
SPeeDI – a Verification Tool for Polygonal

Hybrid Systems ⋆⋆⋆

E. Asarin1, G. Pace2, G. Schneider1, and S. Yovine1

1 VERIMAG, 2 av. Vignate, 38610 Gières, France
2 INRIA Rhone-Alpes / VASY, 655 av. de l’Europe, 38330 Montbonnot, France

{asarin,gerardo,yovine}@imag.fr; gordon.pace@inria.fr

1 Introduction

Hybrid systems combining discrete and continuous dynamics arise as mathemat-
ical models of various artificial and natural systems, and as an approximation to
complex continuous systems. A very important problem in the analysis of the be-
havior of hybrid systems is reachability. It is well-known that for most non-trivial
subclasses of hybrid systems this and all interesting verification problems are un-
decidable. Most of the proved decidability results rely on stringent hypothesis
that lead to the existence of a finite and computable partition of the state space
into classes of states which are equivalent with respect to reachability. This is
the case for classes of rectangular automata [1] and hybrid automata with linear
vector fields [2]. Most implemented computational procedures resort to (forward
or backward) propagation of constraints, typically (unions of convex) polyhedra
or ellipsoids [3, 4, 5]. In general, these techniques provide semi-decision proce-
dures, that is, if the given final set of states is reachable, they will terminate,
otherwise they may fail to. Maybe the major drawback of set-propagation, reach-
set approximation procedures is that they pay little attention to the geometric
properties of the specific (class of) systems under analysis.

An interesting and still decidable class of

R6 R8

R3

R7

R2R4

R5 R1

e6 e7

e2e3

e1

e8e5

e4 x
y

Fig. 1. SPDI.

hybrid system are the (2-dimensional) polygo-
nal differential inclusions (or SPDI for short).
An SPDI (Fig. 1) is defined by giving a finite
partition P of the plane into convex polygonal
sets, and associating with each P ∈ P a couple
of vectors aP and bP . The SPDI is ẋ ∈ ∠

bP

aP

for x ∈ P , where ∠
b

a
denotes the angle on the

plane between the vectors a and b. In [6] we
have proved that (point-to-point, edge-to-edge
and polygon-to-polygon) reachability is decid-

able and we have proposed a decision procedure that exploits the topological
properties of the plane. Our procedure is not based on the computation of the
reach-set but rather on the exploration of a finite number of types of qualitative
behaviors obtained from the edge-signatures of trajectories (i.e., the sequences of
their intersections with the edges of the polygons). Such types of signatures may

⋆ Partially supported by Projet IMAG “Modélisation et Analyse de Systèmes Hy-
brides”, by Projet CNRS MathSTIC “Analyse Qualitative de Systèmes Hybrides”
and by the European Research Consortium in Informatics and Mathematics
(ERCIM).

⋆⋆ Published in CAV’2002 (Computer Aided Verification, 14th International Confer-
ence). LNCS Nro. 2404. Copenhagen, Denmark, p.354–358. July 27-31, 2002.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/141678109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


<exit interval>

<trace><type_of_signature>
simsig2figsimsigreachable <file.fig>

NO

YES

<file.spdi> 

<input interval>

Fig. 2. Workflow of the tool.

contain loops which can be very expensive (or impossible) to explore naively.
However, we have shown that loops have structural properties that are exploited
by our algorithm to efficiently compute the effect of such loops. In summary,
the novelty of the approach is the combination of several techniques, namely,
(1) the representation of the two-dimensional continuous dynamics as a one-
dimensional discrete dynamical system, (2) the characterization of the set of
qualitative behaviors of the latter as a finite set of types of signatures, and (3)
the “acceleration” of the iterations in the case of cyclic signatures.

2 SPeeDI

The tool SPeeDI is a collection of utilities to manipulate and reason mechanically
about SPDIs, completely implemented in 5000 lines of Haskell [7], a general-
purpose, lazy, functional language.

Visualization aids: To help visualize systems, the tool can generate graphi-
cal representations of the SPDI, and particular trajectories and signatures
within it.

Information gathering: SPeeDI calculates edge-to-edge successor function com-
position and enlist signatures going from one edge to another.

Verification: The most important facet of the tool suite is that of verification.
At the lowest level, the user may request whether, given a signature (with
a possibly restricted initial and final edge), it is a feasible one or not. At a
more general, and useful level, the user may simply give a restricted initial
edge and restricted final edge, and the tool attempts to answer whether the
latter is reachable from the former.

Trace generation: Whenever reachability succeeds SPeeDI generates stripes
of feasible trajectories using different strategies and graphical representation
of them.

This typical usage sequence of the tool suite is captured in Figure 2.
Figure 3 illustrates a typical session of the tool on an example SPDI composed

of 63 regions. The left part of the diagram shows selected portions of the input
file, defining vectors, named points on the x-y plane, and regions (as sequences
of point names, and pairs of differential inclusion vectors). The lower right-hand



Input file

Points: 0. 0.0, 0.0
* ...

33. -5.0, -35.0
34. -5.0, -25.0

35. -5.0, -15.0
36. -5.0, -5.0

37. -5.0, 5.0
38. -5.0, 15.0
39. -5.0, 25.0

* ...
Vectors:

* ...
v3. -1,0.1833333333
v8. 1,0

v9. 1,1
v12. 1, 1.5

v20. -1, 0.001
v22. 1,-0.001

v25. -1,0.7
v28. 1, 0.001
*...

Regions:
* ...

* R29
33 ? 41 ! 42 ! 34 ? 33, v9, v9
* R30

34 ! 42 ! 43 ? 35 ? 34, v22, v22
* R31

35 ? 36 ? 0 ! 44 ! 43 ! 35, v8, v8
* R32

44 ! 45 ! 0 ? 44, v12, v12
* R33
0 ? 45 ? 46 ! 38 ! 37 ! 0, v3, v20

* R34
38 ? 46 ? 47 ! 39 ! 38, v25, v20

* ...

Generated Figure

0

35

36

40

39

R32

38

37

44

33

R33

R34

R35

R30

R29

34

R31 59

60

Session log

% reachable example.spdi "[1,2]" "[0,10]" 0-44 59-60
Generating and trying signatures from edge 0-44 to 59-60

Starting interval:[1.0,2.0] Finishing interval:[0.0,10.0]

(0-44,45-44) (45-53,45-46,37-38,...,36-35,44-43,44-52)*
(53-52,53-61,54-62,54-55,46-47)(38-39,..., 46-47)* (39-47,

...,68-60,59-60) <REACHABLE>

Fig. 3. Example

panel shows the signature generated by the tool reachable which satisfies the
user’s demand. The signature has two loops which are expressed with the star
symbol. A trace is then generated from the signature using simsig. It traverses
three times the first loop and two times the second one. The graphical represen-
tation of the SPDI and the trace is generated automatically using simsig2fig.
The execution time for this example is a few seconds.

3 Comparing and Contrasting with HyTech

While SPeeDI is, as far as we know, the only verification tool for hybrid systems
implementing a decision algorithm (with the exception of timed automata), it is
interesting to compare it to “semi-algorithmic” hybrid system verification tools
such as HyTech [8]. HyTech is a tool capable of treating hybrid linear systems
of any dimension, making it much more general than SPeeDI, which is limited
to two-dimensional systems without resets. On the other hand, SPeeDI imple-
ments acceleration techniques (based on the resolution of fix-point equations)
which yield a complete decision procedure for SPDIs. Also, SPeeDI does not



handle arbitrary polyhedra, but only polygons and line segments. For these rea-
sons, comparing the performance of the two tools is meaningless and no fair
benchmarking is really possible.

We can only compare the two tools is we restrict ourselves to SPDIs. From
some experiments we have run, we have reached a number of qualitative conclu-
sions:

– It is well known that since HyTech uses exact rational arithmetic, it can
it easily run into overflow problems. This is particularly an issue when the
path to the target passes through a large number of regions. This makes
verification of non-trivial sized SPDIs (eg the one in figure 3) impossible.

– In the case of loops, SPeeDI calculates the limit interval without repeatedly
iterating the loop. It makes use of this interval to accelerate the reachability
analysis, avoiding time consuming loop traversals. In contrast, HyTech per-
forms these iterations. Following the loops explicitly, easily leads to overflow
problems, and, more seriously, in certain (even simple) configurations, this
analysis never terminates.

While the first issue is limited to HyTech, the second is inherent to any tool
based on non-accelerated reachability analysis. On examples which HyTech can
handle, the two tools take approximately the same amount of time (a fraction of
a second) to reach the result. SPeeDI, however, can handle much larger examples.

4 Discussion

We have presented a prototype tool for solving the reachability problem for
the class of polygonal differential inclusions. The tool implements the algorithm
published in [6] which is based on the analysis of a finite number of qualitative
behaviors generated by a discrete dynamical system characterized by positive
affine Poincaré maps. Since the number of such behaviors may be extremely big,
the tool uses several powerful heuristics that exploit the topological properties
of planar trajectories for considerably reducing the set of actually explored sig-
natures. When reachability is successful, the tool outputs a visual representation
(in the form of an Xfig file) of the stripe of trajectories that go from the initial
point (edge, polygon) to the final one.

Despite the fact that functional languages, especially lazy ones, have a rather
bad reputation regarding performance (see for example, [9] for a report on the
experiences of writing verification tools in functional languages), we found that
the performance we obtained was more than adequate for the magnitude of
examples we had in mind. Furthermore, we feel that with the gain in the level of
abstraction of the code, we have much more confidence in the correctness of our
tool had we used a lower level language. We found laziness particularly useful
in separating control and data considerations. Quite frequently, optimizations
dictated that we evaluate certain complex expressions at most once, if at all. In
most strict languages, this would have led to complex code which mixes data
computations (which use the values of the expressions) with control computation



(to decide whether this is the first time we are using the expression and, if
so, evaluate it). Thanks to shared expressions and laziness, all this came for
free — resulting in cleaner code, where the complex control is not done by the
programmer.

Future work previews the integration of SPeeDI into a large tool suite for
qualitative analysis of hybrid systems. We plan to extend its functionality be-
yond reachability verification. In particular, we are currently working on the
implementation of the algorithm developed in [10] for constructing the phase
portrait of an SPDI which is composed of viability and controllability kernels.

References

[1] Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? In: STOC’95, ACM Press (1995) 373–382

[2] Lafferriere, G., Pappas, G., Yovine, S.: Symbolic reachability computation of
families of linear vector fields. Journal of Symbolic Computation 32 (2001) 231–
253

[3] Asarin, E., Bournez, O., Dang, T., Maler, O.: Reachability analysis of piecewise-
linear dynamical systems. In: HSCC’00, LNCS 1790, Springer (2000) 20–31

[4] Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: A model checker for hybrid
systems. Software Tools for Technology Transfer 1 (1997) 110–122

[5] Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In:
HSCC’00, LNCS 1790, Springer (2000)

[6] Asarin, E., Schneider, G., Yovine, S.: On the decidability of the reachability
problem for planar differential inclusions. In: HSCC’01, LNCS 2034, Springer
(2001)

[7] Jones, S.P., Hughes, J.: Report on Haskell 98: A non-strict, purely functional
language (1999) available from http://www.haskell.org.

[8] Henzinger, T., P.-H.Ho, H.Wong-toi: Hytech: A model checker for hybrid systems.
Software Tools for Technology Transfer 1 (1997)

[9] Leucker, M., Noll, T., Stevens, P., Weber, M.: Functional programming languages
for verification tools: Experiences with ML and Haskell. In: Proceedings of the
Scottish Functional Programming Workshop (SFPW’01). (2001)

[10] Asarin, E., Schneider, G., Yovine, S.: Towards computing phase portraits of
polygonal differential inclusions. In: HSCC’02, LNCS 2289, Springer (2002) 49–61

View publication statsView publication stats

https://www.researchgate.net/publication/221403379



