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Abstract— Assessment and recognition of perceived well-
being has wide applications in the development of assistive
healthcare systems for people with physical and mental disor-
ders. In practical data collection, these systems need to be less
intrusive, and respect users’ autonomy and willingness as much
as possible. As a result, self-reported data are not necessarily
available at all times. Conventional classifiers, which usually
require feature vectors of a prefixed dimension, are not well
suited for this problem. To address the issue of non-uniformly
sampled measurements, in this study we propose a method
for the modelling and prediction of self-reported well-being
scores based on a linear dynamic system. Within the model, we
formulate different features as observations, making predictions
even in the presence of inconsistent and irregular data. We
evaluate the proposed method with synthetic data, as well as
real data from two patients diagnosed with cancer. In the latter,
self-reported scores from three well-being-related scales were
collected over a period of approximately 60 days. Prompted
each day, the patients had the choice whether to respond or
not. Results show that the proposed model is able to track and
predict the patients’ perceived well-being dynamics despite the
irregularly sampled data.

I. INTRODUCTION

The detection or recognition of perceived well-being is
fundamental for the development of assistive healthcare
systems for people with physical and mental conditions [1].
Generally speaking, psycho-physilogical state detection can
be performed through two types of measurements: physiolog-
ical/behavioural observations and self-reported data [1]–[3].

Exemplarily, analysis of heart rate variability series from
long-term electrocardiogram monitoring has been proven to
be an important tool for mood detection and prediction
(see, e.g., [3] and references therein). Furthermore, behaviour
measurements, including locations, frequency of phone calls,
SMSs and/or social interaction, as well as accelerometer
data have been used for monitoring affective disorders
[4], [5]. Although physiological measurements are crucial
for a comprehensive understanding of psychophysiological
state-related hormonal, immunologic, or autonomic nervous
system responses, behaviour measurements that could be
gathered via a smartphone without the need of additional
sensors are less obtrusive and are more readily accepted by
patients [3], [6], [7]. Importantly, it has been demonstrated
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that increases in the autocorrelations and cross-correlations
of fluctuations of autorecorded emotions often predict stage
transitions between a normal state and a state of depression
[7]. Scores gathered from structured interviews and psy-
chological questionnaires currently constitute the standard
clinical assessment for care in mental health [8]. Although
these scores may be biased by subjective evaluations, both
from the patient’s and clinician’s sides, they are typically
used as ground truth to build machine learning models for
objective mood recognition [2]–[4], [7].

For these reasons, an ubiquitous, unobtrusive and comfort-
able psycho-physiological data collection strategy is adopted
in the Horizon 2020 project “NEVERMIND”, within which
the research presented in this paper was carried out. Specif-
ically, the NEVERMIND project aims at providing effective
self-management tools to help patients suffering from po-
tential depressive symthoms induced by a primary disease
(e.g., cancer, miocardial infarction, amptutation, nephropaty).
NEVERMIND plans to integrate physiologcial and psycho-
logical measurements for mood recognition and prediction
in a single system, which will still respect users’ auton-
omy as much as possible. This implies that measurements,
particularly self-assessment scores and behavioural data, are
gathered in an inconsistent manner, i.e. their frequency
and timing may considerably vary according to patient’s
willingness. Consequently, more flexible machine learning
approaches that are able to process irregular data gathered
from different sources without prefixed dimensions for fea-
tures are needed.

To address this major issue, in this study we propose a
method for modelling and prediction of self-reported well-
being scores, based on a Linear Dynamic System (LDS) [9].
By formulating different features as observations, this type
of modeling allows for making predictions in the presence
of inconsistent and irregular measurements.

The rest of the paper is organized as follows. Section II
introduces mood modelling based on LDS. In Section III,
the proposed model is evaluated with simulation and experi-
mental studies. Concluding remarks are given in Section IV.

II. LINEAR DYNAMIC SYSTEM FOR SELF-REPORTED
WELL-BEING SCORE PREDICTION

A. Problem Formulation

In this work, we assume that the well-being of the user is
represented by a scalar value, and adopt a second-order LDS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/141688433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of the form:

x(t) = Ax(t− 1) +Bu(t) + εx(t) (1)
y(t) = Cx(t) + µy + εy(t) (2)

where

x(t) =

[
x(t− 1)
x(t)

]
, A =

[
0 1
a2 a1

]
, (3)

x(t) ∈ R2 is the latent state, y(t) ∈ Rny the observation and
u(t) ∈ Rnu the input, while B ∈ R2×nu and C ∈ Rny×2 are
input and observation matrices, respectively. µy represents
a baseline value. We assume the observation noise and the
transition noise to be Gaussian, i.e. εx(t) ∼ N (0, Sx) and
εy(t) ∼ N (0, Sy). Here, x(t) represents the self-reported
well-being score and y(t) are the self-reported data based
on questionnaires. The input u(t) is the target intervention
we want to study, e.g., whether the patient did any treatment,
and/or certain environment factor of interest, e.g., daylight
time.

In conventional detection or prediction methods for self-
reported data, usually certain self-reported information is
used as ground truth (i.e. labels) and other measurements
as features, to which standard classifiers are applied. The
model in (1) could also be used for self-reported well-being
score prediction since, given previous states and observations
x(t − 1) and y(t − 1), x(t) and y(t) could be predicted.
Compared to a classification model, the advantage of the
proposed state model lies in the fact that self-reported data
are used as observations rather than ground truth, allowing
more flexibility in processing inconsistent self-reports. The
estimation of the model will be introduced in the following
section.

B. Model Estimation

1) Expectation Maximization Method: Given the observa-
tion y(t) and input u(t), the aim is to estimate the probability
distribution of x(t) and the model parameters, which can
be accomplished by the Expectation Maximization (EM)
method [9].

The EM method includes two steps, the expectation
step (E-step) and the maximization step (M-step). In the
E-step, a Kalman filter is applied to the current model
Θ = {A,B,C, Sx, Sy, µy} to find the maximum-a-posteriori
estimate of the latent state x(t) and its covariance structure
as

xT = arg max
xT
L(Θ; xT , yT ,uT ), (4)

where xT is the sequence consisting of {x(t), t = 1...T},
yT and uT are similarly defined, and L(Θ; xT , yT ,uT ) is
logarithm of the joint probability

L(Θ; xT , yT ,uT ) = log Pr(xT , yT |uT ,Θ). (5)

With the estimates yielded by the Kalman filter, the new Θ
can be obtained by taking derivatives with respect to Θ of
the expected value of L(Θ; xT , yT ,uT ) in the M-step.

2) Sequential EM and Non-uniformly Sampled Obser-
vations: In practical studies, measurements may not be
collected uniformly and continuously, which makes conven-
tional classifiers less appropriate. In the proposed method,
the observations could be used in a sequential manner, which
does not require complete measurements.

Assuming that the observations are conditionally indepen-
dent of each other and Sy is a diagonal matrix, Kalman
filtering could be implemented in a sequential manner in
the E-step [10]. In the Kalman filtering, the current state is
predicted from the previous state, denoted as xt−1(t), as in
the following

xt−1(t) = Axt−1(t− 1) +Bu(t) (6)
V t−1(t) = AV t−1(t− 1)A> + Sx. (7)

From the state prediction xt−1(t), the sequential Kalman
filter uses y(t) to update the state one dimension at the time,
as follows:

ki(t) = V t−1
i−1 (t)c>i (ciV t−1

i−1 (t)c>i + syi)
−1 (8)

xt
i(t) = xti−1(t) + ki(t)(yi(t)− cixti−1(t)− µyi) (9)

V t
i (t) = V t

i−1(t)− ki(t)ciV t
i−1(t) (10)

where i = 1, ..., ny is the dimension index of y(t), and µyi
and syi are the i-th element and i-th diagonal element of µy
and Sy, respectively. ki and ci correspond to the i-th column
and row of the Kalman gain matrix and of the observation
matrix C, respectively. At each time t, (8) to (10) is only
applied to valid observation(s) yi(t).

Similarly, in the M-step, the expectation value of
L(Θ; xT , yT ,uT ) is calculated only with the valid observa-
tions. With the assumptions of Gaussian initialisation and
Markov property, (5) in the case of non-uniformly sampled
observations could be written as:

L(Θ; xT , yT ,uT ) =

−1

2

T∑
t=1

ny∑
i

{
δi,t
[
yi(t)− cix(t)− µyi

]2
s−1yi + log syi

}
−1

2

T∑
t=1

{[
x(t)−Ax(t− 1)−Bu(t)

]>
S−1x

[
x(t)−Ax(t− 1)−Bu(t)

]}
−1

2

[
x(0)− µ0

]>
S−1x

[
x(0)− µ0

]
−T

2
log |Sx| −

1

2
log |S0| − const., (11)

where δi,t is a binary indicator of whether yi is available
at time t. The process of model estimation using EM is
shown in Algorithm 1. Details on the Kalman smoother can
be found in [9].

III. EXPERIMENTAL STUDY

A. Simulation

To evaluate the model performance with non-uniformly
sampled observations and different initializations during



Algorithm 1: EM algorithm for LDS estimation with
non-uniformly sampled observations.

Input: System observation yT and input uT ;
Output: System parameters Θ and state inference xT .
begin

Initialise system parameters as Θk|k=0;
repeat

for t = 1 : T do
Calculate xt−1(t), V t−1(t) with (6) and (7);
Set xt

0(t) = xt−1(t) and V t
0 (t) = V t−1(t);

for i = 1 : ny do
if yi(t) is valid then

Compute xt
i(t) and V t

i (t) using (8)–(10);
else

xt
i(t) = xt

i−1(t), V t
i (t) = Vi−1(t);

end
end
Obtain xt(t) = xt

ny
(t) and V t(t) = Vny (t);

end
for t = T : 1 do

Obtain xT(t) and V T(t) with Kalman smoothing;
end
Calculate Θk taking derivatives with respect to Θ of
the expected value of L(Θ; xT , yT , uT ) in (11);
k = k+1.

until convergence;
end

model estimation, a simulation study was performed with
the following choice of parameters:

A =

[
0 1
−0.8 1.25

]
, B =

[
0
−0.5

]
, C =

 0.2 0.8
0 0.5

0.05 0.5

 .
The input uT (T = 100) was a randomly generated binary
sequence. The state xT and observation yT were generated
from (6) and (7). To simulate the non-uniformly sampled
measurements, for each observation dimension i, a random
number Ni between 40 and 60 was generated, and Ni

random samples were removed from yT .
The results obtained by fitting models with 10 random

initializations of Θ as well as the ground truth are shown
in Fig. 1. The ground truth state x(t) and observations y(t)
are represented with red circles, the maximum-a-posteriori
sequences inferred by the model are drawn with dashed
lines. It is apparent that the results obtained with different
initializations are quite consistent. That is, our LDS model
estimation is robust against non-uniformly sampled observa-
tions.

B. Self-reported Well-being Score Modelling

To further validate the proposed method, we applied the
LDS model to actual self-reported well-being score mod-
elling. This experimental work is part of the pilot study of
the project NEVERMIND. In the experiment, the 3 self-
reported well-being scales correspond to the questions “How
are you feeling today?”, “How was your sleep?” and “How
was your day?”. Note that the questions used to get the
perceived well-being scores are used in NEVERMIND only

as an early screening tool, which may then trigger the
use of validated clinical questionnaires and interviews. The
self-reporting system is embedded in a mobile phone app,
enabling users to answer the question by using a sliding scale
going from 1 to 6. For all 3 scales, the smaller the value, the
better the reporter’s condition. Requests seeking user’s input
are shown once a day. Two female participants, 43-year-old
and 58-year-old, both diagnosed with cancer, took part in the
experiment for approximately 60 days.

In this study, the treatment log is used as u(t) and the
scales as y(t). Due to the limited available data-size, the
LDS model is estimated using all available data. With the
estimated model and inferred states, the future scales are
predicted using data from the previous day. The modelling
and prediction results for two participants are illustrated in
Figure 2, where the abscissas are the days since the beginning
of the trial and the ordinates are the scale values. The actual
observations are represented with red circle markers, while
the predicted observations are represented with blue lines
and green bars indicating its standard deviation.

As shown in the figure, the recorded sequences of scales
are quite sparse. When there is a sequence of missing ob-
servations, the prediction variance grows bigger and bigger,
e.g., from day 21 to 32 for participant 2. In other words, the
longer the time interval without available observations, the
lower the confidence of the prediction made by the model.
The time-varying confidence is a clear advantage of the
proposed method over conventional classifiers as it helps the
final user gauge the reliability of the predictions over time.
Yet, the model can reliably capture the mood dynamics if the
observations are frequent enough. Generally the predictions
are consistent with the true observations. Compared to con-
ventional classification models, where the number of features
is usually fixed, the proposed method is more flexible in
dealing with irregularly sampled observations/features.

Note that in the current study the prediction is causal but
the model identification is conducted in non-causal manner
using all the data available. In a practical implementation
the model would need to be trained only using previous
observations. In our future work, the causal model will
be evaluated with comprehensive studies. Moreover, in this
study, only self-reported scales are used as observations,
whereas additional kinds of measurements, such as heart rate
variability and voice prosody, will be included in the future
to model the patients mood dynamic.

IV. CONCLUSION

In this work, we proposed an approach for self-reported
well-being score modelling and prediction based on the
theory of linear dynamic systems. Compared to conventional
classification methods, the proposed method is more appro-
priate for processing data sampled in a non-uniform and
irregular manner. As a proof of the methodological concept,
we evaluated it with synthetic data as well as through an
experimental study including two participants who have been
diagnosed with cancer. Importantly, in such an experimental
study, self-reported well-being scores were highly irregular,



Fig. 1. Simulation study of LDS with 10 random initializations of the EM algorithm for model fitting and state estimation from non-uniformly sampled
observations.

(a) Participant 1

(b) Participant 2

Fig. 2. Self-reported well-being score modelling and prediction over the
60-day trial (see text for details).

and observations were unavailable for more than half of
the sampling points. Nonetheless, the proposed model could
track the participants’ score dynamics to a significant extent
without requiring the use of a prefixed and constant number

of features.
As the current model is implemented in non-causal man-

ner, in our future endeavours a causal version of the model
will be evaluated with comprehensive studies, and imple-
mented for real-time prediction.
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