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  Abstract-  In our previous work we proposed a special class of 
survival  distribution called Mixture  distribution survival  trees, 
which are constructed by approximating different nodes in the 
tree by distinct  types of  mixture  distributions to achieve more 
improvement in the likelihood function and thus the improved 
within  node  homogeneity.  We  proposed  its  applications  in 
modelling  hospital  length  of  stay  and  clustering  patients  into 
clinically  meaningful  patient  groups,  where  partitioning  was 
based on covariates representing patient characteristics such as 
gender, age at the time of admission, and primary diagnosis code. 
This paper proposes extended Mixture distribution survival trees 
and  demonstrates  its  applications  to  patient  pathway 
prognostication and to examine the relationship between hospital 
length  of  stay  and/or  treatment  outcome.  5  year  retrospective 
data  of  patients  admitted  to  Belfast  City  Hospital  with  a 
diagnosis of stroke is used to illustrate the approach. 
Keywords- Stochastic  modeling,  Survival  tree,  Length  of  stay 
modelling,  Prognostication,  Clustering,  Gaussian  mixture 
distributions, Phase type distributions

I.    INTRODUCTION

   Mixture distribution survival  trees [1] are special  type of 
survival  trees,  which  are  constructed  by  approximating 
different  nodes  in  the  tree  by  distinct  types  of  mixture 
distributions to achieve more improvement in the likelihood 
function  and  thus  the  improved  within  node  homogeneity. 
Survival  trees  can  be  used  as  a  powerful  method  for 
partitioning  survival  data  into  clinically  meaningful  patient 
groups  for  prognostication,  i.e.,  for  determining importance, 
effects  of  various  input  covariates  (such  as  a  patient’s 
characteristics) and their influence on output measures such as 
patients’  survival,  their  expected  length  of  stay,  discharge 
destination, or treatment outcome [2] [3]. In our previous work 
[1],  we  proposed  a  mixture  distribution  survival  tree  based 
method where tree nodes were approximated using Gaussian 
mixture  distributions  and  phase  type  distributions,  for  into 
homogeneous  groups  with  respect  to  their  length  of  stay 

(LOS)  where  partitioning  was  based  on  covariates 
representing patient characteristics such as gender, age at the 
time  of  admission  and  primary  diagnosis  code.  This  paper 
extends this approach to patient pathway prognostication i.e. 
for  determining  importance  and  effects  of  various  input 
covariates such as gender,  age at the time of admission and 
primary diagnosis code on patients’ hospital length of stay and 
to examine the relationship between length of stay in hospital 
and treatment outcome.
   An  application  of  the  approach  to  patient  pathway 
prognostication is illustrated using 5 years’ retrospective data 
[4]  for  1985  patients  admitted  between  January  2003  and 
December 2007 to the Belfast City Hospital with a diagnosis 
of  stroke  (hemorrhagic  stroke,  cerebral  infarction,  transient 
ischaemic  attack  TIA,  and  stroke  unspecified).  All  patients 
were discharged between January 9th, 2003 and March 11th 
2008. No information that  identified individual patients was 
supplied. Patients were aged between 24 years and 101 years. 
Patient’s lengths of stay range from is 0 days (admitted and 
discharge on the same day)  to 1425 days,  mean LOS 29.01 
days with 52.84 days standard deviation [4].

II.    MIXTURE DISTRIBUTION SURVIVAL TREE CONSTRUCTION

   A survival tree can be constructed by recursively splitting 
nodes into daughter nodes by one of the covariates based on 
some splitting criteria  either  maximizing either  within node 
homogeneity or between node separation [3]. Each daughter 
node is approximated by both GMD and C-PhD with different 
set  of  components.  We  used  splitting  criteria  to  maximize 
within  node  homogeneity  expressed  in  terms  of  Akaike 
Information criterion (AIC) [5].
AIC = -2*Log likelihood+2* .df
   Where df is the number of free parameters to be estimated. 
For nodes modeled by n component (phase) Coxian phase type 
distribution (C-PhD), df = 2*n-1 and for a node modeled by m 
component Gaussian mixture distribution (GMD), df = 2*m-1. 
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A split with minimum value of AIC is selected. If at a node, 
there is no split providing positive improvement in the AIC, 
the node is designated as a terminal node. 
   We  used  three  covariates  gender,  age  at  the  time  of 
admission and type of stroke diagnosed. The covariate ‘age’ 
has  value  ‘old’  for  those aged  70 or  over and it  has  value 
‘young’ for those aged below 70 years. Based on the primary 
ICD-10 diagnosis code [6], patients can have any of the four 
values  (hemorrhagic  stroke,  cerebral  infarction,  transient 
ischaemic  attack  TIA,  and  other  strokes)  for  the  covariate 
‘stroke diagnosed’. 
   Figure 1 is the schematic representation of the final mixture 
distribution survival tree for the length of stay data on stroke 
patients from the Belfast City Hospital. The resulting tree has 
12  terminal  nodes.  A node with  ‘P’  is  modeled  by C-PhD 
while a node with ‘G’ is modeled by GMD, i.e., node 9, node 
17 and node 19 are modeled by GMDs and all other nodes 
root node (node 1), node 2, node 3, node 4, node 5, node 6, 
node 7, node 8, node 10, node 11, node 12, node 13, node 14, 

node 15, node 16, node 18, node 20 and node 21 are modeled 
by  C-PhDs.  Nodes  of  the  tree  and  possible  splits  of  these 
nodes  are  listed  in  Table  1.  Bold  faced  covariates  were 
selected for splitting the parent node. Nodes which are better 
fitted by GMD are having AIC shaded yellow.  The AIC of 
root node was 16825.6 and new total AIC of all the terminal 
nodes  of  the  survival  tree  is  16397.92  with  427.68  total 
improvement in AIC.
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Fig. 1. Mixture distribution survival tree for the length of stay data on stroke 
patients from the Belfast City Hospital

TABLE  I
MIXTURE DISTRIBUTION SURVIVAL TREE CONSTRUCTION (NODES AND POSSIBLE SPLITS)

Node Covariate Covariate value Number of 
patients Mean LoS Standard 

deviation (LoS)

Coxian-phase type distribution Gaussian mixture distribution Improvement in
AIC

Loglikelihood 
(Lmax)

Number of 
phases AIC Loglikelihood Number 

of phases AIC

All Complete 
dataset Root node 1985 29.0106 52.8382 -8407.8007 3 16825.60 -8481.625 10 17021.25 -

Level 1

1
(Root node)

Gender Male 933 26.5938 44.0575 -3859.8125 2 7725.625 -3897.236 7 7834.47 10.2825
Female 1052 31.154 59.4698 -4539.8469 3 9089.694 -4569.59 9 9191.18

Age Young 624 19.2564 39.1523 -2316.974 2 4639.948 -2342.454 7 4724.9 127.159
Old 1361 33.4827 57.4932 -6024.2472 3 12058.49 -6047.846 9 12147.7

Diagnosis

Hemorrhagic 154 33.6039 56.4456 -659.05019 3 1328.1 -665.5723 6 1365.14

306.1832Cerebral 655 36.6611 47.6753 -2973.8941 4 5961.788 -2980.867 6 5995.73
TIA 425 9.31294 19.9516 -1298.6262 2 2603.252 -1316.503 6 2667

Other 751 32.5433 65.0453 -3310.1386 2 6626.277 -3297.443 8 6640.89
Level 2

2
Hemorrhagic

Gender Male 80 28.2 52.09832 -317.63202 4 649.2640 -328.0819 4 678.1638 12.50299
Female 74 39.4459 60.254 -328.16667 3 666.3333 -329.4363 6 692.873

Age Young 50 24.56 55.117 -173.39875 4 360.7975 -187.3508 3 390.702 15.65113
Old 104 37.9519 56.561 -468.82587 4 951.6517 -477.7462 4 977.492

3
Cerebral

Gender Male 302 33.70860 49.8833 -1334.898 4 2683.796 -1339.464 5 2706.93 -2.395836
Female 353 39.18697 45.5501 -1635.194 3 3280.388 -1639.346 5 3306.69

Age Young 194 24.0670 42.4506 -785.3629 3 1580.726 -793.676 5 1615.35 35.8404
Old 461 41.961 48.787 -2173.9068 2 4353.814 -2158.611 5 4345.22

4
TIA

Gender Male 207 8.7005 22.6817 -607.9547 2 1221.909 -637.5377 4 1297.08 -1.20391
Female 218 9.8945 16.9366 -686.27346 3 1382.547 -690.5091 5 1409.02

Age Young 176 5.83523 11.1641 -455.8639 2 917.7278 -465.3673 4 952.735 24.78144
Old 249 11.7711 24.0154 -827.3716 2 1660.743 -823.7194 8 1693.44

5
Other strokes

Gender Male 344 30.7413 43.4091 -1490.577 4 2995.154 -1490.229 6 3014.46 8.886526
Female 407 34.0663 78.7981 -1808.118 2 3622.237 -1864.211 3 3744.42

Age Young 204 24.9608 43.76126 -818.1347 4 1650.269 -819.1983 6 1672.4 36.23604
Old 547 35.3711 71.1697 -2466.8858 2 4939.772 -2543.835 3 5103.67

Level 3
6

Hemorrhagic 
Young

Gender
Male 29 30.5172 69.1114 -108.83289 2 223.6658 -105.682 4 233.364

-9.21382Female 21 16.3333 22.8126 -70.172765 2 146.3455 -74.17359 3 164.347

7
Hemorrhagic Old Gender Male 51 26.8823 39.2027 -211.39224 4 436.7845 -211.0736 4 444.147 2.30463

Female 53 48.6038 67.5821 -253.2813 2 512.5626 -245.9886 7 531.977
8

Cerebral Young Gender Male 104 24.6731 49.2715 -420.88798 2 847.776 -427.2601 4 876.52 -3.15333
Female 90 23.36667 32.9415 -361.0516 4 736.1032 -364.2716 4 750.543

9
Cerebral Old Gender Male 198 38.4545 49.6696 -903.58419 4 1821.168 -903.381 4 1828.76 -0.62756

Female 263 44.6008 47.9429 -1259.34 2 2524.681 -1251.528 6 2537.06
10

TIA Young Gender Male 88 5.7386 11.3263 -224.74588 2 455.4918 -232.5108 3 481.022 -5.52344
Female 88 5.9318 10.9988 -230.8797 2 467.7595 -231.1457 4 484.291

11
TIA Old Gender Male 119 10.8908 28.0847 -377.7327 2 761.4654 -401.7215 3 819.443 2.615394

Female 130 12.5769 19.5270 -444.56883 4 903.1377 -437.3312 4 896.662
12

Other strokes 
Young

Gender
Male 119 30.1092 52.7719 -493.3325 3 996.665 -486.2055 6 1006.41

0.265422Female 85 17.7529 24.6624 -322.7928 3 655.5857 -318.6695 3 653.339

13
Other strokes Old Gender Male 225 31.0756 37.52 -987.5257 4 1989.051 -991.5326 4 2005.07 3.802914

Female 322 38.3727 87.1713 -1470.4587 2 2946.917 -1517.217 3 3050.43



   At level 2, for all nodes, the covariate ‘age’ provided the 
most  significant  split  while  the  covariate  ‘gender’  did  not 
provide  significant  splits  for  the  group  of  patients  with 
diagnosis cerebral infarction and for the group of patients with 
diagnosis TIA. For example, among patients with TIA, young 
patients  were  most  likely  to  have  a  shorter  length  of  stay 
(mean  LOS  5.84)  while  old  patients  were  likely  to  have 
relatively longer length of stay (mean LOS 11.77).   
   At level 3, for all but one group of young patients (young 
patients with diagnosis of other strokes), the covariate gender 
did not provide prognostically significant splits. While at level 
3, for groups of old patients with stroke diagnosis hemorrhagic 
stroke, TIA and other strokes (node 7, node 11 and node 13) 
the  covariate  gender  provided  prognostically  significant 
splits). For the group of old patients with cerebral infarction 
(node  9)  the  covariate  gender  split  is  not  prognostically 
significant.

III.   THE EXTENDED MIXTURE DISTRIBUTION SURVIVAL 
TREE CONSTRUCTION

   This  mixture  distribution  survival  tree  method  can  be 
extended to examine the relationship between the treatment 
outcome  and  patients’  length  of  stay  distribution  and  their 
interrelationship  with  patient  characteristics  by  further 
partitioning each group of patients (determined using mixture 
distribution survival tree method above) into subgroups with 
more homogeneous patient pathways by covariate ‘treatment 
outcome’.  Although  the  information  about  the  treatment 
outcome is  not  available  at  the  time of  admission,  we  can 
assign the probability to each treatment outcome using cohort 
analysis. The covariate ' treatment outcome ' can have any of 
the two values death or discharge from the hospital.
   

TABLE  II
EXTENDED MIXTURE DISTRIBUTION SURVIVAL TREE CONSTRUCTION (NODES AND POSSIBLE SPLITS)

Node Covariate Covariate value Number of 
patients Mean LoS Standard 

deviation (LoS)

Coxian-phase type distribution Gaussian mixture distribution Improvement in
AIC

Loglikelihood 
(Lmax)

Number of 
phases AIC Loglikelihood Number 

of phases AIC

All Complete 
dataset Root node 1985 29.0106 52.8382 -8407.8007 3 16825.60 -8481.625 10 17021.25 -

Level 1

1
(Root node)

Gender Male 933 26.5938 44.0575 -3859.8125 2 7725.625 -3897.236 7 7834.47 10.2825
Female 1052 31.154 59.4698 -4539.8469 3 9089.694 -4569.59 9 9191.18

Age Young 624 19.2564 39.1523 -2316.974 2 4639.948 -2342.454 7 4724.9 127.159
Old 1361 33.4827 57.4932 -6024.2472 3 12058.49 -6047.846 9 12147.7

Diagnosis

Hemorrhagic 154 33.6039 56.4456 -659.05019 3 1328.1 -665.5723 6 1365.14

306.1832Cerebral 655 36.6611 47.6753 -2973.8941 4 5961.788 -2980.867 6 5995.73
TIA 425 9.31294 19.9516 -1298.6262 2 2603.252 -1316.503 6 2667

Other 751 32.5433 65.0453 -3310.1386 2 6626.277 -3297.443 8 6640.89
Level 2

2
Hemorrhagic

Gender Male 80 28.2 52.09832 -317.63202 4 649.2640 -328.0819 4 678.1638 12.50299
Female 74 39.4459 60.254 -328.16667 3 666.3333 -329.4363 6 692.873

Age Young 50 24.56 55.117 -173.39875 4 360.7975 -187.3508 3 390.702 15.65113
Old 104 37.9519 56.561 -468.82587 4 951.6517 -477.7462 4 977.492

3
Cerebral

Gender Male 302 33.70860 49.8833 -1334.898 4 2683.796 -1339.464 5 2706.93 -2.395836
Female 353 39.18697 45.5501 -1635.194 3 3280.388 -1639.346 5 3306.69

Age Young 194 24.0670 42.4506 -785.3629 3 1580.726 -793.676 5 1615.35 35.8404
Old 461 41.961 48.787 -2173.9068 2 4353.814 -2158.611 5 4345.22

4
TIA

Gender Male 207 8.7005 22.6817 -607.9547 2 1221.909 -637.5377 4 1297.08 -1.20391
Female 218 9.8945 16.9366 -686.27346 3 1382.547 -690.5091 5 1409.02

Age Young 176 5.83523 11.1641 -455.8639 2 917.7278 -465.3673 4 952.735 24.78144
Old 249 11.7711 24.0154 -827.3716 2 1660.743 -823.7194 8 1693.44

5
Other strokes

Gender Male 344 30.7413 43.4091 -1490.577 4 2995.154 -1490.229 6 3014.46 8.886526
Female 407 34.0663 78.7981 -1808.118 2 3622.237 -1864.211 3 3744.42

Age Young 204 24.9608 43.76126 -818.1347 4 1650.269 -819.1983 6 1672.4 36.23604
Old 547 35.3711 71.1697 -2466.8858 2 4939.772 -2543.835 3 5103.67

Level 3

6
Hemorrhagic 

Young
Gender

Male 29 30.5172 69.1114 -108.83289 2 223.6658 -105.682 4 233.364
-9.21382Female 21 16.3333 22.8126 -70.172765 2 146.3455 -74.17359 3 164.347

7
Hemorrhagic Old Gender Male 51 26.8823 39.2027 -211.39224 4 436.7845 -211.0736 4 444.147 2.30463

Female 53 48.6038 67.5821 -253.2813 2 512.5626 -245.9886 7 531.977
8

Cerebral Young Gender Male 104 24.6731 49.2715 -420.88798 2 847.776 -427.2601 4 876.52 -3.15333
Female 90 23.36667 32.9415 -361.0516 4 736.1032 -364.2716 4 750.543

9
Cerebral Old Gender Male 198 38.4545 49.6696 -903.58419 4 1821.168 -903.381 4 1828.76 -0.62756

Female 263 44.6008 47.9429 -1259.34 2 2524.681 -1251.528 6 2537.06
10

TIA Young Gender Male 88 5.7386 11.3263 -224.74588 2 455.4918 -232.5108 3 481.022 -5.52344
Female 88 5.9318 10.9988 -230.8797 2 467.7595 -231.1457 4 484.291

11
TIA Old Gender Male 119 10.8908 28.0847 -377.7327 2 761.4654 -401.7215 3 819.443 2.615394

Female 130 12.5769 19.5270 -444.56883 4 903.1377 -437.3312 4 896.662
12

Other strokes 
Young

Gender
Male 119 30.1092 52.7719 -493.3325 3 996.665 -486.2055 6 1006.41

0.265422Female 85 17.7529 24.6624 -322.7928 3 655.5857 -318.6695 3 653.339

13
Other strokes Old Gender Male 225 31.0756 37.52 -987.5257 4 1989.051 -991.5326 4 2005.07 3.802914

Female 322 38.3727 87.1713 -1470.4587 2 2946.917 -1517.217 3 3050.43

   



   Each terminal node of the survival tree of Figure 1 is further 
partitioned  into  daughter  nodes  by  the  covariate  'treatment 
outcome'.  We  grow  the  tree  if  the  split  maximizes  node 
homogeneity by minimizing the value of AIC and if at a node, 
there is no split providing significant improvement in AIC, the 
node is designated as a terminal node.
   Figure  2 is  the schematic  representation of the extended 
mixture distribution survival tree for the length of stay data on 
stroke patients from the Belfast  City Hospital. The resulting 
tree  now has  19  terminal  nodes.  Only  two  terminal  nodes 
(node 9 and node 26) are approximated by GMD and all other 
terminal  nodes  are  approximated  by  C-PhD.  Table  2  lists 
terminal nodes of the survival tree of figure 1, and possible 
splits  of  these  nodes  by  the  covariate  ‘treatment  outcome’. 
Bold faced splits were selected for splitting the parent node. 
Parent nodes are represented by pale blue rows with treatment 
outcome “all”.  The column P/G specifies  which distribution 
among  C-PhD  and  GMD  provides  better  fit.  The  total 
improvement in AIC is 115.655 and the new AIC of all the 
terminal nodes is 16282.27.
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Fig. 2. Extended mixture distribution survival tree for the length of stay data  
on stroke patients from the Belfast City Hospital

IV.   PATHWAY PROGNOSTICATION USING THE 
EXTENDED MIXTURE DISTRIBUTION SURVIVAL TREE

   The extended mixture distribution survival tree method can 
effectively be used to examine the relationship between LOS 
and treatment outcome at discharge and their interrelation with 
patient characteristics such as age, gender and diagnosis. 
   The extended mixture distribution survival tree clusters the 
length  of  stay  data  into  19  clinically  meaningful  patient 
groups, each representing a distinct patient pathway within the 
system.  We  can  see  that  in  seven  patient  groups  (i.e.,  the 
terminal nodes in Figure 1), the covariate ‘treatment outcome’ 
has  prognostic  significance,  i.e.,  patients  with  different 
treatment outcomes follow different patient pathways, while, 
there is homogeneity among patient pathways followed by the 
other  five  patient  groups.  The  treatment  outcome  is 
prognostically most significant among the group of old male 
patients diagnosed with Hemorrhagic stroke. This also reflects 
with  the  difference  in  mean  LOS.  Among  this  group  of 
patients,  those  are  expected  to  discharge  are  likely to  have 
longer length of stay (mean LOS 31.9) than those die in the 
course  of  their  treatment  (mean LOS 10.9).  The Treatment 
outcome has prognostic significance for all groups of female 

patients  while  it  has  prognostic  significance  in  only  two 
groups  of  male patients  (node 14 and node 16).  All  young 
patients  with  Hemorrhagic  stroke  followed  homogeneous 
patient  pathways.  Treatment  outcome  does  not  have 
prognostic  significance  among  all  groups  of  patients 
diagnosed with cerebral infraction, while treatment outcome is 
prognostically significant in all groups of patients with TIA. 
Patients diagnosed with TIA and discharged from hospital are 
more likely to have shorter length of stay (mean LOS 5.24, 
10.35, 11.16 respectively for node 27, node 29 and node 31) 
than those patients with TIA who died in the hospital (mean 
LOS 57.5, 21 and 48 respectively for node 26, node 28 and 
node 30).Prepare your paper in full-size format, on US letter 
paper 8 ½ by 11 inches). For A4 paper, use the A4 settings. 

V.   CONCLUSION

   Mixture  distribution  survival  tree  have  advantage  of 
achieving the improved within node homogeneity. Therefore, 
mixture  distribution  survival  tree  based  analysis  is  a  more 
effective method for prognostication of survival data and for 
clustering  survival  data  into  groups  of  patients  following 
homogeneous patient  pathways.  It  is  a powerful  method for 
determining  the  relationship  between  input  covariates  and 
outcome measures and their interrelations.  It  provides better 
understanding of heterogeneity of patient pathways stratified 
by covariates representing patient characteristics such as age, 
gender,  diagnosis  and  outcome measures  such  as  treatment 
outcome, destination at discharge. We can also use the model 
to  estimate the length of  stay of  a patient  based on his/her 
characteristics (age, gender, diagnosis) available at the time of 
admission. We can extend this approach by further growing 
the tree by partitioning the terminal nodes into subgroups with 
more  homogeneous  patient  pathways  based  on  covariates 
representing  outcome  measures.  Although  the  information 
about  the treatment  outcome is  not available at  the time of 
admission,  we  can  assign  the  probability  to  each  treatment 
outcome using cohort analysis. This information can be used 
for  estimating  bed  requirements  for  each  group  of  patients 
(following  homogeneous  patient  pathways)  and  capacity 
planning for the whole care system. As future work we will 
also assess the use of other mixture distributions in order to 
achieve  further  improvement  in  within  node  homogeneity. 
Presently  we  are  developing  application  of  our  model  for 
capacity planning in a stroke care unit.
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