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Abstract. We present a formalization of Kanger’s types of rights in the context
of interacting two-party systems, such as contracts. We show that in this setting
basic rights such as claim, freedom, power and immunity can be expressed in
terms of (possibly negated) permissions and obligations over presence or absense
of actions, and that the set of atomic type rights is different from Kanger’s original
proposal.

1 Introduction

Deontic modalities such as permission and obligation have been debated exhaustively
in the literature, and although a final consensus has not been achieved, there is at least
agreement over their basic properties. This is not the case with more intricate concepts
such as Hohfeld’s claim right, power, freedom and immunity [1].

Kanger et al. [2] attempted to clarify Hohfeld’s modalities, but a lack of formal
underlying semantics somewhat limits the work. Other work, surveyed in Section 6,
addressed this aspect, yet not always fully formalising the intricate modalities and other
derivative ones, such as intention and causality, which arise in this context. Part of the
difficulty, we believe, can be addressed if the context is limited. We restrict ourselves to
a setting that is both specific and interesting: interacting two-party systems, also com-
monly known as contracts. Contracts are prevalent enough so their analysis becomes of
practical importance, yet restrictive enough so there is a clear boundary for the analysis.
In such systems, the interactive nature of the parties gives rise to potential cooperation
and interference — allowing us to reach conclusions separately for both the individual
parties and the result of their combination.

Furthermore, in Kanger et al. [2] rights are state-based, and dependant on a notion
of causality which interacts with directed rights in a non-obvious manner. For instance,
it is not immediately clear how a statement such as ‘it shall be that party p causes
S’ is to be interpreted in a system where, for instance, the other party can interfere
with p’s intention to bring about state S. However, in computer science, concurrent and
synchronous composition have been studied for a number of decades, and address these
notions from an action-based perspective.
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In [3] we have looked at how synchrony can be applied in a contract setting, using
a formal automaton-based model of interacting two-party systems in which the parties
synchronise over a set of actions. In this paper we extend the model to be able to study
how Kanger’s rights apply in such a setting. The synchronous nature of composition
adopted, which forces the parties to agree on actions to perform, brings about a setting
subtly different from the one originally presented in Kanger et al. [2], in particular
because rights and obligations affect both parties. E.g., if a party has an obligation
to perform a particular action, then the other party must provide her with a way of
achieving this. Just as in Kanger et al., we proceed to study the different compound
types of rights in this setting. Unsurprisingly, our different, mostly stronger, modalities
bring to light further conflicts in contract clauses, and thus induce a different set of
possible rights.
The main contributions of this paper are:

– Extending the notion of two-party system contracts to deal with (i) absence of ac-
tions; (ii) mutually exclusive actions; (iii) conflicts.

– Giving formal semantics to Kanger’s types of right in the context of action-based,
interacting two-party systems.

– Showing that the number of atomic types (maximally consistent sets of rights) is
reduced in this context.

The rest of the paper is organised as follows. Next section formalises our notions of
automata, deontic operators, contracts and contracts’ strength, which allows us to show,
in Section 4 that some contracts cannot be satisfied at the same time and thus lead to
a conflict. In Section 3 we interpret Kanger’s work in the setting of interacting two-
party systems and compare Kanger’s modalities strength diagram with ours, explaining
why they differ, comparing atomic types under both proposals in Section 5. Finally, in
Section 6 we discuss related work, and conclude in Section 7.

2 Regulated Two-Party Systems

2.1 An Automata-Based View

To enable direct reasoning about contracts, one requires a model in which the two par-
ties somehow interact to agree on which actions to perform. We use the notion of syn-
chronous composition [4] to model such behaviour. Furthermore, to be able to deal with
concurrent obligations (for instance, one party being obliged to perform one action and
the other being obliged to perform another), we adopt multi-action labels on transitions,
since if we do not, it would be impossible not to violate a contract in which both parties
have different obligations at the same time.

Definition 1. A multi-action automaton S is a tuple 〈Σ, Q, q0, →〉, where Σ is the
alphabet of actions,Q is the set of states, q0 ∈ Q is the initial state and→⊆ Q×2Σ×Q
is the transition relation. We will write q A−→ q′ for (q, A, q′) ∈→, next(q) to be the set of
target state and action set pairs of transitions outgoing from q (defined to be {(A, q′) |
q

A−→ q′}) and acts(q) to be the set of all action sets on the outgoing transitions from



q (defined to be {A | ∃q′ · q A−→ q′}). We say that an automaton is total, if for every

q ∈ Q and A ⊆ Σ, there is a q′ ∈ Q such that q A−→ q′.
The synchronous composition of two automata Si = 〈Qi, q0i, →i〉 for i ∈ {1, 2}

(both with alphabet Σ) synchronising over alphabet G, written S1‖GS2, and is defined
to be 〈Q1 × Q2, (q01, q02),→〉, where → is the classical synchronous composition
relation defined below:

q1
A−→1 q

′
1

(q1, q2)
A−→ (q′1, q2)

A ∩G = ∅
q2

A−→2 q
′
2

(q1, q2)
A−→ (q1, q

′
2)

A ∩G = ∅

q1
A−→1 q

′
1, q2

B−→2 q
′
2

(q1, q2)
A∪B−−−→ (q′1, q

′
2)

A ∩G = B ∩G 6= ∅

We can now define contracts to be automata with each state tagged with the contract
which will be in force at that point. The contracts will be able to refer to both presence
and absence of an action. Given an alphabet of actions Σ, we write Σ! to refer to the
alphabet extended with actions preceded with an exclamation mark ! to denote their

absence: Σ!
df
= Σ ∪ {!a | a ∈ Σ}. We use variables x and y to range over Σ!. If x is

already an inverted action x =!a, then expression !x is interpreted to be a.
Contract clauses are either (i) obligation clauses of the formOp(a) orOp(!a), which

say that party p is obliged to perform or not perform action a respectively; or (ii) per-
mission clauses which can be either of the form of Pp(a) or Pp(!a) (party p is permitted
to perform, or not perform action a respectively)., or delayed permission δX≤n(π) (which
gives permission π after at most n steps consisting solely of actions in X .

Definition 2. A contract clause over alphabet Σ is structured as follows (where action
x ∈ Σ!, party p ∈ {1, 2}, set of actions X ⊆ 2Σ!, permission π ∈ Permission):

Clause ::= Op(x) | Permission
Permission ::= Pp(x) | δX≤n(π)

We write p to refer to the party other than p.
A contract automaton is a total and deterministic multi-action automaton
S = 〈Q, q0, →〉, together with a total function contract ∈ Q → 2Clause assigning a
set of clauses to each state. We use CA to refer to the class of contract automata.
Two contract automata are said to be structurally isomorphic if they are structurally
identical automata (they have the same set of states, initial state and transition relation)
but may have different contract functions.

We can now define a regulated two-party system in terms of multi-action automata.

Definition 3. A regulated two-party system synchronising over the set of actions G is
a tuple R = 〈S1, S2〉AG, where Si = (Σi, Qi, q0i,→i) is a multi-action automaton
specifying the behaviour of party i, and A is a contract automaton over alphabet Σ1 ∪
Σ2.



The behaviour of a regulated two-party system R, written [[R]], is defined to be the
automaton (S1‖GS2)‖ΣA. To make states in such systems more readable, we will write
((q1, q2), qA) as (q1, q2)qA .

A regulated two-party system is well-formed if S1‖GS2 never deadlocks: ∀(q1, q2) ·
acts(q1, q2) 6= ∅.

In the rest of the paper we will assume that all systems are well-formed, i.e., do not
deadlock. One way of guaranteeing this may be by having all system states provide a
transition with the empty action.
Also note that the totality of the contract automaton guarantees that the system be-
haviour is not constrained, but simply acts to tag the states with the relevant contracts
at each point in time.

2.2 Contract Satisfaction

Given a two-party system (S1, S2), and a contract automaton A, we can now define
whether or not either party is violating the contract when a particular state is reached
or a transition is taken. As we will see, a dual-view of violation, identifying both bad
states and bad transitions, is necessary in a deontic context. We will look at the different
deontic operators and define the set of violations induced for each of them.

Definition 4. FunctionsOp(qA) and Fp(qA) give the set of actions respectively obliged
to be performed and obliged not to be performed by party p. They are defined in terms
of the contract clauses in the state.

Op(qA)
df
= {a | Op(a) ∈ contract(qA)}

Fp(qA)
df
= {a | Op(!a) ∈ contract(qA)}

Action set A is said to be viable for party p in a contract automaton state qA, written
viablep(qA, A), if (i) all her obliged actions are included inA but; (ii) no actions which
the party is obliged not to perform are included A:

viablep(qA, A)
df
= Op(qA) ⊆ A ∧ Fp(qA) ∩A = ∅

Since we would like to be able to place blame in the case of a violation, we
parametrise contract satisfaction and violation by party.

It is also worth noting that while obligation to perform an action, for instance, is
violated in a transition which does not include the action, permission is violated by a
state in which the opportunity to perform the permitted action is not present. The satis-
faction predicate will thus be overloaded to be applicable to both states and transitions.
The predicate satAp (X) will denote that the contract automaton A, reaching state X or
traversing transition X , does not constitute a violation for party p. X ranges over states
and transitions in the composed system. When A is clear from the context, we sim-
ply write satp(X). We start by defining separate satisfaction predicates for the deontic
operators.



Permission. If party p is permitted to perform shared action a, then the other party p
must provide pwith at least one viable outgoing transition which contains a but does not
include any forbidden actions. Permission to perform local actions cannot be violated.
In the case of a single permission, this can be expressed as follows:

(q1, q2)qA `p Pp(a)
df
= a ∈ G =⇒ ∃A ∈ acts(qp), A′ ⊆ Gc · a ∈ A∧ viablep(qA, A∪A′)

Similarly, if party p is permitted to not perform action a, then the other party p must
provide p with at least one viable outgoing transition which does not include a nor any
forbidden action. Permission to perform local actions can never be violated. In the case
of a single permission, this can be expressed as follows:

(q1, q2)qA `p Pp(!a)
df
= a ∈ G =⇒ ∃A ∈ acts(qp), A′ ⊆ Gc · a /∈ A∧ viablep(qA, A∪A′)

While actual obligation violations occur when an action is not performed, violations
of a permission occur when no appropriate action is possible. In this paper we give a
semantics that tags as a violation a state in which one party is permitted to perform an
action, while the other provides no way of actually doing so. For any other parameters,
the permission is otherwise satisfied.

Delayed Permission. We use the notion of delayed permission, written δA≤n(π) to de-
note that party p has permission π, although up to n actions from action set A may
occur before this permission is granted. This can be defined recursively over n in the
following manner:

(q1, q2)qA `p δA≤0(π)
df
= (q1, q2)qA `p π

(q1, q2)qA `p δA≤n+1(π)
df
= (q1, q2)qA `p π∨

∀(A′, (q′1, q′2)q′A) ∈ next((q1, q2)qA) · A′ ⊆ A ∧ (q′1, q
′
2)q′A `p δ

n+1
≤A (π)

To combine all permissions in a state, we simply take the conjunction of all conditions:

satPp ((q1, q2)qA)
df
= ∀Pp(x) ∈ qA · (q1, q2)qA `p Pp(x)

All transitions are taken as satisfying the permission satisfaction function.

Obligation. Obligation brings in constraints on both parties. Given that party p is
obliged to perform action a in a state means that (i) party p must include the action
in any outgoing transition in the composed system in which it participates; and (ii) the
other party pmust provide a viable synchronisation action set which, together with other
asynchronous actions performed by p, allows p to perform all its obligations, positive
and negative. Obligation to not perform action a (Op(!a)) can be similarly expressed.
We combine all positive and negative obligations in the following definition:

satOp ((q1, q2)qA
A−→ (q′1, q

′
2)q′A)

df
= viablep(qA, A)

satOp ((q1, q2)qA)
df
= ∃A ∈ acts(qp), A′ ⊆ Gc · viablep(qA, A ∪A′)

The satisfaction constraint for transitions is only applicable if A is not an action set
performed asynchronously by p. For other parameters, satOp (X) is true.



General contract satisfaction. It is defined as: satp(X)
df
= satPp (X)∧ satOp (X). Based

on this, we can now define correctness of a regulated two-party system.

Definition 5. A party p is said to be incapable of breaching a contract in a regulated
two-party system R = 〈S1, S2〉AG, written breachIncapablep(R), if p cannot be in vio-
lation in any of the reachable states and transitions of R.

Note that being breach-incapable is stronger than just being compliant for one spe-
cific run — breachIncapablep(R) means that there is no possible trace of R, in which
p breaches the contract.

2.3 Other Modalities

Definition 6. Permissions and obligations are duals under a notion of norm opposites
and action absence. We define the opposite of permission and obligation !Pp(x) and
!Op(x) syntactically in the following manner:

– Party p not being permitted to perform an action is equivalent to p being obliged

not to perform the action: !Pp(a)
df
= Op(!a) !Pp(!a)

df
= Op(a)

– Party p not being obliged to perform an action is equivalent to p being permitted

not to perform the action: !Op(a)
df
= Pp(!a) !Op(!a)

df
= Pp(a)

It should be noted that we are equating lack of permission to do a to an obligation to
perform an action set which does not include a. Although this seems to go against the
intuitive idea of letting a party do nothing as a way of not violating lack of permission,
note that (i) since transitions carry sets of actions, the empty set of actions is a way of
satisfying the obligation; and (ii) well-formedness (see Definition 3) of the parties en-
sures that progress is always possible thus making the formulation of lack of permission
conform to our expectations.

It is interesting to note that in a two party system there are alternative notions of
opposites to permission and obligation. Consider party p not being permitted to perform
action a. Apart from the interpretation we gave, in which the norm places the onus on
party p not to perform a, an alternative view is to push the responsibility to p and
interpret it as: party p may not provide a viable action set which includes a. This is
distinct from !Pp(a) (and indeed from the other modalities we have). Similarly, consider
party p not being obliged to perform action a. The interpretation we adopted permits
party p to not perform a, but once again, alternative definitions may be adopted. One
possibility is to push the responsibility to p and interpret it as: party p must provide a
viable transition which does not include a. These duals, in which the outer negation of
a norm also corresponds to shifting of responsibility give an interesting alternative view
of norm opposites in a two-party system. Another interesting alternative would be to
interpret these negations as modalities whose only effect is the cancelling of existing
clauses. We will not explore these alternative modalities any further in this paper, since
the modalities we adopt (i) more closely correspond to the Kanger et al. approach;
and (ii) provide a clean notion of conflicts, as discussed in Section 4. Should they be
needed for a particular application, any of the above mentioned interpretations could be



included as alternative type of negation. One of the advantages of clear formal semantics
is that there is no need to dispute the meaning of a given term, since different ones can
be defined and the appropriate one be picked to convey specific meanings. Prohibition
can now be defined as the dual of permission:

Definition 7. Prohibition contract clauses Fp(a) and Fp(!a), prohibiting party p from
performing and not performing a respectively, can be expressed in terms of permission:

Fp(a)
df
= !Pp(a) Fp(!a)

df
= !Pp(!a)

These definitions allow us to express prohibition in terms of obligation not to perform
an action:

Proposition 1. Prohibition to perform an action is equivalent to obligation not to per-
form the action: Fp(x) = Op(!x).

2.4 Contract Strength

We can now define strictness relationships over contracts.

Definition 8. A contract automaton A′ is said to be stricter than contract automa-
ton A for party p (or A said to be more lenient than A′ for party p), written
A vp A′, if for any systems S1 and S2, breachIncapablep(〈S1, S2〉A

′

G ) =⇒
breachIncapablep(〈S1, S2〉AG). We say that two contract automata A and A′ are equiv-
alent for party p, written A =p A′, if A vp A′ and A′ vp A. We define global
contract strictness A v A′ to hold if A vp A′ holds for all parties p, and similarly
global contract equivalence A = A′.

Proposition 2. The relation over contracts v is a partial order.

Structurally isomorphic contract automata provide a useful proof technique:

Proposition 3. Given two structurally isomorphic contract automata A and A′, A v
A′ if and only if, for any state or transition X , satA

′

p (X) =⇒ satAp (X).

This proof principle can be proved to hold by showing that (i) the automata obtained
from the synchronous composition with the two contracts are structurally identical; and
(ii) using the definition of breach incapability. The principle can be used to prove that
contract automata are monotonic:

Proposition 4. Contract automata are monotonic: given two structurally isomorphic
contract automata A and A′, with contract clause functions contract and contract′

respectively, which satisfy that ∀q · contract(q) ⊆ contract′(q), it follows thatA v A′.

The proof follows from the observation that satp(X) is essentially a conjunction of
a proposition for each contract clause in the state. Hence, satA

′

p (X) (which has a larger
set of clauses) implies satAp (X). Applying Proposition 3 to this observation completes
the proof.

Although contracts are expressed as automata, we would like to be able to com-
pare individual clauses. To do this we will need to relate contract automata which are
equivalent except for a particular clause replaced by another.



Definition 9. Given two contract clauses C and C ′, the relation over contract au-
tomata [C → C ′] ⊆ CA×CA relates two contract automataA andA′ ifA is equivalent
to A′ except possibly for a number of instances of clause C replaced by C ′.

We extend the notion of strictness to contract clauses. We say that clause C ′ is
stricter than clause C for party p, written C vp C ′, if for any contract automataA and
A′ such that (A,A′) ∈ [C → C ′], it follows that A vp A′. We similarly extend the
notion of strictness for all parties v.

The following proposition allows us to use the proof principle given in Proposition
3 for reasoning about clause strictness:

Proposition 5. Given clauses C and C ′, any two contract automata related by [C →
C ′] are structurally isomorphic.

Theorem 1. Obligation is stricter than permission: (i) Pp(a) v Op(a); and (ii)
Pp(!a) v Op(!a).

Proof. We present the proof of (i) — the proof of (ii) is very similar. We need to prove
that for any contract automata A and A′ such that (A,A′) ∈ [Pp(a) → Op(a)], then
it follows that A v A′. Using Proposition 5, we know that A and A′ are structurally
isomorphic, allowing us to apply the proof principle of Proposition 3.

We thus have to show that satA
′

p (X) implies satAp (X). Since the permission in A
which is replaced by an obligation, never yields violations for party p nor for any party
on transitions, it suffices to prove that this implication holds on states for party p.
The satisfaction function for p’s obligations in states is:

∃A ∈ acts(qp), A′ ⊆ Gc · viablep(qA′ , A ∪A′)
If a ∈ G, and since a ∈ Op(qA′), we can conclude that a ∈ A:

a ∈ G =⇒ ∃A ∈ acts(qp), A′ ⊆ Gc · a ∈ A ∧ viablep(qA′ , A ∪A′)
Furthermore, since qA has less obligations than qA′ , viability for qA′ implies viability
for qA:

a ∈ G =⇒ ∃A ∈ acts(qp), A′ ⊆ Gc · a ∈ A ∧ viablep(qA, A ∪A′)
Hence, the satisfaction function for the permissionPp(a) holds and thus, by Proposition
3 we can conclude that A v A′.

Theorem 2. For synchronised actions, obligation for one party is stricter than permis-
sion for the other: (i) Pp(a) v Op(a); and (ii) Pp(!a) v Op(!a).

Proof. As in the previous theorem, we observe that Pp(a) can only yield violations for
states and for party p.

Observe that the obligation Op(a) in a state qA′ guarantees that all outgoing tran-

sitions from the state (q1, q2)qA′
A−→ (q′1, q

′
2)q′A′

satisfy viablep(qA′ , A).
Since we assume that the system does not deadlock, there is at least one such tran-

sition which party p participates in. Furthermore, if a ∈ G, it must also appear in the
actions on the transition:

a ∈ G =⇒ ∃A ∈ acts(qp), A′ ⊆ Gc · a ∈ A ∧ viablep(qA′ , A ∪A′)

This guarantees that (q1, q2)qA `p Pp(a), and allows us to complete the proof using
Proposition 3.



It is interesting to note that in a synchronous world without blame-identification,
one could show equivalence betweenOp(a) andOp(a) since a lack of a on a transition
would cause a violation of both obligations. However, since our partial order vp is
parametrised by the party, one can show that the two obligations are in fact different [3].

2.5 Mutually Exclusive Actions

Although we adopt a multi-action approach, modelling real-world scenarios means that
certain actions should never occur concurrently. For instance, one would expect that
the automata never perform the action openDoor and closeDoor on the same transition.
This allows us to identify strictness laws which hold only for mutually exclusive actions.

Definition 10. Given a multi-action automaton 〈Σ, Q, q0, →〉, two actions a and b
({a, b} ⊆ Σ) are said to be mutually exclusive, written a ./ b, if they can never appear
in the same set of actions on transitions. Thus, for any automaton, it should be the case
that:

∀(q, A, q′) ∈→ · a ∈ A =⇒ b /∈ A

In the rest of the article we will assume that mutually exclusive actions never appear
in the synchronisation sets. This is done to simplify the presentation, since otherwise
we would need a more complex rule for synchronous composition (not allowing syn-
chronisation when the asynchronous actions of party are in conflict with those of the
other) and a modified definition for the satisfaction of obligations (the other party must
provide a viable action set which does not include any actions which may conflict with
the obligations of the party to whom the obligation applies). Removing this restriction,
however, does not affect the results we present. The following theorem shows how mu-
tually exclusive actions and action absence are related together under both obligation
and permission:

Theorem 3. If a ./ b then (i) Op(!a) v Op(b); and (ii) Pp(!a) v Pp(b).

Proof. To show (i), we need to prove that for any contract automataA andA′ such that
(A,A′) ∈ [Op(!a)→ Op(b)], then it follows thatA v A′. As in the previous proofs, we
can use Proposition 5 to conclude that A and A′ are structurally isomorphic, allowing
us to apply the proof principle of Proposition 3.

We thus have to show that satA
′

p (X) implies satAp (X). We look at transitions and
states separately:

Transitions: The satisfaction function for the combined obligations for a transition
(q1, q2)qA′

A−→ (q′1, q
′
2)q′A′

in automaton A′ is that viablep(qA′ , A). By definition
of viability and the obligation Op(b) in qA′ , we can thus conclude that b ∈ A.
However, since a ./ b, this means that a /∈ A, from which we can conclude that
viablep(qA, A) and hence that the satisfaction function also holds for transitions in
A.

States: The satisfaction function applied to states acts on the other party p. For state
(q1, q2)qA′ , it is defined to be ∃A ∈ acts(qp), A′ ⊆ Gc · viablep(qA′ , A ∪ A′).
Since a ∈ G, the proof is identical to the previous case.



Hence, the satisfaction function for Op(a) holds and thus, by Proposition 3 we can
conclude that A v A′ and hence (i) holds.

The proof of (ii) follows similarly.

A similar result can be shown, but referring to the other party in the contract:

Theorem 4. If a ./ b then Op(!b) v Op(a).

Proof. We take an approach identical to the previous theorems and prove that for any
contract automata A and A′ such that (A, A′) ∈ [Op(!b) → Op(a)], then it follows
that A v A′. Propositions 5 and 3 can then be used to complete the proof. As before,
we consider the satisfaction relation on states and transitions separately:

Transitions: The satisfaction function for the combined obligations for a transition
(q1, q2)qA′

A−→ (q′1, q
′
2)q′A′

in automaton A′ is that viablep(qA′ , A). By definition
of viability and the obligation Op(a) in qA′ , we can thus conclude that a ∈ A.
However, since a ./ b, this means that b /∈ A. The same transition must be viable
for p in A′, so viablep(qA′ , A) holds. The absence of b also allows us to conclude
that viablep(qA, A), which is the satisfaction function for Op(!b) over transitions
in A.

States: For state (q1, q2)qA′ , since we assume deadlock freedom and satisfaction of the
obligation to perform a, we know of the existence of an outgoing transition with
action a such that a ∈ A. Since party p is participating in this transition, and
a ∈ G, we can conclude that there is a transition viable for p, leaving from qp and
with an action set which includes a and hence not b. Propositions 5 and 3 can then
be conclude that ∃A ∈ acts(qp), A′ ⊆ Gc · viablep(qA, A ∪A′).

Although one may be tempted to induce that a similar result can be shown for per-
mission (analogous to part (ii) of Theorem 3) — Pp(!b) v Pp(a) does not always hold.
As a simple example of a system satisfying Pp(a) but not Pp(!b), consider party p be
able to perform just one transition with action set {b}, and party p being able to perform
one of two transitions: one with action set {a}, the other with action set {b}. Party p is
permitted to perform a but party p is not permitted to perform !b.

3 Kanger Rights in a Two-Party Setting

Kanger’s paper investigated the notion of rights in a general setting, and although the
rights are directed between parties (e.g. party p has versus party p a claim that S(p, p)),
the interaction between the parties and directionality of the rights depends on various
other notions such as causality, interference and intention. The synchronous two-party
approach we presented in the previous section gives a closed-world view for rights, that
allows these notions to be formalised in a straightforward manner. In this section, we
explore how Kanger’s rights translate into this setting.



3.1 Actions and States

Kanger et al. [2] presents rights to be over a state of affairs, which is clearly a state-
based look, but also identifies whether or not a party is responsible for causing a state
to hold — indicating that there is an underlying notion of a party performing an action
which leads to the state predicate holding. In synchronous systems, the parties involved
synchronise over actions, making the approach inherently action-based. There are vari-
ous standard ways in which one can encode state using actions and vice-versa.

Consider a simple encoding in which, given a state S, we identify action S>, whose
presence causes S to hold, and whose absence causes S not to hold. This turns out to
be overly restrictive, and does not enable the encoding of all models. For instance, in
Kanger et al. [2], one has to distinguish between:

not (party p causes state S to hold) (1)
party p causes S not to hold (2)

Both statements correspond to the action-based statement:
party p does not perform action S>

This makes this formalism insufficiently discriminating for our needs. On the other
hand, identifying two special (and mutually exclusive) actions S↑ and S↓ which cause
S to start holding (become true) and S to stop holding (become false) respectively, the
distinction becomes possible, since statements (1) and (2) can be expressed as:

party p does not perform action S↑ (1′)
party p performs action S↓ (2′)

Two important properties of these actions are that: (i) the actions are mutually ex-
clusive — the system may never perform S↑ and S↓ together; and (ii) the causality
actions for the negation of a state ¬S are the opposite of those of S i.e. (¬S)↑ = S↓

and (¬S)↓ = S↑.

3.2 Kanger et al.

Kanger et al. [2] identify eight simple types of rights:

(a) Party p has versus party p a claim that S(p, p).
(b) Party p has versus party p a freedom that S(p, p).
(c) Party p has versus party p a power that S(p, p).
(d) Party p has versus party p a immunity that S(p, p).
(a′) Party p has versus party p a counter-claim that S(p, p).
(b′) Party p has versus party p a counter-freedom that S(p, p).
(c′) Party p has versus party p a counter-power that S(p, p).
(d′) Party p has versus party p a counter-immunity that S(p, p).

The first four can be considered as the fundamental rights, with the other four (the
counter rights) being identical except that they refer to the negation of state predicate
S.3 Thus, for example, saying that ‘party p has versus party p a counter-claim that
state S(p, p) holds’ is identical to saying that ‘party p has versus party p a claim that
not-S(p, p)’.

3 It is worth noting that since, in our context, we have only two parties interacting (p and p), we
need not make explicit (i) the party versus whom the right is; and (ii) the parameters of state
predicate S. We can thus write statements just as ‘party p has a claim that S’.



3.3 Semantics

A discussion of the intuitive meaning of these different types of rights can be found
in the original paper [2] or any of many papers discussing and extending these notions
(see Section 6). However, Kanger et al. identifies the interpretation of rights (a) to (d)
as:

(1a) It shall be that p causes that S(p, p).
(1b) Not: it shall be that p causes that not-S(p, p).
(1c) Not: it shall be that not: p causes that S(p, p).
(1d) It shall be that not: p causes that not-S(p, p).

Furthermore, Kanger et al. note that the statement ‘Not: it shall be that not: . . . ’
is synonymous to ‘It may be that . . . ’. This allows us to rewrite the formulae without
top-level negations.

(2a) It shall be that p causes that S(p, p).
(2b) It may be that not: p causes that not-S(p, p).
(2c) It may be that p causes that S(p, p).
(2d) It shall be that not: p causes that not-S(p, p).

Using the relationship between states and actions as identified in Section 3.1, these are
equivalent to:

(3a) It shall be that p performs S↑.
(3b) It may be that not: p performs S↓.
(3c) It may be that p performs S↑.
(3d) It shall be that not: p performs S↓.

The shall be and may be modalities correspond to our notions of obligation and
permission, enabling us to define the different forms of rights in our formal model:

Cl(p, p, S)
df
= Op(S↑) Po(p, p, S)

df
= Pp(S↑)

Fr(p, p, S)
df
= Pp(!S↓) Im(p, p, S)

df
= Op(!S↓)

Counter-Cl(p, p, S)
df
= Op(S↓) Counter-Po(p, p, S)

df
= Pp(S↓)

Counter-Fr(p, p, S)
df
= Pp(!S↑) Counter-Im(p, p, S)

df
= Op(!S↑)

One interesting observation emerging from this formalisation is that in a two party
system some of the rights place constraints on both parties. For instance, if p has versus
p a claim that S, p has an obligation to perform S↑. If S↑ is an action local to p, then no
constraint is placed on p, but if it is a common action, the semantics of obligation insist
that p allows p to perform S↑. For example, consider S to be ‘p has access to the web-
service’. Now, to make the predicate hold, S↑ may be the action openPort which opens
a particular port. If this action is local to p (i.e., p can perform the action independently



of p), then the constraint lies solely on p. However, if openPort is a shared action, then
the semantics of obligation place a restriction on party p to provide a feasible action
set through which p may use to satisfy its obligation to open the port. In other words,
although p does not necessarily have to use the webservice, it must support p in opening
the port.

In fact, the moment we are giving semantics to Kanger’s types using the interactive
two-party systems, the two models diverge. For example, in Kanger et al. the following
two types are compatible (not in conflict):

Cl(p, p, S) and !Po(p, p, S)
Their informal meaning, when transformed to reason about actions becomes:

it shall be that p performs S↑

it shall be that p does not perform S↑

In a non-interactive system, Kanger’s view is applicable and the clauses are compat-
ible. However, in an interactive system, where S↑ is part of the synchronisation alpha-
bet, these clauses become Op(S↑) and Op(!S↑), which can be proved to be conflicting.

A claim implicit in Kanger et al. is that these basic right types are, in a sense,
complete — in that they form a basis through the combination of which one can express
all forms of rights. However, the formalisation we have given clearly shows that each
basic right can be expressed by choosing: (i) the modality — is it a permission or an
obligation?; (ii) the party to which the modality applies — is it p or p?; (iii) the change
in the value of S — is it S↑ or S↓?; and (iv) whether it is the presence or absence of that
action that is of interest — e.g. is it S↑ or !S↑? These four different variables indicate
that one can identify 16, not 8 basic right types. The missing ones have to correspond
to obligations on party p, and permissions for party p, neither of which fall under the
category of rights of p. This justifies the argument for completeness of Kanger et al.’s
basic types.

3.4 Strengths of Rights

Given the 8 basic rights, one can construct 28 combinations over a particular state of
affairs. However, not all these combinations are possible, since (i) some rights are sub-
sumed by others; and (ii) some combinations of rights lead to conflicts (see Section 4).
To address the first issue, Kanger provided a partial order on the basic rights in terms of
their strength, as can be seen in Figure 1. An arrow from a rightR to a rightR′ indicates
that R is stronger than R′, not unlike our notion of R being stricter than R′. We can
apply the formalised versions in a two-party setting to investigate which parts of this
strength relation are preserved.

Figure 2 corresponds to diagram 1, but interpreted for two-party systems. The rights
are replaced by their definitions, and the strength arrows revised as required. In fact, for
a two party system most of the strictness inequalities still hold:

1. Ones marked ¬ are of the form Pp(a) v Op(a), while those marked ­ are of the
form Pp(!a) v Op(!a). In both cases, they follow from Theorem 1.

2. Those marked ® are of the form Op(!a) v Op(b) while those marked ¯ are of the
form Pp(!a) v Pp(b), in both cases with mutually exclusive actions a and b. These
hold by Theorem 3.



Cl(p, p, S)

Po(p, p, S)

Fr(p, p, S) Fr(p, p, S)
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Fig. 1. Kanger et al. strength diagram
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Fig. 2. Strength diagram for interacting parties.



3. Ones marked ° are of the form Op(!a) v Op(b) and thus follow from Theorem 4.

However, there are differences with the original diagram:

1. The dashed-line arrows connecting power (Po(p, p, S)) with freedom (Fr(p, p, S))
would require the strictness inequality: Pp(!a) v Pp(b), with a and b being mutu-
ally exclusive actions. In Section 2.4 we gave a counter example to show that this
does not always hold.

2. The double-line arrows connecting immunity (Im(p, p, S)) with freedom
(Fr(p, p, S)) and claim (Cl(p, p, S)) with power (Po(p, p, S)), however now follow
by Theorem 2.

4 Conflicts

Contract clauses are not always compatible with one another. Many definitions of con-
flict are possible — in this article we deal only with one particular class of conflicts
which focusses on conflicting norms and mutually exclusive actions. In this section we
axiomatise the notion of conflicts in interacting two-party systems and investigate some
consequences.

Definition 11. Contract conflicts is a relation between contract clauses z ∈ Clause↔
Clause and is defined to be the least relation satisfying the following axioms:

Axiom 1: Opposite permissions conflict: ` Pp(x) z !Pp(x).
Axiom 2: Obligation to perform mutually exclusive actions is a conflict: a ./ b `
Op(a) z Op(b).

Axiom 3: Conflicts are closed under symmetry: C z C ′ ` C ′ z C.
Axiom 4: Conflicts are closed under increased strictness: C z C ′ ∧ C ′ v C ′′ `

C z C ′′.

Although conflicts are only identified for opposing permissions in the axioms, they
also arise in opposing obligations, and can be shown to follow from the axioms.

Proposition 6. Opposite obligations conflict with each other: Op(x) z !Op(x).

Proof. The proof uses the definition of negated permission and obligation to derive the
desired result:

definition of conflict on opposing permissions
=⇒ Pp(x) z !Pp(x)
=⇒ for some y, x =!y
Pp(!y) z !Pp(!y)

=⇒ definition of !Pp(y) and !Op(y)
!Op(y) z Op(y)

=⇒ symmetry of z
Op(y) z !Op(y)



Various other conflicts can be derived from the axioms. The following show conflicts
between permissions and obligations and arising from enforcing norms over both the
presence and absence of an action.

Proposition 7. Obligation to perform an action conflicts with both permission and
obligation to not perform it: (i)Op(x) z Pp(!x); and (ii)Op(x) z Op(!x). Obligation
to perform an action also conflicts with lack of permission to perform the action: (iii)
Op(x) z !Pp(x).

Proof. By Proposition 6, we know thatOp(x) z !Op(x), which, by definition of !Op(x)
is equivalent to Op(x) z Pp(!x), hence completing the proof for (i).
By result (i) and Pp(!x) v Op(!x), we can use the strictness axiom of conflicts to
conclude that (ii) holds: Op(x) z Op(!x).
Result (iii) follows directly from the definition of !Pp(x) and result (ii).

Finally, we show how making two conflicting contracts stricter does not get rid of the
conflict:

Proposition 8. Given two conflicting clausesC1 z C2, making the two clauses stricter
does not resolve the conflict: if C1 v C ′1 and C2 v C ′2, then C ′1 z C ′2.

Proof. The proof follows by applying axiom of closure under increased strictness twice
and the axiom of symmetry.

5 Atomic Types of Rights

Kanger et al. proceed to identify the so called atomic types of rights — given one has 8
possible basic types of rights, one can describe the rights regarding a particular state, by
identifying which of the basic rights hold, and which do not (their negation holds). This
yields 256 possible atomic rights, but since some of the combinations are conflicting,
Kanger et al. use their strength diagram to show that no more than 26 distinct combina-
tions can be identified. Furthermore, since some of the rights or their negations imply
each other, the sets of atomic rights can be simplified by removing the weaker clauses.
A set of non-conflicting basic types which cannot be simplified any further is said to be
complete.

Definition 12. A basic right for party p towards party p and about state S is either a
Kanger right (e.g. Po(p, p, S)) or its negation (e.g. !Po(p, p, S)).

A consistent set of such rights R is said to be complete if any further basic right r is
either unnecessary (∃r′ ∈ R · r v r′) or leads to an inconsistency (∃r′ ∈ R · r z r′).

As we have shown, in an interacting two-party setting, the strength diagram induced
is somewhat different, which in turn leads to different atomic rights. In fact, it can be
shown that in a two-party setting, one can now identify just 22 atomic types as listed
below.



Claim 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Freedom 3 3 3 3 3 5 5

Power 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 5 5 5 5

Immunity 3 3 5 5 5 5 5 3 3 3 3 5 5 5 5 3 3 5 5

Counter-claim 5 5 5 5 3 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Counter-freedom 3 5 3 3 3 3 5

Counter-power 5 5 3 3 3 3 5 5 3 3 5 5 3 3 5 5 5 5 5

Counter-immunity 5 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 5

1. Not claim, power, immunity, not counter-claim, counter-power, counter-immunity.
2. Not claim, power, immunity, not counter-claim, counter-freedom, not counter-power,

counter-immunity.
3. Not claim, not power, immunity, not counter-claim, not counter-power, counter-immunity.
4. Not claim, power, immunity, not counter-claim, counter-power, not counter-immunity.
5. Not claim, freedom, not power, immunity, not counter-claim, counter-power, not counter-

immunity.
6. Not claim, power, not immunity, not counter-claim, counter-power, not counter-immunity.
7. Claim, not counter-claim, counter-freedom, not counter-power, not counter-immunity.
8. Claim, not counter-claim, not counter-freedom, not counter-power, not counter-immunity.
9. Not claim, power, immunity, not counter-claim, counter-freedom, not counter-power, not

counter-immunity.
10. Not claim, power, not immunity, not counter-claim, counter-freedom, not counter-power, not

counter-immunity.
11. Not claim, not power, immunity, not counter-claim, not counter-power, not counter-

immunity.
12. Not claim, not power, not immunity, not counter-claim, not counter-power, not counter-

immunity.
13. Not claim, not counter-claim, not counter-freedom, not counter-power, not counter-

immunity.
14. Not claim, freedom, not power, immunity, not counter-claim, counter-power, counter-

immunity.
15. Not claim, freedom, not power, not immunity, counter-claim.
16. Not claim, freedom, not power, not immunity, not counter-claim, counter-power, counter-

immunity.
17. Not claim, freedom, not power, not immunity, not counter-claim, counter-power, not counter-

immunity.
18. Not claim, not freedom, not power, not immunity, counter-claim.
19. Not claim, not freedom, not power, not immunity, not counter-claim.
20. Not claim, power, not immunity, not counter-claim, counter-freedom, not counter-power,

counter-immunity.
21. Not claim, power, not immunity, not counter-claim, counter-power, counter-immunity.
22. Not claim, not power, not immunity, not counter-claim, not counter-power, counter-

immunity.

Unsurprisingly, this gives a very different view of atomic rights, with for instance most
including no claim, but only two including no freedom.

Kanger reduced his 26 types to 10, so the rest can be obtained by inversions (S↑ be-
comes S↓ and viceversa) and conversions (swapping parties). In our model conversions
do not reduce the number of clauses, because modalities applied to one party already
constraint the other. Inversions, however, do reduce our 22 to the first 13 listed above.



6 Related Work

Despite the fact that contracts are, by definition, an agreement between two or more
parties, most formal studies regulate the parties independently and do not analyse how
permissions, obligations or prohibitions for one party affect the other, or do so in limited
ways (e.g., [6–10]). A summary of how our analysis of contracts compares to those can
be found in [3] — here we focus on work done on Hohfelian types.

Makinson [11] analysed Kanger’s types and proposed a compact representation
((±)O(±)

(
x
y

)
do (±)S), similar to ours. This gives 16 possibilities, just like our anal-

ysis. Makinson does not provide formal semantics, deals with a state-of-affairs type of
logic, does not analyse Kanger’s atomic types and does not work with contracts, al-
though he does analyse that there might be two parties, one bearing the right and the
other being the counterparty. He also analyses the notion of interference in connec-
tion with vested liberty, in the tradition of Bentham, Austin and Hohfeld. In our formal
model Pp(a) means not only that p may attempt to perform a — it means that p would
succeed in doing a should she try. If the notion of attempting to do an action a that can
be interfered by others needs to be modelled, then another action attempt_a should
be added and the permission placed onto the latter. Another alternative is to introduce
modalities for trying, as in Santos et al. [12].

Makinson also shifts the view when addressing power, presenting the modern as-
sumption, followed by most authors nowadays, where a power is a permission to dy-
namically bring about changes in the deontic norms that are valid in a particular state.
Actions that modify contracts are beyond the scope of our work. Jones and Sergot [13]
take over the analysis of power, specially institutionalised power — introducing a
modality to express that an agent brings about a state of affairs (ExS), which allows
them to state that an agent should bring about that another one brings about some par-
ticular state (ExEyS).

The number of atomic types is a subject for debate. Kanger et al. [2] presents 26,
later extended to 35 by Lindahl’s [14]. The same work takes them to 127 if collectivis-
tic propositions are considered.4 Sergot [15] presents a detailed comparative analysis.
Neither of them works in the context of interacting two-party systems, where deontic
modalities applied to a party also place onus over the other, thus reducing the number
of consistent atomic types, as explained in Sections 3 and 4. In keeping with Kanger,
we identified only atomic types which include all the rights — whether positively or
negatively. However, in our setting, further analysis can be performed to consider the
possibilities when a particular right is not present — neither positively nor negatively.

From a semantics point of view, most of the attempts at formalising the Hohfelian
concepts went no further than structured language, leaving many questions unresolved.
For instance, Sartor [16] introduces the concept of directed modalities to express sen-
tences like ‘It is obligatory that Tom pays Mary $1000 in order to advance Mary’s
interests’. If Mary is using the money to pay a blackmailer or to buy cancer-causing
cigarettes, is she advancing her interests? According to whom? Can Tom deny the
paying claiming that she would not use the money ‘to advance her interests’? [15]

4 Collectivistic propositions are the ones that place the burden of obligation in more than one
agent i.e., ‘it is mandatory that agent a or agent b perform action c’.



is more precise about which operator combinations are consistent given a few assump-
tions about the underlying logic, but because it only considers some basic modalities,
and because the logic is not fixed, we still do not know if, for example, being empow-
ered but forbidden makes any sense.

7 Conclusions

In this article we extended our formalisation of contracts for two-party interacting sys-
tems [3] to deal with absence of actions, mutually exclusive actions and conflicts.
That allowed us to give formal semantics to Kanger’s types of rights in the context
of action-based and interacting two-party systems. In turn, it showed that the number of
atomic types (maximally consistent sets of rights) is reduced in this context compared
to Kanger’s et al. original formulation.

Also interestingly, all of Kanger’s rights (claim, power, freedom, immunity and their
negated versions) can be expressed in terms of positive and negative permission and
obligation, over presence or lack of actions. An interesting next step would be to present
an automata-based formalism in which there are multiple parties, but also general obli-
gations and permissions. This would allow us to reason about general obligations (such
as ‘forbidden to kill’), and how they interact with contracts.
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