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Abstract Optimising resources in healthcare facilities is
essential for departments to cope with the growing
population’s requirements. An aspect of such perfor-
mance modelling involves investigating length of stay,
which is a key performance indicator. Stroke disease
costs the United Kingdom economy seven billion pounds
a year and stroke patients are known to occupy long
periods of time in acute and long term beds in hospital as
well as requiring support from social services. This may
be viewed as an inefficient use of resources. Thrombol-
ysis is a therapy which uses a clot-dispersing drug which
is known to decrease the institutionalisation of eligible
stroke patients if administered 3 h after incident but it is
costly to administer to patients. In this paper we model
the cost of treating stroke patients within a healthcare
facility using a mixture of Coxian phase type model with
multiple absorbing states. We also discuss the potential
benefits of increasing the usage of thrombolysis and if
these benefits balance the expense of administering the
drug.
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1 Introduction

With more budget cuts expected within the next few years,
performance management within healthcare facilities is
more important than ever as there will be an increasing
demand on the resources available in the departments [42].
By modelling and analyzing healthcare facilities a more
efficient and cost-effective service may be achieved. The
United Kingdom Department of Health (UK DoH) intro-
duced the NHS Institute for Innovation and Improvement in
2005 to support a transformation of the United Kingdom
National Health Service (UK NHS) [9, 10]. Their aim was
to provide a world class healthcare service for the UK
through innovation, improvement and adoption of best
practice. Due to the number of different pathways patients
can take from admission to discharge, healthcare facilities
can be seen as part of a complex system [18]. Therefore, to
achieve a better healthcare service, comprehensive perfor-
mance analysis allied to key performance indicators can
help greatly with regard to improvement and transformation
of the service. Key performance indicators measure the
progress towards operational goals that have been set in
place, and include measuring length of stay (LoS),
mortality rates, readmission rates and day case rates [9].
Stroke disease is placing increased strain on healthcare
facilities due to its debilitating nature and complexity. In the
UK the disease is costing the economy £7 billion a year
[36] which is approximately 7% of the UK NHS budget [8].
This is mainly incurred by prolonged periods of time spent
in acute and long-term hospital beds and community care
[39]. This may be seen as an inefficient use of resources
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and much research has been carried out to decrease
patients’ length of stay and reduce health and social care
costs [37-39].

Thrombolysis is a therapy which uses a clot dispersing
drug for appropriate stroke patients. It can decrease the
short term hospitalisation of eligible stroke patients if
administered within 3 h after incident [38] and also has
the potential to increase the proportion of patients who are
discharged to their usual residence instead of going to
private nursing homes. To be eligible for thrombolytic
therapy in the UK a patient must have a diagnosis of
ischemic stroke and be 80 years old or less. Thrombolytic
therapy with intravenous altephase (rt-pa) has been licensed
for use since 2003 for treatment of ischemic stroke and is
currently administered to 9.5% of eligible patients in the
UK [36]. The small percentage of patients receiving the
treatment is partly due to thrombolytic therapy being
expensive to administer and it puts increased strain on the
resources of the department.

In this paper we will model the LoS of stroke patients
using a mixture of Coxian phase-type models with multiple
absorbing states. Our approach extends the methodology
presented in McClean et al. (2011), [25], to include costs
and applies it to stroke patients who are eligible to receive
thrombolysis. By changing the proportion of eligible
patients who receive thrombolysis we can determine
whether the benefits of thrombolysis outweigh the expense
of implementing an expensive drug. In addition, we have
developed a methodology to find the maximum cost that
the drug could be increased to before the benefits no longer
balance the cost of administration.

The paper is outlined as follows; in Section 2 a brief
description of some of the methods used in the past to model
LoS will be described, including Markov models which are
the basis for defining phase-type models used for the
analytic model in this paper. In addition, we will demonstrate
how these methods have been used to model some systems
within healthcare. For a more detailed account of how LoS
has been modelled in the past and the directions for the
future see Marshall, et al. [30]. Section 3 will describe the
methodology presented by McClean et al. (2011), [25],
before extending the model to include costs. The model will
be applied to eligible stroke patients in Section 4 before
presenting the results in Section 5. We will conclude the
paper in Section 6 and discuss any further work.

2 Modelling length of stay

Modelling LoS in hospitals is a key aspect of characterising
patient flow and has been used by many researchers to find
solutions for problematic healthcare departments and process-
es [5, 12-15, 22-32, 40]. In the past, methods such as
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mixed-exponential distributions, Markov models, compart-
mental models and phase-type distributions have been used
to model LoS in healthcare facilities. In this section we will
describe some ways in which LoS has been modelled in the
past and also provide evidence of where the models have
been applied within a healthcare environment.

2.1 Markov models

Markov models are characterised as a discrete or continu-
ous time process in which an individual, here a patient,
experiences a set of changes in a sequence of times or states
[20]. It is a commonly used approach for stochastic
modelling and is the basis for defining phase-type models
(see Section 2.4). To define a Markov model three
descriptors are required. The first is the state space, S,
which is the set of states and can include both transient and
absorbing states. A transient state is such that once reached
the probability of ever returning is less than one. An
absorbing state is one which, once reached, is never left.
The second descriptor is the initial state probability
distribution p. This de-termines which state will be the
initial state. The third descriptor is the infinitesimal
generator Q. which provides the transition rates between
states. In the infinitesimal generator the rows represent the
state we move from and the columns represent the state we
move to [11, 21, 34]. The diagonal entries of an
infinitesimal generator are negative and represent outflows
from that state. The in-finitesimal generator is also known
as the transition matrix. To see an example of a finite-state
continuous-time Markov chain where each of the descrip-
tors are provided see Example 1 as follows.

Example 1: Figure | provides an example of a Finite-State
Continuous-Time Markov Model with 3 tran-
sient states (1, 2 and 3) and 1 absorbing state
0).

Let S represent the state space. Therefore,
the state space is S= {0,1,2,3} where states 1,
2 and 3 are transient states and state 0 is an
absorbing state.

The initial state probability distribution p
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Some examples of when Markov models
have been used to analyse healthcare systems
are as follows. Taylor, et al. (1998) developed
a continuous-time Markov model which was
used to find the expected number of geriatric
patients for a cohort and which state they
resided in at any particular time [40]. Chris-
todoulou and Taylor (2001) used a hidden
Markov process with discrete states to find if
the covariates of geriatric patients had an
effect on the parameter estimates for an
exponential fit [5]. A continuous time Markov
model has also been used to model the LoS of
patients in residential and nursing home care
[32]. By including costs in a discrete Markov
model an estimate of the total cost to treat
geriatric patients was obtained by McClean, et
al. [22]. Also see [6, 16, 22-25, 40, 43] for
further examples.

2.2 Exponential and mixed-exponential distributions

The exponential distribution is the most commonly used
distribution in stochastic modelling, probably for the reasons
that it requires estimation of a single parameter and is
mathematically tractable. It is also the only distribution which
has the memoryless property. Consider a non-negative
random variable T which is distributed according to an
exponential distribution with parameter A>0. The probability
density function of 7 is defined as:

[0y =2

where >0 [20]. The memoryless property means that if a
patient’s lifetime can be represented by an exponential
distribution then the chance of an event, like discharge from
hospital, occurring at time ¢ is not affected by the events that
have occurred in the patient’s past, for example length of
stay in hospital. Using the exponential distribution to model
key performance indicators such as LoS allows for simple
expressions. However, the disadvantage of the distribution is
its lack of versatility due to its single parameter which can

Fig. 1 A finite-state continuous
time Markov model
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lead to a poor representation of the distribution when fitted
to a dataset [11]. Some healthcare processes are better
modelled using a mixed exponential distribution. The
probability density function for the length of stay distribution
is then given by:

k
S(@) = Zpie_lit
=1

where >0, p;, \;,>0 for i=1,...k and ipi =1.
i=1

However, in many situations a two term mixed exponential
distribution is sufficient to model the length of stay distribu-
tion and can adequately represent the heterogeneity [19].

Millard in 1989 [32] observed that occupancy time of
certain types of patients are better modelled using mixed
exponential distributions. He found that geriatric patients
flowing from acute to long term care are better represented
by a two term mixed exponential distribution than by a
single exponential distribution. Harrison [19] also uses
mixed exponential distributions to model the flow of patients
through a small private hospital in America. Mixed
exponential distributions can be seen as a special type of
phase-type model which will be explained in Section 2.4.

2.3 Compartmental models

Compartmental modelling is used to break down a
complex system into separate stages so that the relation-
ship between the stages can be analysed [24]. Such
compartmental models may be deterministic or stochastic;
in the latter case they can be described using a continuous
time Markov model. Therefore, compartmental modelling
is often used for modelling healthcare systems as it breaks
down the Markov states into compartments which can be
analysed separately, for example, modelling acute care and
long term care in hospital can be seen as a two
compartment model.

McClean and Millard (1998) describe how a three
compartment model can be used to model acute, rehabili-
tative and long stay care of geriatric patients [24]. Caulkins
et al. (2007) showed that a five state compartmental model
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could reasonably reproduce the trends of Australian illicit
drug use [4].

2.4 Phase-type models

Phase-type models were first introduced by Neuts in 1975
[33] and can be defined using the finite state continuous
time Markov model. Consider a finite-state continuous time
Markov model (see Section 2.1) with a state space S=
{0,1,2,...,k} where state 0 is an absorbing state. Let the
initial state probability distribution be p=(po, p1,---,Px)

where ‘]:P,- =1 and the infinitesimal generator is Q. The
i=1

general phase-type distribution is defined as the time to

absorption of the finite-state continuous-time chain, where

there is a single absorbing state and the process starts in a

transient state [11, 33].

Phase-type distributions are a very versatile class of
distributions and can be used to fit a distribution to
statistical data by matching moments or alternatively using
Maximum Likelihood estimation. They are also general-
isations of a number of well-known survival distributions
such as the exponential, special Erlang and general Erlang,
as well as providing a good approximation for many other
distributions [12, 27, 31]. In addition phase-type models
can replace numerical integration with matrix calculations
which are easier to compute [27].

Faddy and McClean (1999) used phase-type models to
model LoS data for geriatric patients [12]. Fackrell (2009)
gives an in-depth discussion on phase-type models and how
they have been applied to healthcare processes [11]. The
dis-advantage of phase-type models is that their generality
can make the parameter estimation difficult and so a sub-
class of phase-type distributions called Coxian phase-type
distribution were introduced [27].

2.5 Coxian phase-type models

Coxian phase-type models are a special type of phase-type
distributions where the transient states in the system are
ordered [27]. Therefore, to progress through the model the
individual, here a patient, can either move to the next
transient state sequentially or exit the system by passing into
the absorbing state. Figure 2 illustrates a Coxian phase-type
distribution and how a patient, can pass through the system.

The time spent by an individual, in each of the transient
states can be found using the probability density function:

f(t) = pexp{Qt}q

where p=(1,0,...,0) is the probability of entering each of
the transient states, q=(tt1,42,.--,44)" 18 the probability of
leaving the system, by being absorbed into the absorbing
state, from each of the transient states and

—(A1 + ) A 0 0

0 (At 1) A ' :

Q= 0 0 0
(e ) e
0 0 0 11

is the infinitesimal generator which provides all the
transition rates between states. We note that Q here is a
sub-matrix of the generator defined in Section 2.1 which
excludes the first row and column. The A;s describe the
transitions through the transient states, Si,...,S;, and the u;’s
represent the transitions into the absorbing state Sy ;.

Coxian phase-type distributions are commonly used to
model healthcare pathways as transition through the
transient states represents the progression of the patient
through care and movement to the absorbing state repre-
sents a discharge process, such as the patient being
discharged home from hospital or death. The two-term
mixed exponential distribution described in Section 2.1 can
be seen as a two-phase phase-type distribution. There are a
number of advantages of using Coxian phase-type models
to represent LoS, for example, they are mathematically
tractable and do not over-parameterise the models which
general phase-type distributions have a tendency to do [25].

Marshall and McClean (2004) used a Coxian phase-type
distribution to represent LoS and analysed whether certain
elderly patient character-istics contributed to them staying for
a certain length of time in hospital [27]. Marshall and Zenga
(2009) compared different approaches used to find the
parameter estimates of phase-type distributions [31]. They
found that the Quasi-Newton maximum likelihood approach
was better in terms of convergence while the Nelder Mead
algorithm performed better in terms of parameter estimation.
They also discussed the recent developments of Coxian
phase-type distributions within healthcare.

Fig. 2 A Coxian phase-type A
distribution Admission | Transient ’?'1> Transient ’?2> Transient | > —s Transient
to hospital State 1 State 2 State 3 State k
L} 73 s He
A

State k+1 (Absorbing State)
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2.6 Conditional phase-type model

Conditional phase-type models extend the original phase-
type model to include extra information about the random
variable; from a healthcare point of view this could be a
patient, [3, 27, 28]. This is accomplished by introducing a
conditional com-ponent to the model, which groups the
patients together using techniques so that patients with
similar characteristics are in the same group. The phase-
type distribution is then used to calculate the length of time
the patient spends in each phase of the model. The
techniques used to achieve this include, Classification and
Regression trees [5], Bayesian Belief Networks [16, 27]
and phase-type survival trees [14, 15]. Figure 3 shows that
the conditional component is implemented before the
Coxian phase-type distribution and includes some techni-
ques which can be used for the conditional component.
Marshall, et al. (2003, 2004) used a Bayesian belief
network, which is a probabilistic graphical model, as the
conditional component of a conditional phase-type model
when analysing the LoS of geriatric patients in hospital [27,
28]. McClean et al. (2005) also used a conditional phase-
type model when analysing geriatric patients. However, the
conditional component in this case was a clustering
technique where the patients were clustered based on the
number of phases or states the patient passed through [26].
In this paper we require to determine if the benefits of
thrombolysis balance the costs of treating patients and to see if
the number of eligible patients who receive thrombolysis
could be increased. To achieve this an analytic model is created
which extends the approach of using a mixture of Coxian
phase-type models with multiple absorbing states, as devel-
oped by McClean, et al. (2011) [25], to create a novel costs
model for stroke patients. This methodology uses multiple
Coxian phase-type models in parallel where each of these
(parallel) sub-models is a separate pathway determined by
patient characteristics including admission profiles and
similar LoS profile. Within this framework, we can therefore
incorporate the different parallel sub-models into a general
phase-type model, where each sub-model constitutes a
separate class (using the terminology of Markov models)

Fig. 3 The Conditional Coxian
phase-type distribution

Clustering

Conditional Component

Bayesian Network
Neural Network
Naieve Bayes Classifier
Classification Tree

Logistic Regression
Survival Analysis

and transitions between Coxian sub-phase-type models of
different classes are never possible [25]. Our methodology
then involves adding three costs together; the new drug cost,
the hospital cost and the community care cost. Using an
analytic approach allows for easy implementation and a fast
evaluation of basic changes that hospital managers could
make.

3 The analytical model

Our approach is an extension of the methodology described
by McClean, et al. (2011) [25], to include costs. Multiple
phase-type models are used to represent patients who follow
several different pathways through a healthcare facility. This
is achieved by clustering patients on arrival into homoge-
neous groups based on their LoS in hospital. For this paper
we have used survival analysis to cluster patients, as in [25],
but other approaches such as Bayesian belief networks [27,
28], conditional phase-type distributions or phase-type
survival trees can be utilised instead. By constructing a
phase-type model in this way we can overcome the
identifiability and estimation problems of phase-type models
while retaining their expressiveness and tractability.

In addition, the methodology includes several absorbing
states which allow for the inclusion of different community
care destinations such as rehabilitation and private nursing
homes. In the following subsection we define the mixture
of Coxian phase-type models with multiple absorbing states
described by McClean et al. (2011) [25], before extending
the approach to include costs in Section 3.2.

3.1 A mixture of phase-type models with multiple
absorbing states

C is defined as the number of transient classes and within
each class ¢ there are k. phaCses, forc=1,...,C.

Altogether there are k = 3" k, phases, where S, is the ith
c=1

phase of class ¢: ¢=1,...,C and i=1,...,k.. For this model

we have m absorbing states, Sy ;,...,S,. Transitions that

occur between the state S (i=1,2,...,k-1) and S, have

Coxian Phase-type Component

Transient ’31 Transient '12 Transient Transient
—> —> > —>
Statel State 2 State 3 State k
M l )53 l/‘:‘ Hr

State k+1 (absorbing phase) l
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the transition rate )\, and other transitions between states of
different transient classes are never possible. Transition can
also take place from S/ to any absorbing state S,,,; with
transition rate j;° for i=1,....k., j=1,...,m, c=1,...,C. An
example of a multiple phase-type model with multiple
absorbing states can be found in Fig. 4. For more
information on this model see McClean, et al. (2011), [25].

3.2 The analytic cost model

The total expected cost per patient in our approach is
calculated by adding together three separate costs; firstly
the new drug cost, which in this paper will be the cost of
administering thrombolysis, secondly the cost incurred in
hospital and thirdly the community care cost. The calcu-
lations for these three costs will be discussed in the
following subsections with the total cost equation found
in Section 3.2.4 followed by two examples in Section 3.2.5.
In addition, the methodology for finding the maximum cost
of the drug before we can no longer justify administering
thrombolysis is presented in Section 3.2.6.

In this paper the analytic model will be applied to stroke
data and used to assess the impact and costs of thrombol-
ysis on stroke patients. However the approach could be
used to analyse the impact and costs of any new drug
introduced within the healthcare service.

3.2.1 New drug cost

Let T be the additional fixed cost of an eligible patient

the drug is therefore given by:
G=or (1)

3.2.2 Hospital cost

Let b{d1(i=1,2,...,k.) be the expected cost of treatment per
patient in time (z7+df] in the transient state Sf of the
hospital, for example this could be the expected cost in
acute or long term care in hospital. For a mixture of
Coxian phase-type models the cost matrix is therefore
defined as:

b, 0 ... 0
-0

: . .0

0 ... 0 bc

where b, = (55, 55,...,55,)".
The vector of expected cost per patient in each state in
hospital in the interval (7,¢+dt] is then given by:

h(7) = p exp(Q¢)Bdt

where p=(p1,p2,...,.pc) is the entry row vector, partitioned
into C sub-vectors. The cth sub-vector, p. has first element
m. which is the probability of entering phase 1 of the
corresponding class and the other elements are zero.
Therefore, p.=(7.,0,...,0).

Q is the transition matrix where,

receiving a new drug compared to the standard treatment Q O 0
for that medical complaint in the healthcare facility. Let o 0 Q

. . . .. _ >
be the probability of an eligible patient receiving the drug. Q= . )
This will be dependent on the resources that are available to 0
the department. The expected cost per patient of receiving 0 0 Q
Fig. 4 An example of Class1
pathways/classes through a 2!
healthcare facility S,=Acute i S;= Long

ﬂél

T,
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which consists of the sub-transition matrices corresponding
to each class.

Q. is then the transition matrix corresponding to class C
and is defined as:

—(A5 + 2o u;) A o - 0
0 (A5 +2oms) A5
Q= 0 VR
: B e Ay
0 0 0 =Y,

To find the total cost for each state, given by the column
vector h(t), in the hospital we integrate over the interval
[0,00] to give h.

h= | pexp(Qt)Bdt = [pexp(0t)B]y'= —pQ~'B (2)

To find the total expected cost in hospital, H, we then
multiply the vector of costs h by e which is a vector of & 17s.
Therefore the total cost of hospital care is calculated using:

H = —pQ 'Be. (3)
3.2.3 The cost of community care
Let a be the limiting vector of probabilities of eventual

absorption into the absorbing phase Sy for i=1,...,m. This
is found using the equation:

C
a=-> pQ:q,
c=1

given in [20]. The vector pc is the entry row vector to class
C and matrix Q¢ is the transition matrix corresponding to
class C (see Section 2.3) and q=(q',q?,...,q%)’ where,

uG e,
Q= :
Hi Hiom

¢ c

is the matrix of absorbing probabilities for the corresponding
classes.

Fig. 5 A system with one class
containing two transient states

The cost of treatment in each of the absorbing phases is
dy+;. Therefore the cost of community care is given by:

w =aD 4)

Where D is the cost matrix:

A1 0 0
D= 0 dm+2
: . . 0
0 0 dyyi

To find the total cost of community care the vector w is
multiplied by e which is a vector of m /5. Therefore, the
total cost of community care is:

W = aDe (5)
3.2.4 Total cost
Putting Egs. 1, 3 and 5 together we find that the total

expected cost per person for patients who are eligible to
receive a new treatment is given by:

¢ =ar — pQ 'Be + aDe. (6)
ie.
c=G+H+W (7)

3.2.5 Hllustrative examples

In the following section the approach has been applied
to a simple two phase phase-type model with one
absorbing state in Example 2. In addition it has also
been applied to a model which has two classes each
consisting of two transient states and two absorbing
states in Example 3.

Example 2: We consider the cost of a patient who is
eligible to receive a new treatment moving
through a system with two transient states S,
(Acute care) and S, (Long term care) and one
absorbing state S; (Discharge/Death). See

Arrive

and one absorbing state

(Fig. 5.).
_|S;=Acute A |s,=Long
care term care
Mo
Ha S,=Discharge/
Death
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Using Eq. 1 the expected cost of this
patient receiving the initial treatment is:

G =o*r

In this case the initial probability is p=
(1,0). The transition matrix is

Q= [—(145141) —/LJ’

absorbing state, is d. Using Eq. 4 we find that the cost of
community care is:

w=1%=d

as the probability of the patient going to the absorbing state
death/discharge is 1 and the cost of care in this absorbing
state is d.

Combining these equations we find that the total
expected cost of a patient is:

c=ar+ (btT) + by T>) +d

Q) A0+ ) Example 3: We consider the total cost of treatmg patlents
Q = 0 “1/u when there are two classes, ¢; (receiving the
: drug) and ¢, (receiving the standard treat-
and B=(b,b,)’". ment). The extra cost of receiving treatment
So using Eq. 2 the cost of treatment in the hospital is: in class 1 is T and there is no extra cost of
receiving treatment in class 2. Within each
1 M by class there are two transient states S; (Acute
h=- ( Q) Gy ) ( by ) Care) and S, (Long term Care) in hospital and
two absorbing states S; (Discharged Home)
__h n byl — b Ty + byl T, and S, (Death) for community care. (See
Atuy A+ Fig. 6).
The extra cost of the new treatment in this
Where T is the mean duration in S;, 7, is the mean exzr?lple S 5 :b'(T'T' wor of soine to (b
duration in Sy, A = —/ is the probability that the patient 1¢ proba 1.1ty vector ot gomng 1o e
. TH Lo . transient states in the hospital after receiving
enters S, and b; is the unit cost per patient in S,. In this case .
. . either the new treatment or standard treatment
we only have one absorbing state so the expansion of Eq. 3 . .. ..
. is p=((1,0),(1,0)). The transition matrix is:
is a scalar.
The cost of going to the community care, which is the
(—(li + iy + i) A ) 0
1 1
Q= 0 — (2 + 122) ) ,
0 (_(/11 + 15y + 1) 2/11 X )
— (4 + 1122)

and the cost of being in each of the transient states in the
hospital is:

bl
(bé> 0
B= 2
0 bl

(%)

Therefore, the total cost in hospital is:

Y i
Al ol A+l ) (4 + eby)
bi b3

+ +
A+l +uly, A+ 4 ) (3, + 13)

@ Springer

The probability of going to each of the absorbing states
(community care) is:

( H 111 #%2 )
q= #%1 #222
( H 121 /152 )
Hyr  Hp
The cost of treatment in each of the states:
_(di 0
oo (4 )

Using Eq. 4 the cost of community care is therefore,
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Fig. 6 Two classes each
consisting of two transient states
and two absorbing states
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By adding together G, H and W the total cost in Example
4 can be found.

_ b! biA!
c=oar+ ! -
A uy g (A ) (e, +a1d,)
2 2,2
+ 2 I:l —+ 2 bzz)Ll 22
Aty g, Aty +3,) (15, +15,)
u A
dl( 1 + 145
Aty gy ) (3, +y)
2 20
H Ak,
+ = + +
ALt i (At ) (3, +413,)

Al
d ( Hiy 4 1+
2 A+, (g ) (15, 43,

)
+ +
Ay it

— l%ﬂ%l . )
(At Haaty) (3, +15,)

3.2.6 Maximum cost of new drug

Using the total cost per person we have also been able to
calculate the maximum cost of thrombolytic therapy before
the benefits no longer outweigh the costs of administration.

Let prand pyr be the initial probability vectors to the
system when a proportion of patients receive the thrombo-
lytic therapy and when no patients receive the thrombolytic
therapy respectively. Let Q7 ' and Qu7 ! be the transition
matrix when a proportion of patients receive the thrombo-
lytic therapy and when no patients receive the thrombolytic
therapy respectively. Also, let ar and ay7 be the limiting
vector of probabilities of eventual absorption when a
proportion of patients receive the thrombolytic therapy

and when no patients receive the thrombolytic therapy
respectively.

The total cost when a proportion of patients receive
thrombolytic therapy is ¢y where:

(3)

The total cost when no patients receive thrombolytic
therapy is cyrwhere:

¢r=at—prQr 'Be+arDe

©)

When the thrombolysis cost is the same as the cost when
there is no thrombolysis administered crwill equal ¢yr,
therefore,

CNT = —pNTQNTilBe + ayrDe

a7 —p;Qr 'Be+arDe = —py,Qyy 'be
+ ayrDe

(10)
This simplifies to

at= —pNTQNT_lBe + ayrDe + pTQT_lBe —arDe

Therefore,

T= ((pTQT71 - pNTQNT71>Be + (anr — 3T)De)/0’

4 The application

This methodology was applied to 5 year retrospective data
for patients admitted to the Belfast City Hospital with a
diagnosis of stroke (cerebral haemorrhage—bleed in the
brain; cerebral infarction—clot on the brain; transient
ischemic attack—minor stroke; and unspecified or undeter-
mined type of stroke). The data was taken from the Patient
Administration System (PAS)—a computerized system that
records patient activity relating to inpatients, outpatients,
and waiting lists, A&E and case note tracking. The data
contained information including age, gender, diagnosis,
LoS and destination on discharge. There were 154 (7.8%)
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patients admitted with cerebral haemorrhage, 655 (33%)
with cerebral infarction, 425 (21.4%) with transient
ischemic attack and 751 (37.8%) with an unspecified stroke
type.

Thrombolysis is a therapy which uses a clot dispersing
drug. It has the potential to reduce the short term
institutionalisation of certain types of stroke patients.
Although the method described above can be used for all
stroke patients, in this paper we will concentrate on patients
who are eligible to receive thrombolysis (see Section 1).
The number of patients who receive the new drug,
thrombolysis, is dependent on the resources that are
available. This allows us to determine if the benefits of
thrombolytic therapy balance out the cost of administering
the expensive drug. Once the dataset was analysed and the
patients who were eligible to receive the drug were
identified, two new groups were created, ‘Receive Throm-
bolysis’ and ‘Don’t receive Thrombolysis’.

The methodology described in Section 3 is a mixture of
Coxian phase-type models with multiple absorbing states as
there are many treatment pathways a patient can take
through a hospital or department. We here use survival
analysis to cluster the LoS data of patients into homoge-
neous groups on arrival. Survival analysis is defined as the
measure of time from a starting point to when an event
occurs, for example this could be the time from when a
patient is admitted to hospital to the time the patient is
discharged. LoS data are ideally suited to survival analysis
as they tend not to have a Gaussian distribution and are
often censored, which means that other statistical
approaches, typically based on Gaussian assumptions
cannot be applied to them [14]. Survival analysis was
performed on the patients who were eligible to receive the
thrombolytic therapy using LoS and destination as outcome
measures. Survival probabilities were found using Kaplan-
Meier estimation and log ranks tests to determine if the LoS
in hospital affected the patients discharge destination. The
Kaplan-Meier estimates can be seen in Fig. 7 [25].

The log rank test showed that the relationship between
LoS of patients who were eligible to receive thrombol-
ysis and their discharge destination was significant (x?
statistic 29.22, p=0.000), therefore, six new absorbing
states were created to incorporate the possible destinations
(usual residence, private nursing home and death for those
who receive thrombolysis and usual residence, private
nursing home and death for those who do not receive
thrombolysis).

Usual residence for those who received and did not
receive thrombolysis were further split into those who went
to their usual residence and those who went to their usual
residence but also require rehabilitation from the South-
East Belfast stroke scheme. A diagram showing how the
model is structured can be found in Fig. 8.
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Fig. 7 The Kaplan-Meier estimates for destination distributions

After the pathways have been established, a penalized
likelihood approach was used to find the optimal number of
phases required to represent the distribution of patients in
hospital for each pathway. Such an approach includes a penalty
which prohibits the parameters from being over-fitted [17].

Maximum likelihood for a phase-type model with a
given number of phases was calculated using the freely
downloadable package EMpht [2, 35] with the
corresponding length of stay data. EMpht uses the
expectation-maximisation (EM) algorithm [7] and is a very
efficient tool for parameter estimation of phase-type
distributions [11]. Our penalised likelihood approach
progressively increases the number of phases (K) until the
Akaike information criterion (AIC) achieves a minimum.
For each value of K:

AIC = 2C — 2(L(0)|X),

where C are the degrees of freedom (number of free
parameters of the distribution) and L(©|X) is the maximised
log likelihood function for C parameters [1]. As each phase,
except the last one, requires only 2 parameters for
estimation and the last phase requires one parameter
estimation, the degrees of freedom in our model are C=
2 K-1[13, 16, 25] when there are K phases.

For eligible stroke patients it was found that two phases
in the Coxian phase-type distribution were sufficient to
model LoS in each class. This may be due to clustering the
data thus mitigating against heterogeneity. In this model we
end up with eight absorbing states namely usual residence
for those who receive and do not receive thrombolysis each
of whom have two options; to go to their usual residence
without any extra treatment or go to their usual residence
with a rehabilitation program. Therefore the 8 absorbing
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Fig. 8 A diagram of how
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states are: usual residence, usual residence with rehabilita-
tion programme, private nursing home and death for those
who receive thrombolysis and usual residence, usual
residence with rehabilitation program, private nursing home
and death for those who do not receive thrombolysis.

Although an exact value for the extra cost of thrombolytic
treatment per patient is hard to find, Sandercock (2006), [38],
suggests that a reasonable approximation is £750 per person
which includes the cost of the drug at £450 and extra time
required by more experienced staff. The mean LoS in
hospital is based on the Belfast City Hospital records and
for those patients who receive thrombolysis the LoS in acute
care is estimated to be reduced by 2 days or 15% [39]. The
cost of acute care is approximated as £164.80 per person per
day and on-going care costing £114.80 per person per day
[36]. For patients admitted to usual residence with rehabil-
itation the estimated amount of time needed in rehabilitative
care is 26 h (data from stroke patients admitted to the South-
East Belfast stroke scheme) and a cost of £38 per hour of
client contact is assigned. The mean length of time that a
patient stays in private nursing home is estimated to be
11.9 months [3] so the cost is £2490.76 per month. We
estimate the time spent in private nursing home using
mortality rates. This is because most patients leave institu-
tional care by death and although a few are admitted back to
hospital they are usually terminal patients [41].

5 The results

The results (Fig. 9) show that as the proportion of eligible
patients who receive thrombolysis increases the total cost

per patient decreases. When no patients receive thrombol-
ysis the total cost per person is £6363.2 and when 50% of
eligible patients receive thrombolysis the total cost per
person is £6252.4 which is a saving of £110.8 per person.
This indicates that the benefits of thrombolysis, which
reduces the LoS in hospital and the proportion of people
who go to private nursing homes, outweigh the expense of
administering the drug.

This model shows that by increasing the proportion of
people who receive thrombolysis the department can
become more efficient and cost-effective. Using Eq. 11
the maximum cost of thrombolytic therapy before the
benefits no longer outweigh the costs of administering the
drug is £971.59. In other words, using the expected cost we

Total Cost per patient as the proportion of eligible

patients who receive thrombolysis is increased
6380 . T
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6340 - —

6320 - —

6300 - —

Cost per patient

6280 - —

6260 - —

L
025 03

6240 ‘ ‘ ‘ ‘
0

L L L
005 01 015 0.2 035 04 045 05

Proportion of people who receive thrombolysis
Fig. 9 The cost per person as the proportion of eligible patients who

receive thrombolytic therapy increases
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would still administer treatment as long as the cost of the
treatment remained under £971.

6 Conclusions

The approach presented in McClean et al. (2011) [25], can
be used to incorporate extra absorbing states and pathways
through the hospital to give a realistic representation of
patient flow through a healthcare environment. With a
growing emphasis on the efficiency and cost-effectiveness
of healthcare, the current model extends our previous
approach [25] and looks more closely at patients who are
eligible to receive a clot dispersing therapy called throm-
bolysis, which decreases the short term hospitalisation of
eligible stroke patients. By introducing costs to the model
we have shown that the extra expense of administering
thrombolysis is balanced out by the decreased costs in
hospital and community care. The model uses survival
analysis to cluster the patients into groups before they move
through a phase-type distribution and into absorbing phases
which could be usual residence, usual residence with
rehabilitation, private nursing home and death. Costs are
attached to each part of the process so that the total cost per
patient is found. By increasing the proportion of eligible
patients who receive thrombolysis we can see a gradual
decrease in the cost per person. However, if the cost of
thrombolytic therapy is increased to a value greater than
£971.59 then the benefits of the drug will no longer balance
the cost of administering the drug and new analysis will
need to be carried out to assess the cost effectiveness in
terms of cost per improvement in quality of life.
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