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Commentary

Autism, Schizophrenia and Alzheimer’s Disease: A Common Thread
from Neuropeptides to Brain Regulating Genes
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Our original cloning of the gene coding for vasoact-
ive intestinal peptide (VIP) (Bodner, Fridkin & Gozes,
1985), led to the identification of VIP’s involvement
in synapse formation and neuroprotection, through our
discoveries of activity-dependent neurotrophic factor
(ADNF) (Brenneman & Gozes, 1996) and activity-
dependent neuroprotective protein (ADNP) (Bassan et
al., 1999; Zamostiano et al., 2001). To precisely de-
lineate VIP and ADNP activities in the whole animal,
we established transgenic animals, showing that ma-
nipulating VIP content impacts cognition in the mouse
(Gozes et al., 1993). As for mouse ADNP, complete
knockout results in severe neuronal tube closure defects
and embryonic death at the time of neural tube clos-
ure (Pinhasov et al., 2003). ADNP haploinsufficient
mice survive and show cognitive and social deficiencies,
with pathologies resembling autism (Malishkevich et al.,
2015) and Alzheimer’s disease (Vulih-Shultzman et al.,
2007). Delineating the mechanism of action of ADNP,
we discovered binding to the SWI/SNF chromatin re-
modeling complex and heterochromatin protein 1 alpha,
and direct interaction with specific gene promoters (e.g.
the major risk gene for Alzheimer’s disease, apolipo-
protein E) (Mandel & Gozes, 2007; Mandel, Rechavi &
Gozes, 2007). We have further discovered interactions
with proteins associated with RNA splicing (Schirer et
al., 2014), as well as with proteins regulating transla-
tion, like eukaryotic initiation factor 4E (Eif4e) (Mal-
ishkevich et al., 2015). In the cell cytoplasm, ADNP fur-
ther interacts with the autophagy mechanism, binding
to microtubule associated protein 1 light chain 3 (LC3)
(Merenlender-Wagner et al., 2015) and to microtubule
end binding proteins (EBs) (Oz et al., 2014). These
multiple interactions, with key regulatory proteins, was

further associated with the fact that ADNP regulates
> 400 genes during embryonic development (Mandel et
al., 2007) and thousands of genes postnatally, with age
and sex differences (Amram et al., 2016). Importantly,
ADNP was recently identified as one of the major genes
mutated de novo, leading to autism (short review and
case report, Gozes et al., 2015). Furthermore, blood
borne ADNP levels correlate with IQ tests in elderly
individuals (Malishkevich et al., 2016). To try and com-
bat ADNP deficiencies, we have designed and synthes-
ized an ADNP – derived peptide, drug candidate, NAP
(NAPVSIPQ) (Bassan et al., 1999), also known as dav-
unetide, CP201. Containing the EB1,3 interacting do-
main SIP, NAP directly interacts with microtubules to
induce the formation of dendritic spines (Oz et al., 2014)
and brain synaptic plasticity. While enhancing ADNP
interaction with microtubules as well as the autopha-
gosome, NAP provided enhanced microtubule dynam-
ics and active autophagy (Esteves, Gozes & Cardoso,
2014; Merenlender-Wagner et al., 2014). In animals,
NAP provided protection against neuronal toxicities and
genetic manipulations associated with autism, schizo-
phrenia (Vaisburd, Shemer, Yeheskel, Giladi & Gozes,
2015) and Alzheimer’s disease (Matsuoka et al., 2008).
Based on the NAP binding site, a novel drug candidate
was developed, namely SKIP, enhancing axonal trans-
port and protecting cognition (Amram et al., 2016).
While SKIP development is still at the preclinical stage,
NAP has shown clinical efficacy and is now planned for
further clinical development at Coronis Neurosciences
(http://www.coronisns.com/) (see Fig. 1).
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Figure 1: The figure describes our discoveries from
neuropeptides (VIP) through the identification of ADNF and
ADNP and novel protective peptides with a defined mechanism
of action (docking on the microtubule end protein is shown) and
clear clinical development path.
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This commentary is a summary of the paper presented
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