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Abstract

In critical systems, it is frequently essential to know
whether the system satisfies a number of real-time
constraints, usually specified in a real-time logic such
as timed regular expressions. However, after having
verified a system correct, changes in its environment
may slow it down or speed it up, possibly invalidating
the properties.

Colombo et al. [1] have presented a theory of
slowdown and speedup invariance to determine which
specifications are safe with respect to system retiming,
and applied the approach to duration calculus. In
this paper we build upon their approach, applying
it to timed regular expressions. We hence identify a
fragment of the logic which is invariant under the
speedup or slowdown of a system, enabling more
resilient verification of properties written in the logic.

1. Introduction

In the field of verification, one often wants to check
whether a system’s behaviour satisfies some particular
constraint. The behaviour of a system can be envisaged
as being the set of traces that it is able to execute.
Traces can take various forms; In a well structured
system, for example, a trace can be represented as a
string of method calls.

Constraints on the behaviour of systems are often
referred to as properties. A property can also be
envisaged as characterising a set of traces, namely
those traces which satisfy the constraint it represents.
Properties are written using the formulas of some
logic. Each formula acts as a concise way to identify
a certain type of behaviour. As an example, con-
sider the property expressed by the regular expression
(login ◦ request ◦ logout)∗. This expression accepts
all traces in which the user logs in before making a

request, and in which he/she subsequently logs out.
Due to the star operation, a user can make any number
of these transactions without breaking the property.
Any system trace which does not subscribe to the
above pattern would be deemed invalid. Sometimes,
properties also need to impose constraints on the actual
duration of the events within the system. In order to
express such properties, one needs special logics which
take into account this element of time, known as real-
time logics.

When the properties being used involve the element
of time, certain problematic issues can arise [1]. These
problems occur because systems can slow down or
speed up due to changes in their environment. For
example, a server which is being subjected to a heavy
load will mean that the applications running on it will
be less responsive. On the other hand, upgrading the
hardware on which a program is running will speed
that program up. Yet another scenario is that of runtime
verification [2]. In this case, instrumenting a monitor
within the system means that more code needs to
be executed, slowing the system down. On the other
hand if the monitor is removed after one has enough
confidence in the system, the system will speed up.

Any process which can slow a system down or
speed it up carries with it the risk of breaking real-
time properties which previously held for that system.
For example suppose that an industrial process needs
a flame to burn for between 2 and 3 seconds. We
might implement a program to control this operation,
and we might have verified that it does satisfy the
property. If the program slows down for some reason,
the guarantees we have provided will be broken.

One way of reasoning about when properties can
be broken and when they are safe from the effects
of system retiming, is the theory of slowdown and
speedup [1]. This theory allows one to prove which
operators of a logic are unaffected by this phenomenon.
Properties written using only these operators, are there-
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fore guaranteed to hold even when the system is
retimed. Although this theory can be easily applied to
logics whose semantics are defined in terms of dura-
tion calculus [3] interpretations, a different strategy is
needed to deal with logics whose semantics are defined
in terms of some other model. This is the case for
timed regular expressions (TRE) [4], which use an
underlying model known as signals.

In this work we present such an approach which
involves giving an interpretation based semantics to
TRE, and then proving that these semantics are sound
with respect to one another. Once soundness is proven,
one can apply Colombo et. al’s theory directly to
the interpretation semantics to derive the behaviour of
TRE under system retiming. Figure 1 illustrates the
approach pictorially. The circles with the solid borders
show the definitions in our possession. The circle with
the broken border shows what has to be defined; whilst
the broken lines show the proofs to be completed.

Figure 1. Using the Theory for Other Logics

This work is organised as follows. Section 2 dis-
cusses the signal model of time, timed regular ex-
pressions (TRE), and provides an outline of Colombo
et al’s theory. Following this, section 3 describes
the aforementioned approach. Section 4 provides and
discusses the resulting slowdown/speedup results for
TRE. Section 5 outlines issues with the approach in
section 3 and illustrates a different approach to the
problem. Some issues with the second approach are
also considered and future directions for research are
suggested. Finally, section 6 concludes the report.

2. Background

2.1. Interpretations and Signals

We shall use the term model of time to denote some
notion that enables us to describe the behaviour of a

system as time passes. A model for the behaviour of a
system is often defined over some finite set of symbols
Σ. These symbols can be used to represent events, such
as method calls. A duration calculus interpretation
is one such model. It is essentially a total function
Σ → T → {true, false} which given a symbol1 and
a time, will tell us whether that symbol is active at that
point in time. We define T, the set of all time points as
being R+

0 . In duration calculus interpretations, multiple
symbols can be active at the same time. An alternative
model is that of a signal [4]. A signal is also defined
over a set of symbols Σ, but at each point in time, one
and only one event can be occurring. In a signal, the
emphasis is on the fact that the system is performing
a sequence of events, one after the other, with each
having its own duration. For example, the signal a1b7.5

tells us that the system has taken 1 unit of time
executing method a and 7.5 units of time executing
the the second. On the otherhand, in an interpretation,
the emphasis is on what is happening at each point in
time. Figure 2 shows a signal on the left and a duration
calculus interpretation on the right over the alphabet
Σ = {a, b, c}.

Figure 2. Signals and Interpretations

Signals have a finite length, and can be appended
to one another. We denote the length of a signal ξ by
|ξ| and the concatenation of two signals ξ1 and ξ2 by
ξ1 ◦ ξ2. We shall now describe the semantics given to
the temporal logic called timed regular expressions in
[4], which operates in terms of signals.

2.2. Timed Regular Expressions

Timed regular expressions are a simple logic for
describing the behaviour of timed systems. They are
similar to regular expressions, with the addition of
some operators related to reasoning about the time
domain. Each timed regular expression is defined over
some alphabet and characterises a set of signals. We

1. Known in duration calculus as a variable.



shall denote the set of signals given by an expression
ψ by |[ψ]|. The most basic expression is a symbol from
the alphabet. This yields the set of signals, in which
the event represented by that symbol happens and lasts
for any duration.

|[a]| = {ar | r ∈ R+}

From such expressions, more complex ones can be
built. For example, the concatenation of two symbols ◦
will generate the set of signals for each of the symbols,
and will then concatenate each signal from the first set
to each signal of the second set.

|[ψ1 ◦ ψ2]| = {ξ1 ◦ ξ2 | ξ1 ∈ |[ψ1]| ∧ ξ2 ∈ |[ψ2]|}

There are other operators which work in a similar way
to regular expressions, such as union (∪) and kleene
star (*). One operator missing from regular expressions
is the interval restriction operator 〈〉[a,b] . Using this
operator, one can force the signals resulting from an
expression to be of a certain length.

|[〈ψ〉[a,b]]| = |[ψ]| ∩ {ξ : Signal | |ξ| ∈ [a, b]}

Timed regular expressions also feature intersection
(∩), since this is necessary for the expression of cer-
tain desirable timed constraints. We shall now review
important elements of the theory of slowdown and
speedup.

2.3. The Theory of Slowdown and Speedup

In Colombo et al.’s model, when a system is slowed
down, system events start taking longer to occur and
last for a longer time. When a system is speeded up,
events seem to take a shorter time before occurring,
and also last for a shorter time. If one were to visualise
the operation of a system as an interpretation, a slowed
down version of the function would look like the
original version but stretched in the time domain.
Similarly a speeded up interpretation would look like
the original, but compressed in the time domain. This
is shown in Figure 3. The relationship between an
interpretation and its slowed down/speeded up version
is characterised by the notion of a time transform.

2.4. Time Transforms

A time transform s is a total continuous function
T → T, (where T is the set of all time points).
Such a function will remap each point in time to
some other point. This remaping has to satisfy certain
constraints, the most important of which is to preserve
the original ordering of the points. Time transforms can

Figure 3. Time Transforms and Interpretations

be applied to interpretations. This represents the effect
of modifying the time at which system events occur
and the duration for which they last. If a time transform
stretches an interpretation, then it is called a time
stretch transform. If it compresses it, it is called a time
compress transform. If i is an interpretation, and s a
time transform, we denote a transformed interpretation
by is. In order to model system slowdown/speedup as
described earlier, if an event is active at some time,
then it must also be active at the new time in the
retimed system. This relationship between an interpre-
tation and its transformed version is thus expressed as
the following law (where i(a, t) tells us whether an
event a is active at time t in an interpretation i).

∀t : T, a : Σ. i(a, t) = is(a, s(t))

The next important contribution of the theory of
slowdown and speedup is to give a precise meaning
to the statement a property is not affected by system
slowdown/speedup.

2.5. Stretch/Compress Truth Preservation

In section 1 it was said that a formula of some
logic could be used to denote a property which some
system would then be required to satisfy. It was also
claimed that certain properties did not run the risk of
being broken by slowdown/speedup. One can say that
a formula representing a property is interval stretch
truth preserving if whenever the system satisfies the
property, slowing the system down by any amount
cannot break the property. As an example consider the
property once event X has happened, event Y cannot
happen before 3 seconds have elapsed. This property
is stretch truth preserving. This occurs because if a
system satisfies this property, slowing it down means
that it will take longer for event Y to occur, such that



the property cannot be broken. Expressed more for-
mally, we say that a formula ψ representing a property
is interval stretch truth preserving (written istrt(ψ)),
if for every interpretation, when that interpretation
satisfies the property over some interval of time [b,e]
(written i �[b,e] ψ ), any slowed down interpretation
also satisfies it over the stretched interval [s(b),s(e)].

istrt(ψ) , ∀i, s. i �[b,e] ψ ⇒ is �[s(b),s(e)] ψ

A similar concept holds for system speedup, called
interval compress truth preservation (icomt). The
reader is referred to [1] for more information. If one
can identify a subset of the operators of the logic
which are stretch truth preserving, then any properties
written using only these operators are also guaranteed
to be stretch truth preserving. We shall now see how
to apply the theory for logics that do not work using
interpretations.

3. Using the Theory with TRE

In the previous section have seen that the theory
of slowdown and speedup works with logics which
use interpretations as their model of time. However, in
section 2.2 we determined that TRE use a different
model, that of signals. In the introduction we have
seen that one solution is to give a new semantics to
TRE based on interpretations. Once this is done, one
would then have to prove that these two semantics
are sound with respect to each other. We shall outline
this procedure below. For a full account of how this
approach was applied to TRE, including the actual
proofs, consult [5].

3.1. Preliminary Steps

The original semantics of TRE allow a formula to
characterise a number of signals. The new semantics
should allow TRE to characterise the collection of
interpretations equivalent to those signals. To this end,
one needs two functions stoi and itos which given
a signal will yield an interpretation and vice-versa.
These functions encode the information present in
one model into the other model. Now, the signal
model is less powerful than the interpretation model,
since its symbols must be mutually exclusive. Since
TRE only have the power to characterise signals, the
functions will only need to convert between signals
and a restricted version of interpretations (one in which
symbols also occur with mutual exclusion).

To make sure that the constructions are sane, one
should prove that these functions are inverses of one

another. This also makes the functions bijective, guar-
anteeing that for each signal there is one and only one
(restricted) interpretation, and vice-versa.

3.2. Defining an Interpretation Semantics

After this has been done, an interpretation semantics
is given to the logic in question. In such a semantics,
formulas of the logic will characterise a number of
interpretations through the notion of satisfaction over
an interval. An interpretation will satisfy a formula
between the times b and e (written i �[b,e] ψ) if it is
of a certain form between those times. For example,
an interpretation could satisfy the TRE a under these
semantics, if for the duration of the interval, the
interpretation attains the value of a.

i �[b,e] a , ∀t : T. b ≤ t < e⇒ i(a, t)

When defining interpretation semantics, it is impor-
tant to keep in mind that in order for the semantics to
be consistent with the original ones, an interpretation
has to satisfy a certain expression whenever its corre-
sponding signal encoding is in the set characterised by
that expression in the original semantics.

3.3. Soundness

If the above is done correctly, it becomes possible
to prove that the semantics are in fact sound with one
another. For example, if proving that signal semantics
are sound with interpretation semantics, one would
need to show that each time a signal is in the set
characterised by a TRE, its corresponding interpre-
tation is characterised by the same expression under
the interpretation semantics. Naı̈vely, we could try to
express this as:

∀ξ, ψ. ξ ∈ |[ψ]| ⇒ stoi(ξ) � ψ

The problem with this however, is that while the
interpretation semantics uses satisfaction over an in-
terval, this concept is missing from the signal based
semantics. In this case, what we really need to express
is that, if the part of the signal between the times
b and e is in the set |[ψ]|, then the corresponding
interpretation also satisfies ψ over [b,e]. This can be
written as:

∀ξ, ψ. slice(ξ)[b,e] ∈ |[ψ]| ⇒ stoi(ξ) �[b,e] ψ

where the slice function gives us a way to obtain
the part of the signal which lies within the interval.
Defining such a function however, might not always



be straightforward. Once all this work has been com-
pleted, slowdown and speedup results can be derived
for the operators found in the logic. In the next
section, we show the results obtained for timed regular
expressions.

4. Slowdown/Speedup Results for TRE

Table 1 shows which operators are stretch/compress
truth preserving.

istrt icomt

a ∈ Σ X X
ψ1 ◦ ψ2 X X
ψ1 ∪ ψ2 X X
ψ1 ∩ ψ2 X X
ψ∗ X X

〈ψ〉[b,∞] (l.b.) X ×
〈ψ〉[0,e] (u.b.) × X
〈ψ〉[b,e] × ×

Table 1. Slowdown and Speedup Results for TRE

As we said before, properties built from a com-
bination of stretch/compress truth preserving opera-
tors only, will inherit this trait. For example, con-
sider the property (〈a〉[3,∞] ◦ b)∗. Here the allowed
behaviour consists of an occurrence of an event a
followed by event b for any number of times, where
a must last for at least 3 seconds. This property is
stretch truth preserving. On the other hand consider
(〈a〉[3,∞] ◦ b)∗ ∪ 〈c〉[0,2], in which we also allow be-
haviours where event c must last for not more than 2
seconds. In this case, a term which is not stretch truth
preserving was added to the expression, meaning that
no slowdown guarantees can be given for this property.

What is important to note is that any expression
which does not contain the interval restriction oper-
ator, is unaffected by the problems of slowdown and
speedup. For those properties that do contain timing
constraints, the following observations can be made.
If the time constraint contains an upper bound (u.b.)
only, then, it is safe from the effects of system speedup.
If it contains a lower bound (l.b.) only, then it is safe
from the effects of system slowdown. If it contains
both, then it is safe from neither. To this end, when
using TRE the best one can hope for is to be able to
write properties using just lower bounds or just upper
bounds, if one wants to have an immunity with respect
to either slowdown or speedup.

5. Discussion and Future Work

We shall now discuss some issues involved in ap-
plying the theory to logics which do not have an

interpretation based semantics. First of all, one needs
to define the functions for moving between models
of time. These functions may not be always simple
to define. Essentially they are constructions showing
how one can translate from one model of time to
another. For example in TRE the function for con-
verting from interpretations to signals has to consider
the fact that interpretations are piecewise continuous
functions whilst signals are a list of symbols and
their durations. The function itos works by mapping
each ‘piece’ of the function to a signal symbol. This
entails a discretisation step, in which the points where
the interpretation changes value are found and the
segments between these points extracted. This process
complicates the sanity proof because it necessitates the
proof of additional lemmas about the behaviour of the
discretisation step.

The second issue to consider is that in the ap-
proach presented, the interpretation semantics have to
be chosen with care so that they will be consistent
with the signal semantics. This is necessary since
otherwise soundness cannot be proven. The third point
to consider is that proving soundness, which in the case
of TRE was done by structural induction, can take a
substantial effort. This was especially evident for the
proof of the base case of the logic. Besides this fact,
as we have seen in section 3.3, the expressions for
soundness will contain a slice function. In order for
this to be manipulated in the proofs, several lemmas
will need to be proven regarding its behaviour.

An observation worthy of note is that, in this ap-
proach, giving a new semantics and proving soundness
has to be done for each new logic; little can be
reused. The above is not the only possible approach. A
second approach (see Figure 4) involves defining a new
theory of slowdown and speedup which uses the same
underlying model as the new logic. This theory must
then be proven to be sound with respect to Colombo
et al.’s theory. This approach has the advantage that
it can be reused. This means that once a new theory
of slowdown and speedup is devised with a certain
underlying model, it can be reused for all logics whose
semantics are given in terms of that model. In our
case, this would mean that it could be applied to logics
whose semantics are grounded in signals.

The major element which has to be defined in the
new theory is a way in which to apply time transforms
to the new model, such as signals. In doing so, a
difficulty is encountered since time transforms operate
on absolute time points, while signals only illustrate
each symbol and its duration. To transform a signal,
we need to transform the durations of its symbols. For
each symbol, we need to find its start and end point,



Figure 4. An Alternative Approach

transform them both, and use their difference as the
transformed duration. If s is a time transform, we can
express the application of a time transform on a signal
as follows.

(σd1
1 σd2

2 . . . σdn
n )s = σ

s(S1)
1 σ

s(S2)−s(S1)
2 . . . σs(Sn)−s(Sn−1)

n

where Sn =
∑n

i=1 di. The term Sn will locate the
endpoint of the nth symbol.

For the soundness proof, one wants to show that us-
ing Colombo et. al’s time transforms on interpretations
has the same effect as using the new time transform
on the corresponding signals and vice-versa. This can
be shown by proving that if one starts with a signal,
transforms it (using time transforms on signals), and
converts it to an interpretation (via stoi), then this inter-
pretation is the same one obtained by first converting
the signal (via itos), and then transforming it (using
time transforms on interpretations). The other direction
for soundness is similar. Formally we can express the
above as stoi(ξs) = xtoi(ξ)s and itos(is) = itos(i)s

Thus in the second approach, one has to give a
new definition for time transforms and to prove that
time transforms distribute through the functions for
converting between models of time. This approach
seems to be simpler; recall that in the first approach,
soundness needs to be proven for each base expression
and operator of the logic, besides having to craft the
interpretation semantics correctly. On the other hand,
the second approach only needs two proofs. However,
the difficulty involved in these proofs depends heavily
on the complexity of the functions stoi and itos. In
fact when working with the second approach for TRE
it was noted that the time transforms did not distribute
cleanly through the internals of these functions.

Once the groundwork was completed for the
first approach, proving which operators were slow-
down/speedup truth preserving and which were not,

was relatively easy. If the second approach was applied
to derive these results for TRE, it would act as an in-
dependent confirmation of these results. More usefully,
it would give a measure of how complex it is to apply
the second approach to logics such as TRE. As it is,
it remains to be seen whether the simplicity gained
with the second approach would then be matched
by a corresponding increase in complexity during the
slowdown/speedup proofs.

If the second approach proves to be feasible, then it
should be tried out on other logics which use the signal
model for the definition of their semantics. This would
substantiate the claim that new theories of slowdown
and speedup can be effectively reused for other logics
sharing the same model.

6. Conclusion

In this paper we have outlined how one can apply
Colombo et al.’s theory of slowdown and speedup to
other logics, such as TRE. The results obtained for
TRE showed that immunity from slowdown/speedup
problems depends on the presence of the interval
restriction operator in a property, as well as on the
bounds used with this operator. It was found that
when using time constraints, one can either provide
immunity from slowdown by using lower bounds only,
or immunity from speedup by using upper bounds only.
To this end it would be useful for a study to be per-
formed in order to determine whether and what useful
properties can be written under these constraints.
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