Salvagnini, E., Spinelli, L., Torricelli, A., and Cubeddu, R., “Seven-wavelength time-resolved optical mammography 

extending beyond 1000 nm for breast collagen quantification.,” Opt. Express 17(18), 15932–15946 (2009). 

[2]  Quarto, G., Spinelli, L., Pifferi, A., Torricelli, A., Cubeddu, R., Abbate, F., Balestreri, N., Menna, S., Cassano, E., and Taroni, P., “Estimate of 

tissue composition in malignant and benign breast lesions by time-domain optical mammography,” Biomed. Opt. Express 5(10), 3684–3698 (2014). 

[3]  Taroni, P., Quarto, G., Pifferi, A., Ieva, F., Paganoni, A. M., Abbate, F., Balestreri, N., Menna, S., Cassano, E., and Cubeddu, R., “Optical 
identification of subjects at high risk for developing breast cancer.,” J. Biomed. Opt. 18(6), 60507 (2013). 

[4]  Taroni, P., Quarto, G., Pifferi, A., Abbate, F., Balestreri, N., Menna, S., Cassano, E., and Cubeddu, R., “Breast tissue composition and its 

dependence on demographic risk factors for breast cancer: Non-invasive assessment by Time Domain diffuse optical spectroscopy,” PLoS One 10(6), 
1–16, Public Library of Science (2015).

[5]  Taroni, P., Paganoni, A. M., Ieva, F., Pifferi, A., Quarto, G., Abbate, F., Cassano, E., and Cubeddu, R., “Non-invasive optical estimate of tissue 

composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7, 40683, Nature Publishing Group (2017).

[6]  Dalla Mora, A., Martinenghi, E., Contini, D., Tosi, A., Boso, G., Durduran, T., Arridge, S., Martelli, F., Farina, A., Torricelli, A., and Pifferi, A.,

“Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics,” Opt. Express 23(11), 13937–13946

(2015). 

[7]  Villa, F., Lussana, R., Bronzi, D., Tisa, S., Tosi, A., Zappa, F., Dalla Mora, A., Contini, D., Durini, D., Weyers, S., and Brockherde, W., “CMOS 

imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804810 (2014).

[8]  Dolgoshein, B. A., Balagura, V., Buzhan, P. Z., Danilov, M. V., Filatov, L. A., Garutti, E., Groll, M., Ilyin, A. L., Kantserov, V. A., Kaplin, V. A.,
Karakash, A. I., Kayumov, F. F., Klemin, S. N., Korbel, V., Meyer, H. J., Mizuk, R. V., Morgunov, V. L., Novikov, E. G., Pakhlov, P. N., et al.,

“Status report on silicon photomultiplier development and its applications,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers,

Detect. Assoc. Equip. 563(2), 368–376 (2006). 

[9]  Wabnitz, H., Taubert, D. R., Mazurenka, M., Steinkellner, O., Jelzow, A., Macdonald, R., Milej, D., Sawosz, P., Kacprzak, M., Liebert, A., Cooper,

R., Hebden, J., Pifferi, A., Farina, A., Bargigia, I., Contini, D., Caffini, M., Zucchelli, L., Spinelli, L., et al., “Performance assessment of time-domain

optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 86010 (2014). 

[10] Becker, W., [Advanced Time-Correlated Single Photon Counting Techniques], Springer Ser. Chem. Phys. 81, A. W. Castleman, J. J. P.

Toennies, and W. Zinth, Eds., Springer (2005).

[11] Pifferi, A., Torricelli, A., Bassi, A., Taroni, P., Cubeddu, R., Wabnitz, H., Grosenick, D., Möller, M., Macdonald, R., Swartling, J., Svensson,
T., Andersson-Engels, S., van Veen, R. L. P., Sterenborg, H. J. C. M., Tualle, J.-M., Nghiem, H. L., Avrillier, S., Whelan, M., and Stamm, H.,

“Performance assessment of photon migration instruments: the MEDPHOT protocol.,” Appl. Opt. 44(11), 2104–2114 (2005). 

[12] Eggebrecht, A. T., Ferradal, S. L., Robichaux-Viehoever, A., Hassanpour, M. S., Dehghani, H., Snyder, A. Z., Hershey, T., and Culver, J. P.,
“Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454, Nature Publishing Group (2014).

[13] Di Sieno, L., Bettega, G., Berger, M., Hamou, C., Aribert, M., Dalla Mora, A., Puszka, A., Grateau, H., Contini, D., Hervé, L., Coll, J.-L.,
Dinten, J.-M., Pifferi, A., and Planat-Chrétien, A., “Toward noninvasive assessment of flap viability with time-resolved diffuse optical tomography: a

preclinical test on rats,” J. Biomed. Opt. 21(2), 25004 (2016).

[14] Yates, T., Hebden, J. C., Gibson, A., Everdell, N., Arridge, S. R., and Douek, M., “Optical tomography of the breast using a multi-channel time-
resolved imager,” Phys. Med. Biol. 50(11), 2503–2517 (2005).

Proc. of SPIE-OSA Vol. 10412  1041202-4

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12/11/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


	TITLE PAGE-1
	1041202 (1)

